SDF-1调控表皮干细胞生物学功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮肤组织有着很强的再生能力,表皮基底层中的干细胞终身不断自我更新、持续分化以取代终末分化细胞,从而进行组织结构的更新。终末分化细胞的死亡、脱落与基底干细胞的分裂维持一定的平衡,这是维持正常的表皮组织结构和细胞内环境稳定的基本要求[1]。随着分子生物学、细胞生物学、组织工程学及生物工程学等学科的发展,表皮干细胞(Epidermal stem cell, ESC)凭借其特有的生物学优势在基因治疗、细胞治疗中越来越受到重视,成功地分离、培养表皮干细胞对临床上创伤修复、皮肤癌的研究也起着至关重要的作用[2-8]。
     皮肤创面的修复是一个多细胞与细胞因子参与的复杂过程。创伤早期,创缘周围产生大量渗出液,多种细胞因子可能调节创伤修复过程中的细胞反应,影响细胞增殖、迁移、细胞外基质合成和释放等。
     间质细胞衍生因子-1(stromal cell-derived factor-1,SDF-1)是由间质细胞分泌,并被证实在多种成体组织损伤修复过程中介导成体干细胞向受损区域迁移,参与创伤修复。因此我们推测SDF-1很可能在皮肤组织创伤后也有表达,并进而影响表皮干细胞在创缘的分布变化及数量改变。
     目的
     1.利用改良的人胎盘Ⅳ型胶原快速粘附法从人包皮组织获得ESC并进行无血清培养,观察其体外培养的生长特点,寻求一种理想的人ESC体外分离培养技术。
     2.观察SDF-1对体外培养的人ESC增殖、迁移等生物学活性的影响,并初步探讨其作用机制。
     3.以ESC为种子细胞构建三维皮肤等价物(three–dimensional skin equivalents, TDSE)全层创伤模型,观察皮肤创面发生过程中创缘SDF-1的表达及ESC的动态变化,分析二者相关性。
     方法
     1.按照Dispase II-胰酶两步消化法从人包皮组织获得ESC,以人胎盘Ⅳ型胶原按照5μg/cm2的密度包被培养瓶,将ESC以无血清培养基(defined keratinocyte-serum free medium,DK-SFM)进行体外培养,观察其生长及形态变化、克隆形成,并对原代培养的ESC表面标记物β1-integrin、CK19、PCNA进行细胞免疫组织化学染色,对CD49f和分化标记CD71双染进行免疫荧光鉴定。
     2.通过MTT实验检测不同浓度SDF-1对ESCs增殖的影响,以及在相同浓度SDF-1作用下另添加不同浓度AMD3100对ESCs增殖的影响;通过划痕实验,检测不同浓度SDF-1对ESCs趋化迁移的作用趋势,及SDF-1促迁移运动的时间效应。
     3.将成纤维细胞与鼠尾胶原、DMEM培养基、血清按比例混匀制成“真皮等价物”。经过72h培养,原代人角质形成细胞接种在真皮等价物的表面。继续培养1周后,抬高到气-液面,使ESC分化为各层,最终形成“三维皮肤等价物”随后,用液氮冷冻的金属棒冻伤模型,建立离体全层冻伤创面。在冻伤后3、7天、10天取材免疫组化染色观察创缘SDF-1的表达变化;另添加外源性SDF-1和其受体阻断剂AMD3100作用后,在冻伤后3、7天取材免疫组化染色观察创缘ESCs的分布变化。
     结果
     1.Ⅳ型胶原分选的粘附细胞在DK-SFM培养基中生长良好,细胞胞体呈圆形,细胞核大,核质比大,培养9天能行成含200个细胞以上的大克隆,呈铺路石样铺满瓶底。β1-integrin、CK19、PCNA均呈阳性表达。免疫荧光法双重标记显示细胞为α6briCD71dim细胞。
     2. SDF-浓度依赖性的促进ESC的增殖、迁移作用。在100ng/ml时促增殖和迁移的作用最显著,AMD3100则能有效阻断上述增殖和迁移的作用。
     3.利用ESC为种子细胞成功构建了三维皮肤等价物全层冻伤模型。HE染色显示正常未冻伤区细胞分层良好,冻伤创缘区表皮细胞坏死增多,表皮层变薄。免疫组织细胞化学染色显示,冻伤发生后,创缘周围组织中SDF-1表达量不断增加。但是表达量的增加不是持续的,第7天即为高峰,随后表达量迅速减少。至愈合晚期,局部无SDF-1表达。伴随创面愈合进程,ESC的定位分布不象正常皮肤那样呈单层片状、散在分布于表皮基底层,而是向创面迁移聚集的趋势更加明显,且在多层内出现散在β1整合素阳性细胞。组织形态学上表现为新生表皮组织较正常组织明显增厚。
     结论
     1.对人ESC的体外无血清培养方法进行观察发现通过Ⅳ型胶原快速粘附法能有效的分离ESC。
     2.外源性的SDF-对ESC增殖和迁移的促进作用,这些影响是通过SDF-及其受体CXCR4的相互作用实现的。
     3. TDSE离体创面愈合过程中,SDF-1在创缘呈可控性表达;SDF-1通过趋化效应引起ESC在创缘的异位分布,并且与增殖效应一起共同作用加速实现创面的上皮化过程。
Skin tissue has high ability of regeneration. Epidermis, a continuously renewing tissue, is maintained by stem cells that proliferate and replenish the worn out or damaged cells in tissue during life. The balance between cell division and cell loss is essential for epidermal homeostasis and must be maintained for life. With the developments of molecular biology、cell biology、tissue engineering and biotechnology, epidermal stem cells(ESCs) are become more and more important in gene therapy and cell therapy because of their distinguished biological characters. How to isolate and culture ESCs is of great importance not only for the study on tissue repair in trauma but also on skin cancer.
     Many cells and cytokines are involved in the complex process of epidermal wound healing. At the early stage, a great deal of exudate was generated in wound margin. Variety of cytokines play key roles in wound healing process, mainly including regulating various cell reactions, releasing of extracellular matrix, as well as affecting cell proliferation, migration and synthesis
     SDF-1 was secreted by the stromal cells and could mediate adult stem cells migration toward damaged region in a variety of adult tissue injuries and repair processes. Therefore, we speculated that SDF-1 might be expressed around wound, and had effect on the distribution and number of ESC in this area.
     Objectives:
     1. Epidermal stem cells (ESCs) were isolated from foreskins,separated based on collagen type IV adhesiveness, and cultured in serum free medium in vitro. Their growth was observed so we can establish an ideal method of ESC sorting and culture.
     2. To observe the effects of stromal cell derived factor-1(SDF-1) on ESCs proliferation and migration, and to explore its mechanism.
     3. To build a three-dimensional equivalent of full thickness skin wound model, observe SDF-1 expression in the process of skin wound healing and then analyze their correlation.
     Method:
     1. ESCs were isolated from human foreskins by dispase II-trypsin combined digestion. the culture dishes were coated with human placenta collagen typeⅣ, then ESCs were planted on human placenta collagen typeⅣ-coated dishes and cultured in Defined Keratinocyte Serum Free Medium(DK-SFM). The change on ESCs morphology, colony forming efficiency and the expression of surface markers (CD71,α6-integrin,β1-integrin, CK19 and PCNA) were detected.
     2. ESCs proliferation under the effect of different concentration of SDF-1 or AMD3100 was measured by MTT assay. ESCs migration and chemotaxis under the effect of different concentration of SDF-1 were measured by wound scrap experiment.
     3. Initially, dermal equivalents, comprising human passaged fibroblasts seeded in a rat tail collagen matrix, were grown on cell culture dishes. After 72 hour, primary human keratinocytes were seeded on this base. One week later, an air-lift transition was performed, leading to the differentiation of the ESCs, which were macroscopically visible as "three-dimensional skin equivalents" after a couple of days. We then used liquid nitrogen freezing metal rod to establish a full-thickness frostbite wounds in vitro. The distribution of SDF-1 on the wound margin, as well as the distribution of ESC under the effect of SDF-1 solely or combined with AMD3100, were detected by immunohistochemical staining on 3rd, 7th, and 10th day of frostbite,.
     Result:
     1. ESCs were enriched based on collagen type IV adhesiveness. They exhibited many characteristics predicted of ESCs such as quiescence, small blast-like morphology, and the greatest long-term cell regenerative output in vitro.β1-integrin, CK19 and PCNA expression were positive. Almost all cells from a single colony wereα6briCD71dim staining by immunofluorescence.
     2. The proliferation and migration of ESCs dependent on SDF-concentration. The promoting effect of SDF-was the most significant in 100ng/ml. AMD3100 was able to effectively block the effect of SDF-.
     3. Using ESCs as seed cells, we successfully constructed a full-thickness skin frostbite model in the three-dimensional skin model. HE staining showed the well developed skin structure in normal area, as well as thinner skin and increased ESCs in wound margin of frostbite. As shown by Immunohistochemical staining, the expression of SDF-1 in the wound margin increased with time and peaked in day 7, followed by a rapid decline. There was on SDF-1 expression in wound area in the late healing stage. Instead of single-sheet and scattered in the basal layer just like in normal skin, the distribution of ESCs was tend to gather around wound. Theβ1-integrin-positive cells appeared in both basal and upper layers of skin. The newborn epidermal tissue was thicker than normal tissue.
     Conclusion:
     1. ESCs can be selected and cultured in vitro successfully based on collagen type IV adhesiveness.
     2. Exogenous SDF-could promote the proliferation and migration of ESCs by interacting with its receptor CXCR4.
     3. A controllable expression of SDF-1 was detected in wound margin during skin repair on TDSE. SDF-1 could induce the ectopic distribution of ESCs with its chemotaxis, and accelerate skin epithelization with the proliferation promoting and chemotactic effects.
引文
1. Green H. The keratinocyte as differentiated cell type. Harvey Lect 1980,74:101-105
    2. Compton C, Nadire K, Regauer S, et.al. Cultured human sole-derived keratinocyte grafts re-express site-specific differentiation after transplantation. Diffierentiation, 1998,64(1):45-53
    3. Pellegrini G, Ranno R, Stracuzzi G, et al. The control of the epidermal stem cells in the treatment of massive full-thickness burns with autologous keratinocyte cultured on fibrin. Transplantation.1999,68(6):868-879
    4. Tenchini M, Ranzatic C, Malcovati M. Culture techniques for human keratinocytes. Burns,1992;18:11-17
    5. Leary T, Jones P, Appleby M, et al. Epidermal keratinocyte self-renewal is dependent upon dermal integrity. Invest Dermatol,1992, 99(4):422-430
    6. Rouabhia M, Germain L, Bergeron J, et al. Allogenetic-syngeneic cultured epithelia,A successful therapeutic option for skin regeneration. Transplantation 1995, 59(9): 1229-1235
    7. Kaur P, Amy Li. et al. Keratinocyte stem cell assays: an evolving science. JID Symp Proc 2004;9(3):238-247
    8. Morasso I,Marjana T. Epidermal stem cells :the cradle of epidermal determination differentiation and wound healing.Biol Cell,2005,97(3):173-183
    9. Ghadially R. Epidermal stem cells. Adv Dermatol,2005,21:335-355.
    10. Akiuama M ,Smith LT ,Shimizu H.Changing patterns of localization of putative stem cell in developing human hair follicles.J lnvest Dermatol.2000,114(2):321-327
    11. Mhashilkar AM,Doebis C,Seifert M. et al. Intrabody-mediated phenotypic knockout of major histocompatibility complex classⅠexpression in human and monkey cell lines and in primary human kerationcytes. Gene Ther, 2002,9(5):307-319.
    12. Janes SM, Lowell S, Hutter C. Epidermal stem cells. J Pathol. 2002,197(4):479-491
    13. Horuk R. Chemokines beyond inflammation. Nature.Jun 11.1998,393(6685):524-525.
    14. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy,Lancet, 2003,362(9385):697-703.
    15. Kucia M,Dawn B,Hunt G,et al.Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res.Dec 10 2004,95(12):1191-1199.
    16. Vasyutina E,Stebler J,Brand-Saberi B,et al.CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells.Genes Dev.2005,19(18):2187-2198.
    17. Li J,Fu X,Sun X,Sun T,Sheng Z.The interaction between epidermal growth factor and matrix metalloproteinases induces the development of sweat glands in human fetal skin.J Surg Res.Aug 2002,106(2):258-263.
    18. Bickenbach JR,Chism E.Selection and extended growth of murine epidermal stem cells in culture.Exp Cell Res 1998,244(1):184-95
    19. Cotsarelis G, Kaur P, Dhouailly D, et al. Epithelial stem cells in the skin: definition, markers, localization and functions.Exp Dermatol,1999,8(1):80-88.
    20. Gambardella L,Barrandon Y.The multifaceted adult epidermal stem cell.Curr Opin Cell Biol.2003,15(6):771-777.
    21. Tudor D,Locke M,Owen-Jones E,et al.Intrinsic patterns of behavior of epithelial stem cells.J Investig Dermatol Symp Proc.2004,9(3):208-214.
    22. Kaur P.Interfollicular epidermal stem cells:identification,challenges,potential.J Invest Dermatol.2006,126(7):1450-1458.
    23. Barthel R, Aberdam D. Epidermal stem cells. J Eur Acad Dermatol Venereol, 2005,19(4):405-41
    24. Webb A, Li A, Kaur P. location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation, 2004,72(8):387-39
    25.邱泽亮,曾元临.表皮干细胞的生物学行为研究进展.江西医学院学报, 2004, 44(5): 126-129.
    26. Tani H.MorfisRJ,Kaur P.Enrichment for murine keratinocyte stem cells based on cell surface phenotype.PNAS 2000,97(20):10960-10965
    27. Michel M,Torok N,Godbout MJ,et al.Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro:Keratin 19 expressing cells are differentially localized in function of anatomic sites,and their number varies with donor age and culture stage.J Cell Sci,1996,109(5):1017-1028.
    28. Ji KH,Xiong J,Hu KF,et al. P63 expression Pattern during rat epidermis morphogenesis and the role of p63 as a marker for epidermal stem cells.J Cutan Pathol, 2007, 34(2):154-159
    29. Watt FM, Hogan BLM. Stem cells and their niches. Science, 2000,287(5457): 1427-1430
    30. Tumbar T, Guasch G,Greco V,et al. Defining the Epithelial Stem Cell Niche in Skin. Science,2004,303(5656):359-363
    31. Li H, Fu X, Zhang L, et al. In vivo differentiation of human epidermal cells. Cell Biol Int,2007,31(11):1436-1441
    32. Lapidot T,Dar A,Kollet O. How do stem cells find their way home? Blood. 2005,106(6):1901-1910.
    33. Kucia M,Ratajczak J,Ratajczak MZ. Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biology of the Cell. 2005,97(1):133–146.
    34.杨文博,孔佩艳.趋化因子基质细胞衍生因子1(SDF-1)及其受体CXCR4.免疫学杂志,2003,19(3):142-144
    35. Barrett J,Rollins.Chemokines.Blood,1997,90(3):909-928
    36.李丹,李世荣,曹川.创面分泌液对表皮干细胞体外趋化作用的实验研究[J].重庆医学,2007,36(21):2174-2176
    37. Psenak O. Stromal cell-derived factor 1 (SDF-1). Its structure and function. Cas Lek Cesk, 2001, 140:355-363
    38. Gear AR, Suttitanamongkol S, Viisoreanu D, et al. Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function. Blood,2001,97:937-945
    39. Kucia M,Dawn B,Hunt G et al. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circulation Research. 2004,95(5):1191-1205.
    40. Vasyutina E,Stebler J,Brand-Saberi B et al. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells .Genes Development, 2005, 19(6): 2187-2198.
    41. Togel F,Isaac J, Hu Z et al. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney International.2005,67(3):1772-1784.
    42. Imitola J,Raddassi K, Park KI. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1 /CXC chemokine receptor 4 pathway . PNAS. 2004,101(52): 18117-18122.
    43. Ganju RK, Brubaker SA, Meyer J, et al. Theα-chemokine stromal cell-derived factor-, binds to the transmembrane G-protein-coupled CXCR4 receptor and activates multiple signal transduction pathways. J Biol Chem,1998,273 (36) : 23169 - 23175
    44. Lataillade J J, Clay D, Dupuy C, et al. Chemokine SDF21 enhances circulating CD34 (+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood, 2000, 95 (3) : 756 - 768.
    45.尹扬光,黄岚1 ,赵晓辉等. SDF-1对内皮祖细胞增殖迁移的影响及AMD3100对其的干预.第三军医大学学报,2007,29(6),475-478
    46.王承艳,苗振川,丰美福.基质细胞衍生因子SDF及其受体CXCR4在造血干/祖细胞动员及归巢过程中的作用.中国实验血液学杂志, 2004, 12 (1) : 115-119.
    47. Tanabe S, Heesen M, Yoshizawa I, et al. Functional expression of the CXC-chemokine receptor-4/fusin on mouse microglial cells and astrocytes.J Immunol, 1997, 159: 905-911
    48. J. J. Lataillade and D. Clay and C. Dupuy. et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood. 2000, 95(3), 756-768.
    49. Petit I,Goichberg P,Spiege A. Atypical PKC- regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. J Clin Invest. 2005. 115(1): 168-176.
    50. EL.Ghalbzouri, s Gibbs. E. Lamme, et al. Effect of fibroblasts on epidermal regeneration. British Journal of Dermatology. 2002; 147: 230–243
    51. Fernandez EJ,Lolis E. Structure,function, and inhibition of chemokines. Annu Rev Pharmacol Toxicol. 2002,42:469 - 499.
    52. Adam JS,Richard AFC. Cutaneous wound healing. New Engl J Med. 1999,2(3):738-746
    53.李建福,付小兵,盛志勇,等。创面愈合过程中创缘表皮干细胞的再分布。中华医学杂志。2003,83(3):228-231
    54. RL Gardener. Present perspective and future challenges.in:Essentials of stem cell biology, pp1-11,edited by Robert Lanza,et al,Elsevier Academic Press, 2006
    55. Kolf CM, Cho E, Tuan M. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9(1):204-211
    56. E Fuchs. Scratching the surface of skin development. Nature. 2007,445(7130):834-42
    57. FM Watt, Lo Celso C, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev. 2006;16(5): 518-524
    58. Kiel MJ, Morrison SJ.Maintaining hematopoietic stem cells in the vascular niche. Immunity. 2006;25(6):862-864
    59. Brouard M, Barrandon Y. Controlling skin morphogenesis: hope and despair.Curr Opin Biotechnol, 2003,14(5):520-525.
    1. J Inquan T,Quan S, Jacob IH H, et al. CXC chemokine re-ceptor 4 expression and stromal cell-derived factor-1 alpha induced chemotaxis in CD4 (+) T lymphocytes are regulated by interleukin-4 andinterleukin-10. Immunology, 2000, 99:4022410.
    2. Egawa T, Kawabata K, Kawamoto H, et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/p re-B cell growth- stimulating factor .Immunity, 2001, 15 (2) : 3232334.
    3. Kantele J M, Kurk S, Jutila M A. Effects of continuous exposure to stromal cell-derived factor-1 alpha on T cell rolling and tight adhesion to monolayers of activated endothelial cells. J Immunol, 2000, 164 (10) : 503525040.
    4. Dunussi-Joannopoulos K,Zuberek K,Runyon K, et al. Efficacious immunomodulatory activity of the chemokine stromal cell-derived factor 1 ( SDF-1) : local secretion of SDF-1 at the tumor site serves as T–cell chemoattractant and mediates T-cell-dependent antitumor responses. Blood, 2002, 5:155121558.
    5. Gomzalo J A, Lloyd C M. Peled A, et al. Critical involvement of the chemotaetic axisCXCR4 / stromal cell-derived ftmtor-1 alpha in the inflammatory component of allergic airway disease. J Immuno1, 2000, 165 (1) : 4992508.
    6. Nanki T, Lipsky P E. Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4 (+) T cell activation. J Immunol, 2000, 164 (10) : 501025014.
    7. Clissi B,Dambrosio D, Geginat J, et al. Chemokines fail to up-regulate beta l integrin-dependent adhesion in human Th-T lymphecytes. J Immunol, 2000, 164 (6) : 329223300.
    8. Vila-Coro AJ,Rodriguez-Frade JM,De Ana AM,et a1.The chemokine SDF-1 triggers CXCR4 receptor dimerization and activates the JAK,STAT pathway.FASEB J.1999.13(13):1699-710
    9. Cheng ZJ,Zhao J,Sun Y,et a1.β-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization.and this implicates multiple interaction sites between B-arrestin and CXCR4.J Biol Chem,2000.275:2479-85
    10. Kijowski J,Baj-Krzyworzeka M,Majka M,et a1. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation an d survival in lymphohematopoietic cells.Stem Cells,2001,19(5):453-66
    11. Tilton B,Ho L,Oberlin E,et a1.Signal transduction bv CXC chemokine receptor 4-Stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes.J Exp Med,2000,192(3):313-24
    12. Wang JF,Park 1W,Gropman JE.Stromal cell-derived factor-stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells:roles of phosphoinositide·-3 kinase an d protein kinase C.Blood,2000,95(8):2505-2513
    13. Kremer KN,Humphreys TD,Kumar A,et a1.Distinct role of ZAP-70 an d Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extra cellular signa1-regulated protein kinase by the stromal cel1-derived facto-1,CXCLl2 chemokine.J Immuno1,2003,171(1):360-367
    14. Okabe S,Fukuda S,Kiim YJ,et a1.Stromal cell-derived factor-/CXCL12 induced chemotaxis of T cells involves activation of the RasGAP-associated docking protein p62Dok-1.Blood,2004,10(2):474-480
    15. Walmsley MJ,Ooi SK,Reynolds LF,et al.Critical roles for Rac l an d Rac2 GTPases in B cell development and signaling.Science,2003,302(17):459-462
    16. Fernandis Az,Cherla RP,Ganju RK.Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase,CD45.J Biol Chem,2003,278(11):9536-9543
    17. Lim HW,Broxmeyer HE,KimC H_Regulation of trafficking receptor expression in human forkhead box P3 regulatory T cells.J Immuno1.2006,177(2):840-85l
    18. Chernock RD,Cherla RP,Ganju RK.SHP2 and cbl participate inα-chemokine receptor CXCR4-mediated signaling pathways.Blood,2001,97(3):608-615
    19. Hernandez PA,Gorlin RJ,Lukens JN,et a1.Mutation in the chemokine receptor gene CXCR4 are associated with WHIM syndrome,a combined immunod eficiency disease.Nat Genet.2003.34(1):70-74
    20. Roland J,Murphy BJ,Ahr B,et a1.Role of intracellular domains of CXCR4 in SDF.1-mediated signaling.Blood.2003.101(2):399-406
    21. Libura J,Drukala J,Majka M,et a1.CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion,chemotaxis,and adhesion.Blood,2002,l00(7):2597-2606
    22. Wysoczynski M,Reca R,Ratajczak J,et a1.Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stern/progenitor cells to an SDF-l gradient.Blood,2005,I05(1):40-48
    23. Ratajczak MZ,Reca R,Wysoczynski M,et a1.Modulation of the SDF-1-CXCR4 axis by the third complement component(C3)-implications for trafficking of CXCR4 stem cells[J].Exp Hematol,2006,34(8):986-995.
    24. Majka M,Kucia M,Ratajezak MZ. Stem cell biology-a never ending quest for understanding[J].Acta Biochim Pol,2005,52(2):353-358.
    25. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy , Lancet, 2003,362(9385):697- 703.
    26. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 2004,110(21):3300- 3305.
    27. Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med, 2006,7(1):19- 24.
    28. Delatte ML, von den Hoff JW, Nottet SJ, et al. Eur J, Orthod,Growth regulation of the rat mandibular condyle and femoral head by transforming growth factor-{beta}1, fibroblast growth factor-2 and insulin-like growth factor-I.2005, 27(1):17- 26
    29. Weng Y, Cao Y, Silva CA, et al. J Oral Maxillofac Surg, Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction 2001, 59(2):185- 190.
    30. Imitola J, Raddassi K, Park KI, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A, 2004, 101(52):18117- 18122.
    31. Robin AM, Zhang ZG, Wang L, et al. Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab, 2006, 26(1):125- 134.
    32.薛群,苗宗宁,张学光,等.骨髓间充质干细胞体外趋化神经前体细胞的机制.细胞生物学杂志, 2005,27(2):215- 220.
    33. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation,2003, 107(9):1322- 1328.
    34. Zernecke A, Schober A, Bot I, et al. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res, 2005,96(7):784- 791.
    35. Schober A, Karshovska E, Zernecke A, et al. SDF-1alpha-mediated tissue repair by stem cells: a promising tool in cardiovascular medicine? Trends Cardiovasc Med, 2006, 16(4):103- 108.
    36. Ceradini DJ,Kulkarni AR,Callaghan MJ,et a1.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10(8):858-864.
    37. Kucia M , Ratajezak J , Ratajczak MZ . Are bone marrow cells plastic or heterogenous-that is the question[J].Exp Hematol,2005,33(6):613-623.
    38. Kollet 0,Shivtiel S,Chen YQ,et a1.HGF,SDF-1,and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver[J].J Clin Inest,2003,112(2):160-169.
    39. Kueia M,Wojakowski W,Reca R,et a1.The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-,HGF-,and LIF-dependent manner.Arch Immunol Ther Exp,2006,54(2):121-135.
    40. Orlic D,Kajstura J,Chimenti S.et a1.Mobilized bone marr0w ce11s repair the infarcted heart,improving function and survival.Proc Natl Acad Sci U S A,2001, 98(18):10344-10349
    41. Ymaguchi J,Kusano KF,Masuo 0,et a1.Stromal cell。Derived factor-1 effects on ex vive expanded endothelial progenitor cell recruitment for ischemic neovascularization[J].Circulation,2003,107(9):1322-1328
    42. Majka M,Janueska-Wieczorrk A, Ratajczak J,ct a1. Stromal-derived factor I and thrombopoietin regulate distinct aspecets of human megakalTopoiesis.Blood,2000,96(13):4142—4151.
    43. Peled A,Kollet O,PononlaD,ov T.et al The chemokine SDF-1 activates the integrins LFA-l,VLA-4.and VLA-5 oil immature human CD34(+)cells:role in transendothelial/stromal migration and engraftment of NOD/SCID mice[J] Blood,2000,95(11):3289-3296.
    44. Ding z,Issekutz TB,Downey GP,et al L-selectin stimulation enhances functional expression of surface CXCR4 in lymphocytes:implications for cellular activation during adhesion and migration.Blood,2003,10l(11):4245-4252.
    45. Urbieh C,Dimmeler S Endothelial progenitor ceils characterization and role in vascular biology.Circ Res,2004,95(4):343-353
    46. Moore MA,Hattori K,Heissig B.et a1.Mobilization of endothelial and hematopoietic stein and progenitor cells by adenovector.Mediated elevation of serum levels of SDF-1,VEGF,and angiopoietin-l.Ann N Y Acad Sci,2001,938(1):36-45.
    47. Gao C。Li Y.SDF-1 plays a key role in the repairing and remodeling process on rat allo-orthotopic abdominal aorta grafts.Transplant Proc,2007,39(1):268-272.
    48. Matsumoto T,Turesson I,Book M,ct a1.p38 MAP kinase negatively regulates endothelial cell survival , proliferation , and differentiation in FGF-2-stimulatedangiogenesis. J Cell Biol,2002,156(1):149—160.
    49. Salvueci o.Yao L,Villalba S,et a1.Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal derived factor-1.Blood,2001,99(8):2703-2711.
    50. Salcedo R.Wasserman K,Young H,et a1.Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells:In vivo neovascularization induced by strumal-derived factor-alpha.AM J Pathol,1999,154(4):1125-1135.
    51. Kanda S,Mochizuki Y,Kanetake H.Stromal cel1.derived factor-1 alpha induces tube-like structure formation of endothelial cells through phosphoinositide 3-kinase.J Boil Chem,2003,278(1):257-262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700