固体废弃物的地球物理检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体废弃物(MSW)即城市垃圾,是指在城市日常生活中或者为城市日常生活提供服务的活动中产生的固体废物以及法律、行政法规规定视为城市生活垃圾的固体废物。采用高密度电阻率法和多道瞬态面波法分别对所处半干旱地区的兰州市伏龙坪垃圾填埋场和野狐沟垃圾填埋场进行现场探测,通过室内试验和现场探测结果研究了半干旱地区垃圾填埋场的地球物理特性。
     室内对含水率、密度、有机质含量、颗粒分析、易溶盐成分、矿物组成及电阻率性质测试。对野狐沟垃圾填埋场试样进行含水率测试得出,深度7.4-19m位置含水率范围在20-25%左右,深度19-25m位置处含水率变化范围在5-10%内。密度测试结果,在深度7.4-17m范围密度随深度增加而递减,在深度17-25m时密度随深度增加而增加。有机质测试结果显示,深度在7.4-11m内,随深度增加有机质含量增大,当深度继续增加时,有机质含量又呈减少趋势。在垃圾填埋场的一定深度范围内,填埋固体废弃物性质变化基本一致,在达到某深度处时存在性质改变的拐点。进行易溶盐分析得出,在埋深12-13m位置处,阴阳离子含量都达到最大值,在18-19m埋深以下,易溶盐主要以芒硝和石膏的形式存在,基本无变化。矿物成分测试结果显示,12-13m深度以上不存在白云石和伊利石,随深度增加石英含量减少,钠长石含量增加,其余矿物变化不明显。填埋固体废弃物的深度不同,固体废弃物组分也会随着改变。填埋所在环境不同,组成的矿物成分也不同,显示了固体废弃物组成的复杂性。
     现场运用高密度电阻率法和多道瞬态面波法分别对伏龙坪垃圾填埋场和野狐沟垃圾填埋场进行勘测研究。首次在半干旱地区对填埋的固体废弃物进行比较系统地勘测,利用高密度电阻率法勘探结果为伏龙坪垃圾填埋场上覆盖层的电阻率大于39.70Ω·m,而生活垃圾的电阻率值小于18.60Ω·m。野狐沟垃圾填埋场上覆盖层电阻率大于38.20Ω·m,而生活垃圾的电阻率值小于38.20Ω·m,填埋的生活垃圾中带有较多的高阻异常区,说明填埋场中填埋成分的复杂程度。利用多道瞬态面波法勘探结果为伏龙坪垃圾填埋场上覆盖层的瑞利波速大约在150-170m/s之间,而生活垃圾的瑞利波速大约在130-180m/s之间。野狐沟垃圾填埋场上覆盖层瑞利波速在143-198m/s,下部生活垃圾的瑞利波速在171-179m/s左右。这处在半干旱地区兰州市填埋固体废弃物的地球物理探测积累了资料,填补了兰州市填埋固体废弃物地球物理探测的空白。
Municipal solid waste (MSW) or named municipal waste is defined the one produced in urban everyday life and services provided, and ruled by laws and administrative laws and regulations. This paper studied the geophysical characteristics of Fulongping landfill and Yehugou landfill field in lanzhou city, which located in semiarid region, by exploring with the high density resistivity method and multi-channel transient surface wave method and researching with laboratory test.
     The water content change of Yehugou landfill is20-25%and5-10%at the depth of7.4-19m and20-25m, respectively. The density of it decreases as the depth increases from7.4m to17m, but increase as the depth increases from17m to25m. In depth of landfills, within the scope of solid waste landfill properties change basic consistent, in the depths to certain existing properties change a turning point.As to the organic content, it presents parabola. The result of soluble salt indicates that the maximum of ion content occurs at the depth of12-13m, and the soluble salt at the depth of18-19m is mainly mirabilite and gypsum. The content of quartz and albite increases with the increasing of depth but of others mineral vary little. There is not dolomite and illite at the depth of12-13m. The depth of the solid waste landfill different, solid waste as components change. The environment where landfill different, composed of mineral composition is different also, the display of the solid waste of the complexity of the composition.
     The results of field exploration indicates:(i) the resistivity in overburden layer of Fulongping landfill and Yehugou landfill is39.70Ω·m and38.20Ω·m, respectively,(ii) the resistivity of life rubbish in these landfill is less than18.60Ω·m and38.20Ω·m.(iii) the wave velocity in overburden layer of Fulongping landfill and Yehugou landfill is about150-170m/s and179-198m/s, respectively,(iv) the wave velocity of life rubbish in these landfill is130-150m/s and143-198m/s. Therefore, there are many anomaly region of high resistance in landfill and its compounds are complicated.
引文
[1]GB5085-1996,危险废物鉴别标准[S].1996.
    [2]杨玉江,赵由才.填埋垃圾腐殖质组成在填埋场稳定度表征中的应用[J].环境污染与防治,2007,29(2):108-109.
    [3]朱英,赵由才,李鸿江,等.污泥填埋稳定化过程中的物理、化学性状变化[J].生态环境学报,2009,18(4):1207-1212.
    [4]Lindsay N.Meads, Laurence R.Bentley, Carl A.Mendoza. Application of Electrical Resistivity Imaging to the Development of a Geologic Model for a Proposed Edmonton Landfill Site[J].Can. Geotech. 2003,40:551-559.
    [5]Zeyad S. Abu-Hassanein, Craig H.Benson, Lisa R.BlotZ. Electrical Resistivity of Compacted Clays[J] Journal of Geotechnical Engineering. 1996,5:397-406.
    [6]Haskell.K,Gambellin.D,Daleiden.T.The Use of Electrical Leak Location Surveys in Improving the Performace of Landfill Liner Systems[R]. Italy:Environmental Sanitary Engineering Centre, 2003.
    [7]Yoon. J.R, Lee. K, Kwon. B.D. Geoelectrical Surveys of the Nanjido Waste Landfill in Seoul Korea[J]. Environmental Geology. 2003,43:654-666.
    [8]Geophysical Exploration for Engineering and Environmental Investigations[R]. U.S.Army Crops of Engineers. Washington, DC. 1995.
    [9]Powers CJ, Wilson J, Haeni F.P, Carole D.J. Surface-Geophysical Investigation of the University of Connecticut Landfill, Storrs, Connecticut [R]. Connecticut:U.S.Geological Survey, 1999.
    [10]Lee C.Y, Yun J.K, Kim K.H, Lee T.J, Lee S.Y. Evaluation of Remedial Alternatives Using Geophysical Survey and Characterization of Asbestos Containing Material in Landfill[C]. Proceeding Sardinia 2003, Ninth International Waste Management and Landfill Symposium.
    [11]Geophysical Techniques to Locate DNAPLs:Profiles of Federally Funded Projections [J]. E.P.A1998.
    [12]Hruby.V, Barrie.S.Understanding Electrical Leak Location Surveys:Consequences for the Design of Geomembrance Lining Systems[J]. Proceeding Sardinia 2003, Ninth International Waste Management and Landfill Symposium.
    [13]Gregory PS, Tony P.S.Surface Geophysical Investigation of a Chemical Waste Landfill in Northwestern Arkansas[R]. Arkansas, Water-Resources Investigations Report. 2001:107-115.
    [14]Geophysical Exploration for Engineering and Environmental Investigations[R].1995,8(31): 1110-1802.
    [15]Innovations in Site Characterization: Geophysical Investigation at Hazardous Waste Sites United States Environmental Protection Agency Office of soil Waste and Emergency Response[R].2000.8.
    [16]Karlik G, Kaya M. Investigation of groundwater contamination using electric and electroma-gnetic methods at an open waste-disposal site:a case study from Isparta, Turkey[J]. Environ Geol.2001,40:725-731.
    [17]Benson A, Payne K, Stubben M. Mapping ground-water contamination using DC resistivity and VLF geophysical methods a case study[J]. Geophysics. 1997,62:80-86.
    [18]Aristodemou E, Thomas Betts A. DC Resistivity and Induced Polarisation Investigations at a Waste Disposal Site and its Environments[J]. Bettsr journal of Applied Geophysics. 2000,44:275-302.
    [19]Mac D.S, Cherry J.A, Gillham R.W. Migration of Contaminants in Groundwater at Borden Landfill, Ontario, Canada[J]. Journal of Hydrology. 1983,63:1-29.
    [20]Younghwan Son, Myounghak Oh, Seunghak Lee. Estimation of Soil Weathering Degree Using Electrical Resistivity.Environmental Earth Sciences. 2010,59:1319-1326.
    [21]Timo Saarenketo. Electrical Properties of Water in Clay and Silty Soils[J]. Journal of Applied Geophysics. 1998,40:73-88.
    [22]Storz H, Storz W, Jacobs F. Electrical Resistivity Tomography to Investigate Geological Structures of the Earth's Upper Crust[J].Geophys Prospect. 2000,48:455-471.
    [23]Islam S.M.T, Chik Z. Simple Equation Guide for Multi-layer Earth Structure with Soil Electrical Properties:Multi-layer Soil Electrical Profile[J].2011 IEEE Conference on Open Systems, September 25-28, 2011, Langkawi, Malaysia.
    [24]Vladimir Frid,Gady Liskevich,Dmitriy Doudkinski,Nikolay Korostishevsky. Evaluation of Landfill Disposal Boundary by Means of Electrical Resistivity Imaging[J]. Environ Geol. 2008,53:1503-1508.
    [25]Awni T. Batayneh, Majdi O. Barjous. Resistivity surveys near a waste-disposal site in the Qasr Tuba area of central Jordan[J]. Bull Eng Geol Environ. 2005, 64:287-294.
    [26]程业勋,刘海生,赵章元.城市垃圾污染的地球物理调查[J].工程地球物理学报,2004,1(1):26-30.
    [27]闫永利,马晓冰,袁国平,等.大地电磁法在阿苏卫填埋场地下水污染检测的应用研究[J].地球物理学报,2007,50(6):1863-1868.
    [28]叶腾飞,董路,龚育龄,等.卫生垃圾填埋场边界的地电特性研究[J].环境科学与技术,2011,34(3):167-169.
    [29]郭秀军,王兴泰.用高密度电阻率法进行空洞探测的几个问题[J].物探与化探,2001,25(4):306-311.
    [30]郭秀军,孟庆生,王基成,等.地球物理方法在含油工业污水管道渗漏探测中的应用[J].地球物理学进展,22(1):279-282.
    [31]郭秀军,张晓培,牛建军.分布式高密度电阻率探测系统及其在堤坝隐患探测中的应用[J].工程勘察,2001,4:67-69.
    [32]李鸿江,郭秀军,金春姬,等.垃圾填埋场渗漏电学监测系统设计及室内模拟试验[J].环境污染与防治,2005,27(4):311-313.
    [33]郭秀军,王兴泰.利用高密度电阻率法进行断层破碎带探查的数值模拟方法[J].青岛海洋大学学报,2001,31(5):755-761.
    [34]郭秀军,贾永刚,黄潇雨,等.利用高密度电阻率法确定滑坡面研究[J].岩石力学与工程学报,2004,23(10):1662-1669.
    [35]郭秀军,章光新,谭笑平.物理探查方法在土壤改良中的应用研究[J].地理科学,1999,19(5):470-474.
    [36]刘松玉,韩立华,杜延军.水泥土的电阻率特性与应用探讨[J].岩土工程学报,2006,28(11): 1921-1926.
    [37]韩立华,刘松玉,杜延军.温度对污染土电阻率影响的试验研究[J].岩土力学,2007,28(6):1151-1155.
    [38]韩立华,刘松玉.水泥固化污染土电阻率试验研究[J].安全与环境学报,2009(4):135-139.
    [39]查甫生,刘松玉,杜延军,等.土的微结构特征对其电阻率的影响试验研究[J].工程勘察,2008,(10):6-10.
    [40]韩立华,刘松玉,杜延军.一种检测污染土的新方法-电阻率法[J].岩土工程学报,2006,28(8):1028-1032.
    [41]Liu Zhaoping, Yang Jin, Luo Shuiyu. The application of geophysical methods to the analysis of landfill[J]. Earth Science Frontiers,2010,17(3):250-258.
    [42]白兰,周仲华,张虎元,等.污染土的电阻率特征分析[J].环境工程,2008,26(2):66-70.
    [43]白兰.物探方法在污染场地中的应用[硕士学位论文][D].兰州:兰州大学,2007.
    [44]葛双成.环境地球物理学的发展及展望[J].浙江地质,2000,16(2):9-14.
    [45]刘国华,王振宇,黄建平.土的电阻率特性及其工程应用研究[J].岩土工程学报,2004,26(1):83-87.
    [46]房纯纲,贾永梅,周晓文,等.汉江遥堤电导率与土性参数相关关系试验研究[J].水利学报,2003,(6):119-123.
    [47]查甫生,刘松玉,杜延军,等.土的微结构特征对其电阻率的影响试验研究[J].工程勘察,2008,(10),6-10.
    [48]Fukue M, Minato T, Matsumoto M, Horibe H, Taya N. Use of a Resistivity Cone for Detecting Contaminated Soil Layers[J]. Engineering Geology.2001,50:361-369.
    [49]Abu-Hassanein Z, Benson C, Blotz L. Electrical Resistivity of Compacted Clays[J]. J. Geotech.Engrg, ASCE,1996,122(5):397-406.
    [50]Yoon G. L, Oh M.H, Park J. B. Laboratory Study of Landfill Leachate Effect on Resistivity in Unsaturated Soil Using Cone Penetrometer[J].environmental geology. 2002,43:18-28.
    [51]徐建庆,孙嘉瑞,刘继旺,等.土壤温度电阻率及氧化还原电位的原位连续测试[J].土壤,1995,(3):159-166.
    [52]Arps J J.the Effect of Temperature on the Density and Electrical Resistivity of Sodium Chloride Solutions[A].Petroleum Transent.AIME[C].[s.l.]:[s.n.],1953,198:27-330.
    [53]Sen P. N,Goode P. A.Influence of Temperature of Electrical Conductivity on Shaky Sands[J]. Geotechnical Physics.1992,57:89-96.
    [54]崔瑞华,谷社峰,李争,等.电法勘探在汤岗子地热田中的应用[A].地质找矿论丛[C].2003,18:196-199.
    [55]Gil Lim Yoon,Jun Boum Park. Sensitivity of Leachate and Fine Contentson Electrical Resistivity Variations of Sandy Soils[J] Journal of Hazardous Materials.2001,(B84):147-161.
    [56]Allan J. D, Paige R. P, Steven A. A. Electrical Resistivity of Frozen and Petroleum Contamin-ated Fine-grained Soil[J].Cold Regions Science and Technology. 2001,32:107-119.
    [57]韩立华,刘松玉,杜延军.温度对污染土电阻率影响的试验研究[J].岩土力学,2007,28(6):1151-1155.
    [58]KellerM,FrischnechtD,Zeyad S.Abu-Hassanein.Electrical Resistivity of Compacted Clays[J]. Journal of Geotechnical Engineering. 1996,122(5):397-406.
    [59]Campbell R B,Bower C A,Richard L A.Change in Electrical Conductivity with Temperature and the Relation with Osmotic Pressure to Electrical Conductivity and Ion Concentration for Soil Extracts[J].Soil Science. 1948,13:33-69.
    [60]张信贵,吴恒,易念平.城市区域水土作用与土细观结构变异的试验研究[J].广西大学学报(自然科学版),2004,29(1):39-43.
    [61]朱春鹏,刘汉龙.污染土的工程性质研究进展[J].岩土力学,2007,28(3):625-630.
    [62]Fukue M, Minato T, Horibe H, Taya N. the Micro-structures of Clay Given by Resistivity Measurements[J]. Engineering Geology. 1999,54:43-53.
    [63]蔡国军,刘松玉,童立元等.电阻率静力触探测试技术与分析[J].岩石力学与工程学报,2007,26(增1):3127-3133.
    [64]刘松玉,查甫生,于小军.土的电阻率室内测试技术研究[J].工程地质学报,2006,14(02):216-222.
    [65]Rinaldi V A, Cuestas G A. Ohmic Conductivity of a Compacted Silty Clay [J]. Journal of Geotechnical and Geoenvironmental Engineering.2002, 128(10):824-835.
    [66]张永霞.污染土的电阻率特征研究[硕士学位论文[D].兰州:兰州大学,2010.
    [67]Archie,G1E. the Electric Resistivity Log as Aid in Determining some Reservoir Characteristics [J]. Trans, American Institute of Mining, Metallurgical and Petroleum Engineers. 1942,146:54-61.
    [68]Waxman M.H, Smits L.Electrical Conductivity in Oil-bearing Shaly Sand[J]. Society of Petroleum Engineers Journa. 1968,65:1577-1584.
    [69]Komine.H,Estimation of Chemical Grouted Soil by Electrical Resistivity [J], Ground Irnprov-ement. 1997,1:101-113.
    [70]Larisa Pozdnyakova. Electrical Properties of Soils[D]. Ph. D.Thesis, University of Wyoming, Laramie, WY, 1999.
    [71]黄进.兰州市生活垃圾分类收集实施条件研究[硕士学位论文][D].兰州:兰州大学,2006.
    [72]曾正中,苟剑锋,赵转军,等.兰州市生活垃圾填埋处理现状及对策[J].甘肃科学学报,2006,18(3):116-119.
    [73]吴亚萍,赵长兴.兰州市伏龙坪地区黄土的工程地质性质[J].甘肃科学学报,2001,12(4):41-43.
    [74]赵章元.渗滤液检测实验报告[R].北京:中国地球物理学会,2001:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700