替米沙坦对骨骼肌糖代谢的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:代谢综合征(metabolic syndrome,MS)是以中心性肥胖为核心,合并血压、血糖、甘油三酯升高和/或高密度脂蛋白胆固醇(HDL C)降低,可显著增加2型糖尿病和心血管病的危险性。一类抗高血压药物,血管紧张素Ⅱ受体阻断剂(ARBs)常用于治疗合并有糖尿病或糖尿病肾病的高血压患者。几个临床试验的亚组分析发现这类药物改善了患者的胰岛素抵抗、降低了高血压患者中新发糖尿病的发生率。在动物试验也证实ARBs改善肥胖或高血压大鼠的胰岛素抵抗。由于2型糖尿病目前在全球普遍流行,ARBs的这些药理作用值得进一步关注,以便制定防治该病的更好策略。但是,ARBs对葡萄糖稳态的作用还没有完全阐明。人们广泛认为,ARBs潜在的抗糖尿病作用主要与它们能阻断肾素血管紧张素系统(RAS),纠正血管紧张素Ⅱ(AngⅡ)对代谢的副作用有关。AngⅡ通过对胰岛素信号通路、组织血流、氧化应急、交感神经活性和脂肪生成的作用损害葡萄糖代谢。ARBs与AngⅡ受体结合,竞争地阻断AngⅡ的作用从而发挥增加胰岛素敏感性、降血糖的作用。但是,也有一些研究认为ARBs对胰岛素敏感性的作用相当小或没有作用。这说明ARBs可能存在独立于RAS阻断以外的抗糖尿病作用。
     在众多的ARBs中,替米沙坦(Tel)在结构上不同与临床上用的其他ARBs。替米沙坦结构类似于胰岛素増敏剂比格咧酮,能部分激活过氧化物酶体增值激活受体γ(PPARγ),从而影响炭水化合物和脂代谢。然而,PPARγ主要分布于脂肪组织,肌肉组织才是外周进行葡萄糖处理的主要组织,而在肌肉组织中主要分布的PPARs为δ型。PPARδ在代谢综合征的作用最近才开始被阐明,已有的研究表明PPARδ在调节脂质代谢、改善胰岛素敏感性以及抗动脉粥样硬化中发挥重要的作用,有望成为防治MS、2型糖尿病的新型药物靶点。因此我们推论替米沙坦在肌肉组织中通过激活PPARδ发挥其增加胰岛素敏感性,改善胰岛素抵抗的作用。为了明确替米沙坦与PPARδ在肌肉组织是否存在相互作用及与葡萄糖代谢的关系,本研究分别于在体和离体水平对上述推论进行探讨,以期为高危人群中药物预防糖尿病发生提供理论依据。本研究分为三个部分:1.用替米沙坦急性刺激C2C12和原代培养的C57BL/6J和PPARδ基因敲除小鼠的骨骼肌细胞,观察替米沙坦对不同细胞葡萄糖摄取的不同影响。2.从分子水平观察替米沙坦对骨骼肌组织及细胞PPARδ、PPARγ、RAS组份及其它相关蛋白表达的影响,初步探讨替米沙坦影响骨骼肌葡萄糖代谢的分子机制。3.用替米沙坦长期喂养C57BL/6J和PPARδ基因敲除小鼠,观察替米沙坦对这两种小鼠模型体重、肌纤维组成及葡萄糖耐量等表型的不同影响。
     材料方法:
     整个研究分在体和离体实验两部分。离体研究以C2C12细胞和原代培养的C57BL/6J(C57)和PPARδ基因敲除小鼠的骨骼肌细胞为研究对象。在体试验以C57和PPARδ基因敲除小鼠,以及自发性高血压大鼠(SHR)作为模型。
     1.小鼠骨骼肌系C2C12细胞诱导成熟后分别用胰岛素,胰岛素+AngII,胰岛素+AngII+替米沙坦刺激,然后用3H 2脱氧葡萄糖检测细胞对2脱氧葡萄糖(2 DG)的摄取率。
     2.采用原代骨骼肌细胞培养技术,培养C57和PPARδ基因敲除小鼠骨骼肌细胞。细胞融合后换用无血清培养基,在有或无Compound C存在的情况下加用不同浓度的替米沙坦刺激24小时,再用3H 2脱氧葡萄糖测其对2 DG摄取率。
     3.提取原代培养骨骼肌细胞及小鼠模型腓肠肌的总RNA和蛋白,用半定量RT PCR技术检测PPARγ和PPARδmRNA表达;用Western blot技术分析PPARγ、PPARδ、RAS组份(ACE、AngⅡ、Renin和AT1R)以及其它相关蛋白(AMPKα1、p AMPKα、TroponinⅠss)的表达。SHR大鼠肌肉组织PPARγ、PPARδmRNA和蛋白表达也被分析。
     4.用替米沙坦干预C57BL/6J和PPARδ基因敲除小鼠共24周,观测喂养前10天的进食量、饮水量;每2周观测一次体重;第23 24周时进行运动耐量、氧耗量测试、腹腔内注射葡萄糖耐量实验和胰岛素耐量实验;第24周过夜空腹麻醉后处死,取血测胰岛素、甘油三酯和总胆固醇;取双侧腓肠肌,一侧冰冻切片后做ATP染色,观察骨骼肌纤维成分组成,另一侧70℃冻存,备提蛋白和RNA。
     结果:
     1.胰岛素刺激成熟C2C12细胞的2 DG摄取,AngⅡ抑制胰岛素的该作用;替米沙坦的存在则逆转了AngⅡ对胰岛素刺激的2 DG摄取的抑制作用。
     2.原代培养的C57小鼠骨骼肌细胞在胰岛素刺激下2 DG摄入增加,替米沙坦剂量依赖性增加C57骨骼肌细胞2 DG摄入,该作用在AMPK抑制剂Compound C存在时受抑制;胰岛素仍能刺激原代培养的PPARδ基因敲除小鼠骨骼肌细胞的2 DG摄入,但替米沙坦对此骨骼肌无增加2 DG摄入的作用。
     3.替米沙坦急性干预显著增加原代培养的C57骨骼肌细胞PPARδmRNA和PPARδ、AMPK、p AMPK蛋白表达,对PPARγmRNA和PPARγ、RAS组份蛋白表达无影响;替米沙坦长期干预增加C57骨骼肌组织PPARδmRNA和PPARδ、p AMPK蛋白表达,对PPARγmRNA和PPARγ、RAS组份蛋白表达无影响;替米沙坦长期或急性干预都不影响PPARδ基因敲除小鼠骨骼肌细胞和组织的PPARγmRNA和PPARγ、AMPK、p AMPK、RAS组份蛋白表达。替米沙坦长期干预促进SHR肌肉组织PPARδmRNA和蛋白表达,也促进肌肉组织PPARγmRNA和蛋白表达。
     4.替米沙坦喂养的小鼠与普食喂养的小鼠摄食量、饮水量无区别。C57小鼠替米沙坦喂养组较普通饮食喂养组的小鼠体重增加缓慢,12周以后体重明显减轻。实验23 24周时,血总胆固醇下降,运动耐量增加,运动后氧耗量增加,腓肠肌中Ⅰ型纤维肌肉成分增多,腹腔内注射葡萄糖耐量曲线下面积减少,胰岛素耐量实验中胰岛素注射后血糖下降更明显,曲线下面积明显减少。PPARδ基因敲除小鼠替米沙坦喂养组和普通喂养组之间以上观察指标间无显著差异。
     结论:
     1.替米沙坦对骨骼肌细胞的葡萄糖摄取有直接促进作用,该作用通过PPARδ/AMPK途径发挥作用。当RAS活性增强时,替米沙坦还通过抑制AngⅡ作用改善胰岛素刺激下的骨骼肌细胞葡萄糖摄取。
     2.替米沙坦通过激活PPARδ/AMPK途径,抑制小鼠体重增加,增加腓肠肌中Ⅰ型纤维含量和运动后氧耗量,提高运动耐量,改善葡萄糖耐量,增加胰岛素敏感性。
     3.在普食或正常细胞培养状态下,替米沙坦不影响肌肉组织和细胞RAS组份表达和活性。
Background and Purpose: The metabolic syndrome, which describes the presence of visceral obesity, insulin resistance or glucose intolerance, atherogenic dyslipidemia, hyperuricemia, and hypertension in a patient, increases the risk for type 2 diabetes and cardiovascular disease. A class of anti hypertensive drugs, angiotensin II type 1 receptor blockers (ARBs), has been reported to have favorable effects on insulin sensitivity. Particularly, sub analysis of several recent clinical trials has revealed that these drugs reduce the incidence of new onset diabetes. Additionally, blockade of the AT1R has been shown to improve insulin sensitivity in animal models of insulin resistance. However, the mechanisms underlying the insulin sensitizing and antidiabetic effects of the ARBs have not been defined. They may include enhancing blood flow through the microcirculation of skeletal muscles and, thereby, promotion insulin and glucose delivery to the insulin sensitive tissues. As a result, insulin signaling is facilitated at the cellular level and insulin secretion by beta cells is improved. Some ARBs, such as, telmisartan (Tel), have been found to effectively activate the peroxisome proliferator activated receptorγ(PPARγ) , a well known target for insulin sensitizing.
     PPARs are ligand - inducible transcription factors which isoforms display tissue specific expression and gene regulatory profiles. PPARγis a key regulator of adipocyte differentiation and adipose insulin sensitivity, whereas it is barely expressed in skeletal muscle. By contrast, PPARδ(also referred to as PPARβ) is expressed in a wide variety of tissues, with high levels in skeletal muscle. Studies in transgenic mice show that targeted expression of activated PPARδincreases the predominance of oxidative typeⅠmuscle fibers, enhances whole body insulin sensitivity, and increases exercise endurance capacity . The PPARδspecific agonist GW501516 improves insulin sensitivity in skeletal muscle in several animal models. Thus, activation of PPARδmay offer an efficacious strategy for the improving glucose homeostasis. However, this particular PPARδagonist is not available for clinical use due its undesired side effects. It is important to know whether ARBs, such as Tel affect PPARδexpression and/or function. Given the importance of skeletal muscle insulin resistance in the development of type 2 diabetes, we hypothesized that Tel has direct effects on glucose metabolism in skeletal muscle through an action on PPARδ.
     In the present study, we first confirmed whether Tel directly improved glucose intake in primary cultured myotubes of mice throught PPARδ. Then we detected the glucose metabolism related key molecules in skeletal muscle cell and tissue of mice to find out whether PPARδwere regulated by Tel. Finally, we examined the glucose metabolism related struction and function changes of skeletal muscle in C57BL/6J and PPARδknockout mice fed with or without Tel.
     Methods:
     The present study includes in vivo and in vitro experiments. In vitro models were primary cultured myotubes from C57BL/6J (C57)and PPARδknockout mice, as well as myotubes differentiated from control C2C12 myoblasts. In vivo models include wild type mice and PPARδknockout mice fed with or without telmisartan, and spontaneous hypertensive rats (SHR) were also observed.
     1. The differentiated C2C12 myotubes were divided into groups as follow: Control, Insulin, Insulin+angtensionⅡ(AngⅡ)and Insulin+ AngⅡ+Tel groups. After treatment, the 2 deoxyglucose (2 DG) uptake was assayed.
     2. The skeletal muscle cells from C57 and PPARδknockout mice were cultured in DMEM using the primary culture technique. After confluent, cells were given DMEMs without FBS. Telmisartan was added to media in present or absence of Compound C. After 24 h, 2 Deoxyglucose uptakes assay in cells were carried out.
     3. Protein expression of glucose metabolism related molecules including PPARδ, PPARγ, AMPKα1, p AMPKα, TroponinⅠss as well as RAS components (included ACE、AngⅡ、Renin and AT1R) in skeletal muscle cells and tissue from C57 and PPARδknockout mice, were detected by immunoblotting and mRNA expression of PPARδand PPARγwere detected by RT PCR. Protein and mRNA expression of PPARδand PPARγin SHR were also analyized.
     4. Mice were fed a normal diet or normal diet plus telmisartan. Daily food intake per mouse was recorded during the ?rst 10 days after the start of telmisartan administration. Body weights were measured every two weeks throughout the experimental period. During 23 24 weeks, exercise endurance, oxygen consumption, intraperitoneal glucose tolerance test (IPGTT) as well as insulin tolerance test (ITT) were analyzed in mice. After sacrificed, metabolic parameters were determined and fiber typing of gastronomies muscle was observed using the metachromatic dye ATPase method.
     Major Research Results:
     1. The 2 DG uptake in differentiated C2C12 myotubes increased by insulin and inhibited by AngⅡprincubation. Telmisartan inverted the inhibition effect of AngⅡon the insulin stimulated 2 DOG uptake .
     2. Insulin and telmisartan significantly increased 2 DG uptake in cultured myotubes from C57 mice compared with control myotubes. Administration of compound C, an AMPK inhibitor, significantly reduced telmisartan’s action in cultured C57 myotubes. In the cultured PPARδdeficient myotubes, insulin increased 2 DG uptake, but telmisartan no effect on glucose uptake.
     3. Telmisartan significantly increased expression of PPARδmRNA and protein expression in cultured myotubes in skeletal muscle tussue from C57 mice, and no effect on PPARγexpressions in skeletal muscle cell and tissue from either C57 or PPARδdeficient mice. Protein expression of AMPKα1and p AMPKαin myotubes , p AMPKαand TroponinⅠss in skeletal muscle tussue of C57 was significantly increased by telmisartan stimulation. Telmisartan did not influence RAS components of primary cultured myotubes and skeletal muscle in either wild type or PPARδdeficient mice.
     4. 24 week telmisartan treatment reduced weight gain in C57 mice, but not in PPARδdeficient mice. Food and water intake was not affected in either group. Serum insulin and triglyceride levels did not differ between mouse strains with or without telmisartan treatment, but cholesterol lower in telmisartan treatment group of C57 micel. Compared with control mice, C57 mice treated with telmisartan had higher exercise endurance, post exercise oxygen consumption andⅠskeletal muscle fiber composition, lower AUC of IPGTT and ITT, as well as lower blood glucose level after insulin injection in ITT. However, PPARδdeficient mice treated with telmisartan displayed no phenotypic change relative to untreated PPARδdeficient mice.
     Conclusion
     1. Telmisartan directly increases glucose uptake in skeletal muscle cell through PPARδ/AMPK path. When RAS actitivity enhancement, telmisartan improves the insulin stimulated 2 DOG uptake by inhibition effect of AngⅡon skeletal muscle cell.
     2. Through activating PPARδ/AMPK path, telmisartan reduces weight gain, increasesⅠskeletal muscle fiber composition in gastronomies muscle and post exercise oxygen consumption, enhances exercise endurance, improves glucose tolerance and increases insulin sensitivity in mice.
     3. Telmisartan has no effect on RAS components in myotubes and skeletal muscle tissue of mice in normal condition.
引文
1. Ecke RH, Grundy SH, Zimmet PZ. The metabolic syndrome. Lancet 2005, 365:1415–1428
    2. Knowler WC, Barrett Conner E, Fowler SE et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002, 346;393 403.
    3. Ramachandran A, Snehalatha C, Mary S et al. Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP 1). Diabetologia 2006, 49:289 97.
    4. Chiasson JL, Josse RG, Gomis R et al. STOP– NIDDM Trial Research Group: Acarbose for prevention of type 2 diabetes metlitus: the STOPNIDDM randomised trial. Lancet 2002, 359:2072 7.
    5. Gerstein HC, Yusuf S, Boxch J et al. DREAM (Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication) Trial Investigators: effect of Rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomized controlled trial. Lancet 2006, 368:1096 105.
    6. Scheen AJ. Renin angiotensin system inhibition prevents type 2 diabetes mellitus. Part
    1. A meta analysis of randomized clinical trials. Diabetes Metab 2004, 30:487 96.
    7. Andraws R, Brown D. Effect of Inhibition of the Renin Angiotensin System on Development of Type 2 Diabetes Mellitus (Meta Analysis of Randomized trials). Am J Cardiol 2007,99:1006–1012
    8. Clerk LH, Vincent MA, Barrett EJ, et al. Skeletal muscle capillary responses to insulin are abnormal in late stage diabetes and are restored by angiotensin converting enzyme inhibition. Am J Physiolm Endocrinol Metab 2007 293: E1804 1809
    9. Feldman RD, Schmidt ND. Quinapril treatment enhances vascular sensitivity to insulin. J Hypertens 2001,19:113 118
    10. Velloso LA, Follit F, Sun XJ, et al. Cross talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci 1996, 93: pp12490 12495
    11. Shiuchi T, Iwai M, Li HS, Wu L, et al. Angiotensin II type 1 receptor blocker valsartan enhance insulin sensitivity in skeletal muscles of diabetic mice. Hypertension 2004, 43:1003 1010
    12. Shao J, Iwashita N, Ikeda F, et al. Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta cell function and morphology in db/db mice. Biochem Biophys Res Commun 2006, 344:1224–1233
    13. Iwase M, Uchizono Y, Nohara S,et al. Angiotensin II type 1 receptor antagonists prevent glucose induced increases in islet blood flow in rats. Scand J Clin Lab Invest 2008, 20:1 6
    14. Fujimotoa M, Masuzaki H, Tanakaa T, et al. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3 L1 adipocytes. FEBS Letters 2004, 576: 492–497
    15. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M,Qi N, Wang J, Avery MA, Kurtz TW: Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγmodulating activity. Hypertension 43: 993–1002,2004
    16. DeFronzo RA, Ferrannini E, Hendler R, et al. Regulation of splanchnic and peripheral glucose uptake by insulin and hyperglycemia in man. Diabetes1983, 32:32 45
    17. Baron AD, Brechtel G, Wallace P, et al. Rates and tissue sites of non insulin and insulin mediated glucose uptake in humans. Am J Physiol 1988, 255:E769 E774
    18. Chevillotte E, Rieusset J, Roques M, et al. The regulation of uncoupling protein 2 gene expression by omega 6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator activated receptor beta. J Biol Chem 2001, 276 : 10853–10860
    19. Semple RK, Chatterjee VK, Rahilly SO. PPAR gamma and human metabolic disease. J Clin Invest 116:581–589,2006
    20. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator activated receptors (PPARs): tissue distribution of PPAR alpha, beta, and gamma in the adult rat. Endocrinology 1996, 137:354–366
    21. Luquet S, Lopez Soriano J, Holst D, et al. Peroxisome proliferator activated receptor delta controls muscle development and oxidative capability. FASEB 2003,17:2299–2301
    22. Grimaldi PA. Regulatory role of peroxisome proliferator activated receptor delta (PPAR delta) in muscle metabolism. A new target for metabolic syndrome treatment? Biochimie 2005,87:5 8.
    23. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2004, 2: 1532 1538
    24. Tanaka T, Yamamoto SI, Asaba H, et al. Activation of peroxisome proliferatoractivated receptor delta induces fatty acid beta oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 2003, 100: 15924 15929
    25. Kramer DK, Al Khalili L, Perrini S, et al. Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator–activated receptorδ. Diabetes 2005, 54:1157 1163
    26. Narkar VA, Downes M, Yu RT, et al. AMPK and PPARδagonists are exercise mimetics. Cell 2008, 134:405 415
    27. Stapleton D, Mitchelhill KI , Gao G, et al . Mammalian AMP activated protein kinase subfamily. J B iol Chem 1996, 271 (2) :611– 614
    28. Schimmack G, Defronzo RA, Musi N. AMP activated protein kinase: role in metabolis m and therapeutic implications. Diabetes Obes Metab 2006, 8: 591– 602
    29. Hardin D, Dominguez J, Garvey W. Muscle group speci?c regulation of GLUT glucose transporters in control, diabetic, and insulin treated diabetic rats. Metab Clin Exp 1993; 42:1310–1315.
    30. 29. James D, Jenkins A, Kraegen E. Heterogeneity of insulin action in individual musclesin vivo: euglycemic clamp studies in rats. Am J Physiol 1985; 248:E567–E574
    31. Taylor SI. Deconstructing type 2 diabetes. Cell 1999, 2, 97: 9 12
    32. 14 Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001,13, 414: 782 787
    33. Sleight P, Yusuf S, Pogue J, et al. Blood pressure reduction and cardiovascular risk in HOPE study. Lancet , 2001,358: 2130–2131.
    34. Kjeldsen SE, Dahlof B, Devereux RB, et al. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE)substudy. JAMA, 2002, 288: 1491–1498.
    35. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial, Lancet, 2004, 363: 2022–2031.
    36. Yamana A , Arita M, Furuta M,et al . The angiotensin II receptor blocker telmisartan improves insulin resistance and has beneficial effects in hypertensive patients with type 2 diabetes and poor glycemic control. Diabetes Res and clinical practice 2008, 82:127 131.
    37. Usui I, Fujisaka S, Yamazaki K. Telmisartan reduced blood pressure and HOMA IR with increasing plasma leptin level in hypertensive and type 2 diabetic patients. Diabetes Res Clin Practice 2007, 77: 210–214.
    38. Benndorf RA, Rudolph T, Appel D, et al. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Met Clini Experim 2006, 55: 1159– 1164
    39. Araki K, Masaki T, Katsuragi I, et al. Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet induced obese mice. Hypertension 2006,48:51 57
    40. Elbrink JI, Bihler I. Membrane transport: its relation to cellular metabolic rates. Science (Wash. DC) 1975, 188:1177 1183.
    41. Klip A, Paquet MR. Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care1 1990, 13:228 243
    42. Zorzano A, Wilkinson W, Kotliar N,et al.Insulin regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations. J Biol Chem 1989, 264: 12358 63
    43. Klip A, Marette A. Acute and chronic signals controlling glucose transport in skeletal muscle.J Cell Biochem, 1992, 48: 51 60
    44. Ciaraldi TP,Kolterman OG, Scarlet JA, et al. Role of glucose transport in the postreceptor defect of non insulin dependent diabetes mellitus. Diabetes 1982,31:1016 1022
    45. Richey JM, Ader M, Moore D,et al. Angiotensin II induces insulin resistance independent of changes in interstitial insulin. Am J Physiol Endocrinol Metab 1999,277:E920 926
    46. Ogihara T, Asano T, Katsuyuki A, et al. Angiotensin II–induced insulin resistance is associated with enhanced insulin signaling.Hypertension 2002,40:872 879
    47. Sloniger JA, Saengsirisuwan V, Diehl CJ, et al. Selective angiotensin II receptor antagonism enhances whole body insulin sensitivity and muscle glucose transport in hypertensive TG(mREN2)27 rats. Metabolism 2005, 54 :1659– 1668
    48. Hardie DG. The AMP activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 2003,144:5179–5183
    49. Li HB, Ge YK, Zheng XX, et al. Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP activated protein kinase. Euro J Pharmac 2008,588:165–169
    50. Sasson S, Oron R, Cerasi E. Enzymatic assay of 2 deoxyglucose 6 phosphate for assessing hexose uptake rates in cultured cells. Anal Biochem 1993, 215 : 309–311
    51. Verma NK, Singh J, Dey CS. PPARγexpression modulates insulin sensitivity in C2C12 skeletal muscle cells. Br J Pharmacol 2004, 43:1006 1013
    52. Sasson S, Oron R, Cerasi E. Enzymatic assay of 2 deoxyglucose 6 phosphate for assessing hexose uptake rates in cultured cells. Anal Biochem 1993, 215 : 309–311
    53.张利莉.血管紧张素Ⅱ信号系统与胰岛素信号转导.国际内科学杂志,2008,35(1):8-11
    54. Velloso LA, Folli F, Sun XJ, et al . Cross talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA 1996;93: 12490 12495
    55. Folli F, Kahn CR, Hansen H, et al. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. J Clin Invest 1997, 100:2158 2169
    56. Izawaa Y, Yoshizumia M, Fujita Y,et al.ERK1/2 activation by angiotensin II inhibits insulin induced glucose uptake in vascular smooth muscle cells. Exp Cell Res 2005, 308 : 291– 299
    57. Henriksen EJ; Jacob S; Kinnick TR, et al. Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 2001 , 38: 884 90
    58. Lee CH, Olson P, Hevener A,et al. PPARδregulates glucose metabolism and insulin sensitivity. PNAS 2006, 103(9): 3444 3449
    59. Kramer DK, Al Khalili L, Guigas B, et al. Role of AMP kinase and PPARδin the regulation of lipid and glucose metabolism in human skeletal muscle. J Bio Chem 2007. 282: 19313–19320
    60. Fujii N, Seifert MM, Kane EM, et al. Role of AMP activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle: Insight from analysis of a transgenic mouse model. Diabetes Res Clin Practi 2007 77 Suppl 1:S92–S98
    61. Ruttera GA, Leclercb I. The AMP regulated kinase family: Enigmatic targets for diabetes therapy. Mol Cell Endocrinol 2009,297: 41 49
    1. Smith AG, Muscat GEO. Skeletal muscle and nuclear hormone receptors: Implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 2005, 37: 2047–2063
    2. Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 1999, 341: 240–246.
    3. Klip A, Marette A. Acute and chronic signals controlling glucose transport in skeletal muscle.J Cell Biochem, 1992, 48: 51 60
    4. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001,13, 414: 782 787
    5. Ciaraldi TP,Kolterman OG, Scarlet JA, et al. Role of glucose transport in the postreceptor defect of non insulin dependent diabetes mellitus. Diabetes 1982,31:1016 1022
    6. Klip AT, Ramlal G, Cartee E, et al. Insulininduced recruitment of glucose transporters to the plasma membrane in skeletal muscle from diabetic rats. Biochem Biophys Res Commun 1990,172:728 736
    7. O’gorman DJ, Karlsson HK, McQuaid S, et al.Exercise training increases insulin stimulated glucose disposal and GLUT4 (SLC2A4) protein content in patients with type 2 diabetes, Diabetologia 2006,49: 2983–2992.
    8. Paternostro G, Pagano D, Gnecchi Ruscone T, et al.Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 1999,42:246–53.
    9. Shiuchi T, Iwai M, Li HS,et al.Angiotensin II type 1 receptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. Hypertension 2004 43 : 1003 1010
    10. Fujimotoa M, Masuzaki H, Tanakaa T, et al. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3 L1 adipocytes. FEBS Letters 2004, 576: 492–497
    11. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator activated receptors (PPARs): tissue distribution of PPAR alpha, beta,and gamma in the adult rat. Endocrinology 1996, 137:354–366.
    12. Semple RK, Chatterjee VK, Rahilly SO. PPAR gamma and human metabolic disease, J Clin Invest 116:581–589,2006
    13. Luquet S, Lopez Soriano J, Holst D,et al. Peroxisome proliferator activated receptorδcontrols muscle development and oxydative capability. FASEB J 2003,17: 2299 2301
    14. Kramer DK, Al Khalili L, Perrini S, et al. Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator–activated receptorδ. Diabetes 2005,54: 1157 1163
    15. Kramer DK, Al Khalili L, Guigas B, Leng Y, Garcia Roves PM, Krook A: Role of AMP kinase and PPARδin the regulation of lipid and glucose metabolism in human skeletal muscle. J Bio Chem 2007. 282: 19313–19320
    16. Tanaka T, Yamamoto SI, Asaba H, et al. Activation of peroxisome proliferatoractivated receptor delta induces fatty acid beta oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 2003,100: 15924 15929
    17. Lee CH, Olson P, Hevener A, et al. PPARδregulates glucose metabolism and insulin sensitivity. PNAS 2006,103: 3444–3449
    18. Reilly SM, Lee CH. PPARδas a therapeutic target in metabolic disease.FEBS Letters 2008,582:26–31
    19. Stapleton D, Mitchelhill KI , Gao G, et al . Mammalian AMP activated protein kinase subfamily. J B iol Chem 1996, 271 (2) :611– 614
    20. Schimmack G, Defronzo RA, Musi N. AMP activated protein kinase: role in metabolis m and therapeutic implications. Diabetes Obes Metab 2006, 8: 591 602
    21. Mcgee SL, Hargreaves M. Exercise and skeletal muscle glucose transporter 4 expression: Molecular mechanisms. Clin Exp Pharmacol Physiol, 2006, 33 (4) : 395 399.
    22. Ruttera GA, Leclercb I. The AMP regulated kinase family: Enigmatic targets for diabetes therapy. Mol Cell Endocrinol 2009,297: 41 49
    23. Jones A, Woods DR. Skeletal muscle RAS and exercise performance. Intern J Biochem Cell Biol 2003,35: 855–866
    24. Ogihara T, Asano T, Ando K, et al . Angi otensin II2induced insulin resistance is associated with enhanced insulin signaling. Hypertension 2002, 40: 872 879.
    25. Krutzfeldt J, Raasch W, Klein HH. Ramip ril increases the p rotein level of skeletalmuscle IRS 1 and alters p rotein tyrosine phosphatase activity in s pontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2000, 362: 1 6.
    26. Pette, D, Staron RS. Myosin isoforms, myosin fiber types and transitions. Microsc Res Tech 2000. 50: 500–509.
    27. Olson EN, Williams RS. Remodeling muscles with calcineurin. Bioessays 2000 , 22: 510–519.
    28. Hardin D, Dominguez J, Garvey W: Muscle group speci?c regulation of GLUT glucose transporters in control, diabetic, and insulin treated diabetic rats. Metab Clin Exp 1993; 42:1310–1315.
    29. James D, Jenkins A, Kraegen E: Heterogeneity of insulin action in individual musclesin vivo: euglycemic clamp studies in rats. Am J Physiol 1985; 248:E567–E574.
    30. Fluck, M, Hoppeler H. Molecular basis of skeletal muscle plasticity from gene to form and function. Rev Physiol Biochem Pharmacol 2003. 146:159–216.
    31. Hickey MS, Carey JO, Azevedo JL, et al. Skeletal muscle ?ber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 1995,268: E453–E457.
    32. Ryder JW, Bassel Duby R, Olson EN, et al. Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J Biol Chem 2003, 278: 44298–44304.
    33. Luquet S, Lopez Soriano J, Holst D, et al. Peroxisome proliferator activated receptor delta controls muscle develop ment and oxidative capability. FASEB 2003, 17: 2299–2301.
    34. Andraws R, Brown D: Effect of Inhibition of the Renin Angiotensin System on Development of Type 2 Diabetes Mellitus (Meta Analysis of Randomized trials). Am J Cardiol 99:1006–1012, 2007
    35. Kakuta H,Sudoh K,Sasamata M,et al. Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor: comparison with other angiotensin II type 1 receptor blockers. Int J Clin Pharmacol Res 2005, 25: 41 46
    36. Yamana A , Arita M, Furuta M,et al. The angiotensin II receptor blocker telmisartanimproves insulin resistance and has beneficial effects in hypertensive patients with type 2 diabetes and poor glycemic control. Diabetes Res and clinical practice 2008, 82:127 131
    37. Benndorf RA, Rudolph T, Appel D, et al. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Met Clini Experim 2006, 55: 1159– 1164
    38. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR{gamma} modulating activity. Hypertension 2004; 43:993–1002.
    39. Schupp M,Clemenz M,Gineste R,et al. Molecular characterization of new selective peroxisome proliferator activated receptor gamma modulators with angiotensin receptor blocking activity. Diabetes 2005 , 54: 3442 52
    40. Zorad S, Dou J, Benicky J, et al. Long term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARγ. Eur J of Pharma 2006, 552 :112–122
    41. Janke J, Schupp M, Engeli S, et al. Angiotensin tpye 1 receptor antagonists induce human in vitro adipogenesis through peroxisome proliferator activated recepor gamma activation. J Hypertens 2006, 24:1809 181
    42. Erbe DV,Gartrell K,Zhang YL,et al. Molecular activation of PPARgamma by angiotensin II type 1 receptor antagonists. Vascul Pharmacol 2006, 45: 154 162
    43. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2004, 2: 1532 1538.
    44. Wang YX,Lee CH, Tiep S, et al. Peroxisome proliferator activated receptor delta activates fat metabolism to prevent obesity. Cell 2003, 113: 159 170.
    45. Erbe DV,Gartrell K,Zhang YL,et al. Molecular activation of PPARgamma by angiotensin II type 1 receptor antagonists. Vascul Pharmacol 2006 ,45: 154 62
    46. Clemenz M,Frost N,Schupp M,et al. Liver specific peroxisome proliferator activated receptor alpha target gene regulation by the angiotensin type 1 receptor blocker telmisartan. Diabetes 2008 ,57: 1405 1413
    47. Velloso LA, Folli F, Sun XJ, et al. Cross talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA 1996;93: 12490 12495
    48. Sloniger JA,Saengsirisuwan V,Diehl CJ,et al. Defective insulin signaling in skeletal muscle of the hypertensive TG (mREN2)27 rat. Am J Physiol Endocrinol Metab 2005 ,288: E1074 81
    49. Folli F, Kahn CR, Hansen H, et al. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. J Clin Invest 1997, 100:2158 2169
    50. Jones A, Woods DR. Skeletal muscle RAS and exercise performance. Int J Biochem Cell Biol 2003 ,35: 855 866
    51. Fluck, M, Hoppeler H. Molecular basis of skeletal muscle plasticity from gene to form and function. Rev Physiol Biochem Pharmacol 2003. 146:159–216.
    52. Pette, D, Staron RS. Myosin isoforms, myosin fiber types and transitions. Microsc Res Tech 2000. 50: 500–509.
    53. Higashiura K, Ura N, Takada T, et al. Alteration of Muscle Fiber Composition Linking to Insulin Resistance and Hypertension in Fructose Fed Rats. Am J Hypertens 1999, 12:596 602
    54. Grimaldi PA. Regulatory role of peroxisome proliferator activated receptor delta (PPAR delta) in muscle metabolism. A new target for metabolic syndrome treatment? Biochimie 2005,87:5 8.
    55. Narkar VA, Downes M, Yu RT, et al. AMPK and PPARδagonists are exercise mimetics. Cell 2008,134:405 415
    56. Ju JS, Gitcho MA, Casmaer CA, et al. Potentiation of insulin stimulated glucose transport by the AMP activated protein kinase. Am J Physiol Cell Physiol 2007, 292: 564–572
    57. Fujii N, Seifert MM, Kane EM, et al. Role of AMP activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle: Insight from analysis of a transgenic mouse model. Diabetes Res Clin Practi 2007 77 Suppl 1:S92–S98
    1. Knowler WC, Barrett Conner E, Fowler SE et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002, 346;393 403
    2. Ramachandran A, Snehalatha C, Mary S et al. Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP 1). Diabetologia 2006, 49:289 97
    3. Scheen AJ. Renin angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. A meta analysis of randomized clinical trials. Diabetes Metab 2004, 30:487 96.
    4. Yamana A , Arita M, Furuta M,et al . The angiotensin II receptor blocker telmisartan improves insulin resistance and has beneficial effects in hypertensive patients with type 2 diabetes and poor glycemic control. Diabetes Res and clinical practice 2008, 82:127 131
    5. Usui I, Fujisaka S, Yamazaki K. Telmisartan reduced blood pressure and HOMA IR with increasing plasma leptin level in hypertensive and type 2 diabetic patients. Diabetes Res Clin Practice 2007, 77: 210–214
    6. Benndorf RA, Rudolph T, Appel D, et al. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Met Clini Experim 2006, 55: 1159– 1164.
    7. Clerk LH, Vincent MA, Barrett EJ, et al. Skeletal muscle capillary responses to insulin are abnormal in late stage diabetes and are restored by angiotensin converting enzyme inhibition. Am J Physiolm Endocrinol Metab 2007 293: E1804 1809
    8. Feldman RD, Schmidt ND. Quinapril treatment enhances vascular sensitivity to insulin. J Hypertens 2001,19:113 118
    9. Velloso LA, Follit F, Sun XJ, et al. Cross talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci 1996, 93: pp12490 12495
    10. Shiuchi T, Iwai M, Li HS, Wu L, et al. Angiotensin II type 1 receptor blocker valsartan enhance insulin sensitivity in skeletal muscles of diabetic mice. Hypertension 2004,43:1003 1010
    11. Shao J, Iwashita N, Ikeda F, et al. Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta cell function and morphology in db/db mice. Biochem Biophys Res Commun 2006, 344:1224–1233
    12. Iwase M, Uchizono Y, Nohara S,et al. Angiotensin II type 1 receptor antagonists prevent glucose induced increases in islet blood flow in rats. Scand J Clin Lab Invest 2008, 20:1 6
    13. Fujimotoa M, Masuzaki H, Tanakaa T, et al. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3 L1 adipocytes. FEBS Letters 2004, 576: 492–497
    14. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M,Qi N, Wang J, Avery MA, Kurtz TW: Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγmodulating activity. Hypertension 43: 993–1002,2004
    15. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisome proliferator activated receptors (PPARs): tissue distribution of PPAR alpha, beta, and gamma in the adult rat. Endocrinology 1996, 137:354–366
    16. Luquet S, Lopez Soriano J, Holst D,et al. Peroxisome proliferator activated receptorδcontrols muscle development and oxydative capability. FASEB J 2003,17: 2299 2301
    17. Kramer DK, Al Khalili L, Perrini S, et al. Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator–activated receptorδ. Diabetes 2005,54: 1157 1163
    18. Kramer DK, Al Khalili L, Guigas B, Leng Y, Garcia Roves PM, Krook A: Role of AMP kinase and PPARδin the regulation of lipid and glucose metabolism in human skeletal muscle. J Bio Chem 2007. 282: 19313–19320
    19. Tanaka T, Yamamoto SI, Asaba H, et al. Activation of peroxisome proliferatoractivated receptor delta induces fatty acid beta oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 2003,100: 15924 15929
    20. Lee CH, Olson P, Hevener A, et al. PPARδregulates glucose metabolism and insulin sensitivity. PNAS 2006,103: 3444–3449
    21. Reilly SM, Lee CH. PPARδas a therapeutic target in metabolic disease. FEBS Letters2008,582:26–31
    22. Stapleton D, Mitchelhill KI , Gao G, et al . Mammalian AMP activated protein kinase subfamily. J B iol Chem 1996, 271 (2) :611– 614
    23. Narkar VA, Downes M, Yu RT, et al. AMPK and PPARδagonists are exercise mimetics. Cell 2008, 134:405 415
    24. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2004, 2: 1532 1538.
    25. Ogilvie RW,Feeback DL:A metachromatic dye ATPase method for the simultaneous identification of skeletal muscle fiber types I, IIA, IIB and IIC. Stain Technol 1990,65: 231–241.
    26. Schupp M, Clemenz M, Gineste R, et al. Molecular characterization of new selective peroxisome proliferator activated receptorγmodulators with angiotensin receptor blocking activity. Diabetes 2005, 54:3442–3452.
    27. Sugimoto K, Qi NR, Kazdova L, et al.Telmisartan but not valsartan increases caloric expenditure and protects against weight gain and hepatic steatosis. Hypertension 2006, 47: 1003–100
    28. Zorad S, Dou J, Benicky J, et al. Long term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARγ. Eur J of Pharma 2006, 552 :112–122
    29. Arak Ki, Masaki T, Katsuragi I, et al. Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet Induced obese mice. Hypertens 2006, 48:51 57.
    30. Mori Y, Itoh Y, Tajima N. Angiotensin II receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity. Am J Hypertens 2007; 20:431– 436
    31. Fonseca V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med 2003,115 Suppl 8A: 42S 48S
    32. Zanchi A, Dulloo AG, Perregaux C, et al.Telmisartan prevents the glitazone induced weight gain without interfering with its insulin sensitizing properties.
    33. Wang YX,Lee CH, Tiep S, et al. Peroxisome proliferator activated receptor delta activates fat metabolism to prevent obesity. Cell, 2003, 113: 159 170
    34. Schling P, Loffler G: Effects of angiotensin II on adipose conversion and expression of genes of the renin angiotensin system in human preadipocytes. Horm Metab Res 2001,33:189–195.
    35. Janke J, Engeli S, Gorzelniak, et al. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 2002,51:1699–1707
    36. Sharma AM, Janke J, Gorzelniak K, et al. Angiotensin blockade prevents type 2 diabetes by formation of fat cells. Hypertension 2002.40:609–611
    37. Furuhashi M, Ura N, Takizawa H, Yoshida D, Moniwa N, Murakami H, Higashiura K, Shimamoto K: Blockade of the reninangiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens 2004,22:1977–1982
    38. Peters JM, Lee SS, Jerrold W,et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator activated receptorβ(δ). Mol Cell Biol 2002, 20: 5119–5128
    39. Akiyam TE, Lambert G, Nicol CJ, et al. Peroxisome proliferator activated receptorβ/δregulates very low density lipoprotein production and catabolism in mice on a western diet. J Biol Chemi 2004, 279: pp 20874–20881
    40. Baron A, Brechtel P, Wallace P,et al. Rates and tissue sites of non insulin mediated glucose uptake in humans. Am J Physiol 1988; 255:E769–E774.
    41. Hickey M, Carey J, Azevedo J, et al. Skeletal muscle ?ber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 1995, 268:E453–E457.
    42. DeFronzo RA, Jacot E, Jequier E, et al. The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981, 30:1000–1007.
    43. Bonen A, Tan M, Watson Wright WM: Insulin binding and glucose uptake rates in rodent skeletal muscles.Diabetes 1981; 30:702–704.
    44. Hardin D, Dominguez J, Garvey W: Muscle group speci?c regulation of GLUT glucose transporters in control, diabetic, and insulin treated diabetic rats. Metab Clin Exp 1993; 42:1310–1315.
    45. James D, Jenkins A, Kraegen E: Heterogeneity of insulin action in individual musclesin vivo: euglycemic clamp studies in rats. Am J Physiol 1985; 248:E567–E574.
    46. Fluck, M, Hoppeler H. Molecular basis of skeletal muscle plasticity from gene to form and function. Rev Physiol Biochem Pharmacol 2003. 146:159–216.
    47. Pette, D, Staron RS. Myosin isoforms, myosin fiber types and transitions. Microsc Res Tech 2000. 50: 500–509.
    48. Higashiura K, Ura N, Takada T, et al. Alteration of Muscle Fiber Composition Linking to Insulin Resistance and Hypertension in Fructose Fed Rats. Am J Hypertens 1999, 12:596 602
    49. Higashiura K, Ura N, Takada T,et al. Alteration of muscle fiber composition linking to insulin resistance and hypertension in fructose fed rats. Am J Hypertens 1999,12:596–602
    50. Fritz T, Kramer DK., Karlsson H K, et al. Low intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients 2006, Diabetes Metab Res Rev 22: 492–498
    51. Henriksen EJ, Jacob S, Kinnick TR, et al. Selective angiotensin II receptor receptor antagonism reduces insulin resistance in obese Zucker rats, Hypertension 2001,38: 884–890.
    52. Sloniger JA, Saengsirisuwan V, Diehl CJ, et al. Selective angiotensin II receptor antagonism enhances whole body insulin sensitivity and muscle glucose transport in hypertensive TG(mREN2)27 rats. Metabolism 2005, 54: 1659– 1668
    53. Mahoney DJ, Parise G, Melov S, et al. Analysis of global mRNA expressi on in human skeletal muscle during recovery from endurance exercise. FASEB 2005, 19 : 1498 1500
    54. Holst D, Luquet S, Nogueira V, et al. Nutritional regulation and role of peroxisome proliferator activated receptor delta in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta 2003, 1633: 43 50
    1. Sleight P, Yusuf S, Pogue J, et al. Blood pressure reduction and cardiovascular risk in HOPE study. Lancet 2001, 358: 2130–2131.
    2. Kjeldsen SE, Dahlof B, Devereux RB, et al. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA 2002, 288: 1491–1498.
    3. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial, Lancet 2004, 363: 2022–2031.
    4. Scheen AJ. Renin angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. Meta analysis of randomised clinical trials. Diab Metab 2004, 30: 487 96.
    5. Kurdi M, Mellob WC, Booz GW. Working outside the system: an update on the unconventional behavior of the renin–angiotensin system components. Intern J Biochem Cell Biology 2005, 37 :1357–1367
    6. Re RN. Tissue renin angiotensin systems. Med Clin North Am 2004., 88: 19–38
    7. Yamana A, Arita M, Furuta M,et al. The angiotensin II receptor blocker telmisartan improves insulin resistance and has beneficial effects in hypertensive patients with type 2 diabetes and poor glycemic control. Diabetes Res Clin Pract 2008,82:127–131
    8. Usui I, Fujisaka S, Yamazaki K,et al. Telmisartan reduced blood pressure and HOMA IR withincreasing plasma leptin level in hypertensive and type 2 diabetic patients. Diabetes Res Clin Pract 2007,77:210–214
    9. Benndorf RA, Rudolph T, Appel D, et al. Telmisartan improves insulin sensitivity in nondiabetic patients with essential hypertension. Metabolism 2006,55 :1159– 1164
    10. Nagel JM, Tietz AB, Gfke B, et al. The effect of telmisartan on glucose and lipid metabolism in nondiabetic, insulin resistant subjects. Metabolism 2006, 55: 1149– 1154
    11. Jin HM, Pan, Y. Angiotensin type 1 receptor blockade with losartan increases insulin sensitivity and improves glucose homeostasis in subjects with type 2 diabetes andnephropathy. Nephrol Dial Transplant. 2007, 22: 1943 1949
    12. Ichikawa Y. Comparative effects of telmisartan and valsartan on insulin resistance in hypertensive patients with metabolic syndrome. Intern Med 2007, 46: 1331 1336
    13. Henriksen EJ, Jacob S, Kinnick TR, et al. Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 2001, 38: 884 890
    14. Sloniger JA, Saengsirisuwan V, Diehl CJ, et al. Selective angiotensin II receptor antagonism enhances whole body insulin sensitivity and muscle glucose transport in hypertensive TG(mREN2)27 rats. Metabolism 2005, 54:1659–1668
    15. Iwai M, Chen R, Imura Y, et al. TAK 536, a new AT1 receptor blocker, improve glucose intolerance and adipocyte differentiation. Am J Hypertens 2007, 20: 579 586
    16. Fogari R, Zoppi A, Preti P, et al. Differential effects of ACE inhibition and angiotensin II antagonism on fibrinolysis and insulin sensitivity in hypertensive postmenopausal women. Am J Hypertens 2001; 14:921–926
    17. Fogari R, Zoppi A, Lazzari P, Preti P, Mugellini A, Corradi L, Lusardi P. ACE inhibition but not angiotensin II antagonism reduces plasma fibrinogen and insulin resistance in overweight hypertensive patients. J Cardiovasc Pharmacol 1998; 32:616–620.
    18. Velloso LA, Folli F, Sun XJ, et al . Cr oss talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci USA 1996, 93: 12490 12495 .
    19. Folli F, Kahn CR, Hansen H, et al. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. J Clin Invest 1997, 100:2158 2169
    20. Shiuchi T, Iwai M, Li HS, et al. Angiotensin II type 1 receptor blocker valsartan enhance insulin sensitivity in skeletal muscles of diabetic mice. Hypertension 2004, 43:1003 1010
    21. Zeng G, Nystrom FH, Ravichandran LV,et al. Roles for insulin receptor, PI3 kinase, and Akt in insulinsignaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000,101:1539–1545.
    22. Andreozzi F, Laratta E, Sciacqua A, et al. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate 1 on ser312 and ser616 in human umbilical vein endothelial cells. Circ Res 2004, 94:1211 1218.
    23. HoriuchiM, MogiM, I waiM, et al. Signaling crosstalk angiotensinⅡreceptor subtypes and insulin. Endocr J 2006, 53: 1 5
    24. Shao JQ, Iwashita N, Ikeda F, et al. Beneficial effects of candesartan, anangiotensinⅡtype 1 receptor blocker, on beta cell function and morphology in db /db mice1 Biochem Biophys Res Commun 2006, 344: 12242 12331
    25. Nakayama M, Inoguchi T, Sonta T, et al. Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun 2005, 332 : 9272 9331
    26. Yamaguchi K, Ura N, Murakami H, et al1. Olmesartan ameliorates insulin sensitivity by modulating tumor necrosis factorαand cyclic AMP in skeletal muscle1. Hypertens Res 2005, 28 : 7732 7781
    27. de Vinuesa SG, Goicoechea M, Kanter J , et al1. Insulin resistance inflammatory biomarkers, and adipokines in patients with chronic kidney disease: effects of angiotensinⅡblocked. J Am Soc Nephrol 2006, 17: S2062S2121
    28. Picard F, Auwerx J. PPAR (gamma) and glucose homeostasis. Annu Rev Nutr 2002, 22:167 97
    29. Schupp M, Janke J, Clasen R,et al. Angiotensin type 1 receptor blockers induce peroxisome proliferator activated receptor activity. Circulation 2004, 109:2054 2057.
    30. Janke J, Schupp M, Engeli S, et al. Angiotensin tpye 1 receptor antagonists induce human in vitro adipogenesis through peroxisome proliferator activated recepor gamma activation. J Hypertens 2006, 24:1809 1816
    31. Kurtz TW, Pravenec M. Antidiabetic mechanisms of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin–angiotensin system. J Hyperten 2004, 22:2253 2261
    32. Benson SC, Pershadsingh HA, Ho CI, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR{gamma} modulating activity. Hypertension 2004; 43:993–1002.
    33. Takai S, Jin D, Kimura M, et al. Inhibition of vascular angiotensin converting enzyme by telmisartan via the peroxisome proliferator–activated receptorγagonistic property in rats. Hypertens Res 2007, 30: 1231–1237
    34. Pershadsingh HA, Kurtz TW. Insulin sensitizing effects of telmisartan: Implicationsfor treating insulin resistant hypertension and cardiovascular disease. Diabetes Care 2004,27:1015.
    35. Derosa G, Ragonesi PD, Mugellini A, Ciccarelli L, Fogari R. Effects of telmisartan compared with eprosartan in mildly hypertensive, type 2 diabetic patients on blood pressure control, glucose metabolism, and lipid profile: a randomized, double blind, placebo controlled 12 month study. Hypertens Res 2004,27:457–464.
    36. Yamaqishi S, Matsui T, Nakamura K, et al. Telmisartan inhibits advanced glycation end products (AGEs) elicited endothelial cell injury by suppression AGE receptor (RAGE) expression via peroxisome proliferator activated receptor gamma activation. Protein Pept Lett 2008, 15:850 853.
    37. Matsui T, Yamaqishi S, Ueda S, et al. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end product (AGE) induced monocyte chemoattractant protein 1 expression in mesangial cells through downregulation of receptor for AGEs via peroxisome proliferator activated receptor gamma activation. J Int Med Res 2007, 35:482 489
    38. Yoshida T, Yamaqishi S, Matsui T, et al. Telmisartan, an angiotensin II type 1 receptor blocker, inhibits advanced glycation end product (AGE) elicited hepatic insulin resistance via peroxisome proliferator activated receptor gamma activation. J Int Med Res 2007 , 36:237 243
    39. Yamagishia S, Takeuchi M. Telmisartan is a promising cardiometabolic sartan due to its unique PPAR c inducing property. Medical Hypotheses 2005 , 64:476–478
    40. Engeli S, Negrel R, Sharma AM. Physiology and physiopathology of the adipose tissue renin angiotensin system. Hypertension 2000, 35: 1270 1277.
    41. Giacchetti G, Faloia E, Mariniello B, et al. Overexpression of the renin angiotensin system in human visceral adipose tissue in normal and overweight subjects. Am J Hypertens 2002,15:381–388
    42. Janke J, Engeli S, Gorzelniak K, et al. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 2002, 51: 1699 1707
    43. Shiuchi T, Iwai M, Li HS, et al. Angiotensin II type 1 recneptor blocker valsartan enhances insulin sensitivity in skeletal muscles of diabetic mice. Hypertension 2004,43: 1003 1010
    44. Fujimotoa M, Masuzaki H, Tanakaa T, et al. An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3 L1 adipocytes. FEBS Letters 2004, 576: 492–497
    45. Schling P, Loffler G: Effects of angiotensin II on adipose conversion and expression of genes of the renin angiotensin system in human preadipocytes. Horm Metab Res 2001,33:189–195.
    46. Janke J, Engeli S, Gorzelniak, et al. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes 2002,51:1699–1707.
    47. Sharma AM, Janke J, Gorzelniak K, et al. Angiotensin blockade prevents type 2 diabetes by formation of fat cells. Hypertension 2002.40:609–611.
    48. Furuhashi M, Ura N, Takizawa H, et al. Blockade of the reninangiotensin system decreases adipocyte size with improvement in insulin sensitivity. J Hypertens 2004,22:1977–1982.
    49. Mori Y, Itoh Y, Tajima N. Angiotensin II receptor blockers downsize adipocytes in spontaneously type 2 diabetic rats with visceral fat obesity. Am J Hypertens 2007, 20:431–436
    50. Fonseca V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med 2003,115 Suppl 8A: 42S 48S
    51. Zanchi A, Dulloo AG, Perregaux C, et al.Telmisartan prevents the glitazone induced weight gain without interfering with its insulin sensitizing properties.
    52. Shimabukuro M, Tanaka H, Shimabukuro T. Effects of telmisartan on fat distribution in individuals with the metabolic syndrome. J Hypertens 2007, 25:841 848
    53. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005, 26:439–451
    54. Banerjee RR, Rangwala SM, Shapiro JS, et al. Regulation of fasted blood glucose by resistin.Science 2004,303:1195–1198
    55. Araki K, Masaki T, Katsuragi I, et al. Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet induced obese mice. Hypertension 2006,48:51 57
    56. Lee MH, Song HK, Ko GJ, et al. Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Kidney Int 2008 , 74: 890 900
    57. Krusinova E, Klementova M, Kopecky J, et al. Effect of acute hyperinsulinaemia with and without angiotensin II type 1 receptor blockade on resistin and adiponectin concentrations and expressions in healthy subjects. Eur J Endocrinol 2007, 157: 443 449
    58. Park H, Hasegawa G, Obayashi H, et al. Relationship between insulin resistance and infl ammatory markers and anti infl ammatory effect of losartan in patients with type 2 diabetes and hypertension. Clin Chim Acta 2006, 374:129–134
    59. Scheen AJ. Renin angiotensin system inhibition prevents type 2 diabetes mellitus Part
    2. Overview of physiological and biochemical mechanisms. Diabetes Metab 2004, 30:498 505
    60. Leung PS, Carlsson PO: Tissue renin angiotensin system: its expression, localization, regulation and potential role in the pancreas. J Mol Endocrinol 2001,26:155–164
    61. Leung PS, Chappell MC: A local pancreatic renin angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol 2003,35:838–846
    62. Tsang SW, Cheng HK, Leung PS: The role of pancreatic renin angiotensin system in acinar digestive enzyme secretion and in acute pancreatitis.Regul Pept 2004,119:213–219
    63. Tsang SW, Ip SP, Leung PS: Prophylactic and therapeutic treatments with AT1 and AT2 receptors and their effects on changes in the severity of pancreatitis. Int J Biochem Cell Biol 2004, 36:330–339
    64. Lau T, Carlsson PO, Leung PS: Evidence for a local angiotensin generating system and dose dependent inhibition of glucose stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia 2004,47:240–248
    65. Carlsson PO, Berne C, Jansson L: Angiotensin II and the endocrine pancreas: effects of islet blood flow and insulin secretion in rats. Diabetologia 1998,41:127–133
    66. Chu KY, Lau T, Carlsson P, et al.Angiotensin II Type 1 Receptor Blockade ImprovesβCell Function and Glucose Tolerance in a Mouse Model of Type 2 Diabetes. Diabetes 2006,55:367–374
    67. Shao J, Iwashita N, Ikeda F,et al. Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on b cell function and morphology in db/db mice.Biochemical and Biophysical Research Communications 2006,344: 1224–1233
    68. Iwase M, Uchizono Y, Nohara S,et al. Angiotensin II type 1 receptor antagonists prevent glucose induced increases in islet blood flow in rats. Scand J Clin Lab Invest 2008,20:1 6
    69. Cheng Q, Law PK, de Gasparo M, et al. Combination of the dipeptidyl peptidase IV inhibitor LAF237 [(S) 1 [(3 hydroxy 1 adamantyl)ammo]acetyl 2 cyanopyrrolidine] with the angiotensin II type 1 receptor antagonist valsartan [N (1 oxopentyl) N [[2' (1H tetrazol 5 yl) [1,1' biphenyl] 4 yl]methyl] L valine] enhances pancreatic islet morphology and function in a mouse model of type 2 diabetes. J Pharmacol Exp Ther 2008, 327:683 91
    70. Suzuki K, Nakagawa O, Aizawa Y. Improved early phase insulin response after candesartan treatment in hypertensive patients with impaired glucose tolerance. Clin Exp Hypertens 2008, 30:309 314
    1. Ecke RH, Grundy SH, Zimmet PZ. The metabolic syndrome. Lancet,2005, 365:1415–1428
    2. Desvergne B, Wahli W. Peroxisome proliferator activated receptors: nuclear control of metabolism. Endocr Rev,1999,20: 649–688
    3. Lee CH, Olson P, Evans RM. lipid metabolism, metabolic diseases, and peroxisome proliferatoractivated receptors. Endocrinology 2003,144: 2201–2207
    4. Semple RK, Chatterjee VK, Rahilly SO. PPAR gamma and human metabolic disease, J Clin Invest 2006, 116: 581–589
    5. Reilly SM, Lee CH. PPARδas a therapeutic target in metabolic disease.FEBS Letters 2008,582:26–31
    6. Mangelsdorf DJ. The nuclear receptor superfamily: the second decade. Cell 1995,83:835–839.
    7. Kang K, Hatano B, Lee CH. PPARdelta agonists and metabolic diseases. Curr Atheroscler 2007, 9: 72–77
    8. Rieck M, Wedeken L, Müller Brüsselbach S, et al. Expression level and agonist binding affect the turnover, ubiquitination and comp lex formation of peroxisome p roliferator activated receptorβ. FEBS 2007, 274: 5068~5076.
    9. Hotamisligil GS. Inflammation and metabolic disorders.Nature 2006,444: 860–867.
    10. Barak Y, Liao D, He W, et al. Effects of peroxisome proliferator activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA 2002 99: 303–308
    11. Wang YX,Lee CH, Tiep S, et al. Peroxisome proliferator activated receptor delta activates fat metabolism to prevent obesity. Cell, 2003, 113: 159 170.
    12. Wang YX, Zhang CL, Yu RT, et al. Regulation of muscle fiber type and running endurance by PPARδ. PLoS B iol 2004, 2 : 1532 1538
    13. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity from gene to form and function. Rev Physiol Biochem Pharmacol 2003. 146:159–216.
    14. Tanaka T, Yamamoto SI, Asaba H, et al.Activation of peroxisomeproliferatoractivated receptor delta induces fatty acid beta oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 2003,100: 15924 15929
    15. Narkar VA, Downes M, Yu RT, et al. AMPK and PPARδagonists are exercise mimetics. Cell 2008,134:405 415
    16. Higashiura K, Ura N, Takada T,et al. Alteration of muscle fiber composition linking to insulin resistance and hypertension in fructose fed rats. Am J Hypertens 1999,12:596–602
    17. Luquet S, Lopez Soriano J, Holst D,et al. Peroxisome proliferator activated receptorδcontrols muscle development and oxydative capability. FASEB J 2003,17: 2299 2301
    18. Lee CH, Olson P, Hevener A, et al. PPARδregulates glucose metabolism and insulin sensitivity. PNAS 2006,103: 3444–3449
    19. OliverWR J r, Shenk JL, SnaithMR, et al. A selective peroxisome proliferator activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 2001, 98 : 5306 5311
    20. Leibowitz MD, Fiévet C, Hennuyer N, et al. Activation of PPARdelta alters lipid metabolism in db /db mice. FEBS Lett, 2000, 473 : 333 336
    21. Veen JN, Kruit JK, Havinga R, et al. Reduced cholesterol absorp tion upon PPARdelta activation coincides with decreased intestinal exp ression of NPC1L1. J Lipid Res 2005, 46 : 526 534
    22. Wallace JM, SchwarzM, Coward P, et al. Effects of peroxisome proliferator activated recep tor alpha /delta agonists on HDL2cholesterol in vervetmonkeys. J Lipid Res, 2005, 46: 1009 1016
    23. Altmann SW, Davis HR, Zhu LJ , et al . Niemann Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004, 303 :12012 1204
    24. Sprecher DL, Massien C, Pearce G, et al. Triglyceride: high density lipoproteincholesterol effects in healthy subjects administered a peroxisome proliferator activated receptorδagonist. Arterioscler Thromb Vasc Biol 2007, 27: 359 365
    25. Kramer DK, Al Khalili L, Perrini S, et al.Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator–activated receptorδ. Diabetes 2005,54: 1157 1163
    26. Kramer DK, Al Khalili L, Guigas B, Leng Y, Garcia Roves PM, Krook A: Role of AMP kinase and PPARδin the regulation of lipid and glucose metabolism in human skeletal muscle. J Bio Chem 2007. 282: 19313–19320
    27. Ryder JW, Bassel Duby R, Olson EN, et al. Skeletal muscle reprogramming by activation of calcineurin improves insulin action on metabolic pathways. J Biol Chem 2003,278:44298–44304
    28. Fritz T, Kramer DK., Karlsson H K, et al. Low intensity exercise increases skeletal muscle protein expression of PPARdelta and UCP3 in type 2 diabetic patients 2006, Diabetes Metab Res Rev 22: 492–498
    29. Kramer, DK, Ahlsen M., Norrbom J, et al. Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC 1 alpha mRNA Acta Physiologica (Oxf.) 2006, 188:207–216
    30. Mahoney DJ, Parise G, Melov S, et al . Analysis of global mRNA expressi on in human skeletal muscle during recovery from endurance exercise. FASEB 2005, 19 : 1498 1500
    31. Holst D, Luquet S, Nogueira V, et al. Nutritional regulation and role of peroxisome proliferator activated receptor delta in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta 2003, 1633: 43 50.
    32. Kharroubi I, Lee CH, Hekerman P, et al.A possible missing link for anti inflammatory PPAR delta signalling in pancreatic beta cells, Diabetologia 2006, 49:2350–2358
    33. Lee CH, Chawla A, Urbiztondo N, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARβ. Science 2003, 302: 453~457.
    34. Graham TL, Mookherjee C, Suckling KE, et al. The PPARβagonist GW0742X reduces atherosclerosis in LDLR / mice. Atherosclerosis 2005, 181: 29~37.
    35. Fan Y, Wang Y, Tang Z, et al. Supp ression of proinflammatory adhesion molecules by PPARδin human vascular endothelial cells. Arterio Thromb VasBio 2008, 28: 315~321.
    1. Andraws R, Brown D: Effect of Inhibition of the Renin Angiotensin System on Development of Type 2 Diabetes Mellitus (Meta Analysis of Randomized trials). Am J Cardiol 99:1006–1012, 2007
    2. Clerk LH, Vincent MA, Barrett EJ, Lankford MF,Lindner JR: Skeletal muscle capillary responses to insulin are abnormal in late stage diabetes and are restored by angiotensin converting enzyme inhibition. Am J Physiolm Endocrinol Metab 293: E1804 1809,2007
    3. Feldman RD, Schmidt ND: Quinapril treatment enhances vascular sensitivity to insulin. J Hypertens 19:113 118, 2001
    4. Velloso LA, Follit F, Sun XJ, White MF, Saad MJA, Kahnt CR: Cross talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci 93: pp12490 12495, 1996
    5. Shiuchi T, Iwai M, Li HS, Wu L, Min LJ, LI JM, Okumura M, Cui TX, Horiuchi M: Angiotensin II type 1 receptor blocker valsartan enhance insulin sensitivity in skeletalmuscles of diabetic mice. Hypertension 43:1003 1010 , 2004
    6. Shao J, Iwashita N, Ikeda F, Ogihara T, Uchida T, Shimizu T, Uchino H, Hirose T, Kawamori R, Watada H: Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on beta cell function and morphology in db/db mice. Biochem Biophys Res Commun 344:1224–1233, 2006
    7. Iwase M, Uchizono Y, Nohara S,Nobuhiro S, Sonoki K, Iida M: Angiotensin II type 1 receptor antagonists prevent glucose induced increases in islet blood flow in rats. Scand J Clin Lab Invest 20:1 6, 2008
    8. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M,Qi N, Wang J, Avery MA, Kurtz TW: Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγmodulating activity. Hypertension 43: 993–1002,2004
    9. Lee CH, Olson P, Evans RM: Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator activated receptors. Endocrinology 144:2201–2207, 2003
    10. Muoio DM, MacLean PS, Lang DB, Li S, Houmard JA, Way JM, Winegar DA, Corton JC, Dohm GL, Kraus WE: Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferatoractivated receptor (PPAR) alpha knock out mice: evidence for compensatory regulation by PPARδ. J Biol Chem 277:26089–26097, 2002
    11. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC,Bayuga Ocamp CR, Ham J, Kang H, Evans RM: Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2: 1532 1538,2004
    12. Tanaka T, Yamamoto SI, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisaw M, Kodama T, Sakai J: Activation of peroxisome proliferatoractivated receptor delta induces fatty acid beta oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100: 15924 15929,2003
    13. Kramer DK, Al Khalili L, Perrini S, Skogsberg J, Wretenberg P, Kannisto K, Wallberg Henriksson H, Ehrenborg E, Zierath JR, Krook A: Direct activation of glucose transport in primary human myotubes after activation of peroxisomeproliferator–activated receptorδ. Diabetes 54:1157 1163,2005
    14. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM: AMPK and PPARδagonists are exercise mimetics. Cell 134:405 415,2008
    15. Verma NK, Singh J, Dey CS: PPARγexpression modulates insulin sensitivity in C2C12 skeletal muscle cells. Br J Pharmacol 43:1006 1013,2004
    16. Ogilvie RW,Feeback DL:A metachromatic dye ATPase method for the simultaneous identification of skeletal muscle fiber types I, IIA, IIB and IIC. Stain Technol 65: 231–241,1990
    17. Zhang LL, Liu DY, Ma LQ, Luo ZD, Cao TB, Zhong J, Yang ZC, Wang LJ, Zhao ZG, Zhu SJ, Schrader M, Thilo Florian, Zhu ZM, Tepel M: Activation of transient receptor potential vanilloid type 1 channel prevents adipogenesis and obesity. Circ Res 100:1063 1070,2007
    18. Zorad S, Dou J, Benicky J, Hutanu D, Tybitanclova K, Zhou J, Saavedra JM: Long term angiotensin II AT1 receptor inhibition produces adipose tissue hypotrophy accompanied by increased expression of adiponectin and PPARγ. Eur J Pharmacol 552:112–122, 2006
    19. Jankea J, Schupp M, Engeli S, Gorzelniaka K, Boschmanna M, Saumac L, Nystromc FH, Jordana J, Luft FC, Sharmad AM: Angiotensin type 1 receptor antagonists induce human in vitro adipogenesis through peroxisome proliferator activated receptorγactivation. J Hypertens 24:1809–1816, 2006
    20. Imayama I, Ichiki T, Inanaga K, Ohtsubo H, Fukuyama K: Telmisartan downregulates angiotensin II type 1 receptor through activation of peroxisome proliferator activated receptorγ. Cardiovas Res 72:184–190 , 2006
    21. Hiroki Ono, Yasuko Hashiguchi, Kenji SunagawaSleight P,Yusuf S, Pogue J, Tsuyuki R, Diaz R, Probstfield J: Blood pressure reduction and cardiovascular risk in HOPE study. Lancet 358:2130–2131,2001
    22. Kjeldsen SE, Dahlof B, Devereux RB, Julius S, Aurup P, Edelman J, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristianson K, Lederballe Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Opanl S, Snapinn S, Wedel H: Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertensionand left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA 288:1491–1498,2002
    23. Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hansson L, Hua T, Laragh J, Mclnnes GT, Mitchell L, Plat F, Schork A, Smith B, Zanchetti A: Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomized trial. Lancet 363:2022–2031,2004
    24. Semple RK, Chatterjee VK, Rahilly SO: PPAR gamma and human metabolic disease, J Clin Invest 116:581–589,2006
    25. Wang YX, Lee CH, Tiep S, Yu RT, Ham J, Kang H, Evans RM: Peroxisome proliferator activated receptorδactivates fat metabolism to prevent obesity. Cell 113:159–170,2003
    26. Tanaka T, Yamamoto SI, Asaba H, Hamura H, Ikeda Y, Watanabe M, Magoori K, Ioka RX, Tachibana K, Watanabe Y, Uchiyama Y, Sumi K, Iguchi H, Ito S, Doi T, Hamakubo T, Naito M, Auwerx J, Yanagisaw M, Kodama T, Sakai J: Activation of peroxisome proliferatoractivated receptor delta induces fatty acid beta oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924 15929,2003
    27. Yan ZC, Liu DY, Zhang LL, Shen CY, Ma QL, Cao TB, Wang LJ,Nie H,Zidek W,Tepel M, Zhu ZM: Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator activated receptor delta. Biochem Biophys Res Commun 354: 427 433,2007
    28. Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM: PPARδregulates glucose metabolism and insulin sensitivity. PNAS 103:3444–3449,2006
    29. Bassel Duby R and Olson EN. Signaling pathways in skeletal muscle remodeling.
    30. Annu. Rev. Biochem. 75:19–37, 2006
    31. Zurlo F,Larson K,Bogardus C,Ravussin E:Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86: 423 1427,1990
    32. Berchtold MW,Brinkmeier H,Muntener M:Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215 1265,2000
    33. Pette, D, Staron RS. Myosin isoforms, myosin fiber types and transitions. Microsc ResTech 50: 500–509,2000
    34. Fluck, M, Hoppeler H. Molecular basis of skeletal muscle plasticity from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216, 2003
    35. Li HB, Ge YK, Zheng XX, Zhang L: Salidroside stimulated glucose uptake in skeletal muscle cells by activating AMP activated protein kinase. Eur J Pharmacol 588:165–169,2008
    36. Ju JS, Gitcho MA, Casmaer CA, Patil PB, Han DG, Spencer SA, Fisher JS: Potentiation of insulin stimulated glucose transport by the AMP activated protein kinase. Am J Physiol Cell Physiol 292: 564–572,2007
    37. Kubota N., Yano W., Kubota T., Yamauchi T., Itoh S., Kumagai H., Kozono H., Takamoto I., Okamoto S., Shiuchi T. Adiponectin stimulates AMP activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68,2007
    38. Kamei K, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O: Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279: 41114–41123, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700