不同亚型过氧化酶体增殖物激活受体对胎盘11β-HSD2和H_2S合成酶表达的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖皮质激素(glucocorticoid, GC)在妊娠期间起着极其重要的作用,不仅调节各种胎盘激素的合成和释放,还促进胎儿器官特别是肺、肠道和脑等的成熟[1-3]。但是胎儿过早、过多的接触GC可导致胎儿宫内发育迟缓(intrauterine growth restriction, IUGR),与妊娠期高血压(pregnancy-induced hypertension, PIH)的发生发展也密切相关[4,5]。妊娠期间母体血液中GC浓度随孕期不断升高,是胎儿循环的5到十倍,且GC是甾体激素,可自由通过细胞膜,那么是如何保证在妊娠期间胎儿发育所需的一个适宜的GC环境呢?大量研究证实妊娠期间胎盘高表达的GC代谢酶——11β-羟基类固醇脱氢酶2(11β-hydroxysteroid dehydrogenase type 2,11β-HSD2)在其中发挥了关键作用,通过将有活性的GC代谢为无活性的代谢产物,以保证胎儿发育所需的适宜的GC环境,由此在胎盘局部起到功能性屏障作用~([6,7])。若胎盘11β-HSD2表达或功能异常,均可导致母体循环中高浓度GC通过胎盘进入胎儿循环,使胎儿过早、过多地接触GC,从而影响胎儿发育[8]。目前研究证实孕激素、NO、缺氧等可影响胎盘11β-HSD2的表达和活性[9],但关于胎盘11β-HSD2表达和活性的调控机制尚未完全阐明。
     过氧化物酶体增殖体激活受体(peroxisome proliferation-activated receptors,PPARs)属于配体激活性核激素受体超家族,存在三个亚型:PPARα、PPARβ(或PPARδ)和PPARγ1-3]。研究发现人胎盘PPARs三个亚型均有表达,并参与滋养层细胞分化、胚胎植入、脂质和葡萄糖代谢及血管发生等过程,与胎盘胎儿的发育密切相关~([11])。但关于各种配体激活PPARs后,通过调控哪些因素而参与胎盘胎儿发育过程并不清楚。PPARs的天然配体主要来源于饮食和机体的代谢产物~([12]),研究表明限制动物蛋白摄入量或孕期营养不良可使胎盘11β-HSD2表达减少~([13])或活性降低~([14]),但具体机制尚不清楚。因此课题的第一部分利用原代培养的人胎盘滋养层细胞,研究不同PPARs对11β-HSD2表达和活性是否有调节作用及其分子机制;收集正常和PIH孕妇所分娩的胎盘组织,检测PPARs三个亚型和11β-HSD2 mRNA及蛋白的表达。
     硫化氢(hydrogen sulphide,H_2S)是人类发现的第三种气体信号分子,在机体心血管系统、神经系统生理活动及病理改变中发挥重要作用~([15])。研究表明人类胎盘组织表达H_2S合成酶——CBS和CSE,并可生成H_2S~([16]),但关于它们的具有功能及其调节并不清楚。胎盘作为妊娠期所特有的器官,也是体内最大的内分泌器官之一,可合成、分泌多种激素及其代谢酶、细胞因子等。其中胎盘合成和分泌的促肾上腺皮质激素释放激素(corticotropin-releasing hormone, CRH)不仅影响胎儿的发育与成熟、参与分娩启动,且与早产、IUGR、PIH等疾病有关~([17-19])。研究证实气体信号分子在CRH表达的调节中起着重要作用,如NO、CO、H_2S均可抑制下丘脑释放CRH,NO抑制胎盘滋养层细胞CRH的释放~([20,21])。因此本课题第二部分,利用免疫组化方法观察H_2S合成酶在胎盘组织中的表达定位;利用原代培养的人胎盘滋养层细胞,检测H_2S是否影响CRH mRNA、多肽的合成及其分泌;研究PPARs是否影响H_2S合成酶的表达和CRH mRNA、多肽的合成及其分泌;收集正常和PIH孕妇所分娩的胎盘组织,检测H_2S合成酶的表达和H_2S的生成。
     实验结果如下:
     第一部分不同亚型PPARs对胎盘11β-HSD2表达的调节作用及其机制
     1、定量PCR、western印迹杂交和放射酶活性测定结果显示PPARα特异性激动剂GW7647呈剂量依赖性方式抑制11β-HSD2 mRNA和蛋白表达及其氧化酶活性,PPARγ特异性激动剂罗格列酮则作用相反——呈促进效应,二者均在10-6M达到最大作用。上述作用可分别被PPARα特异性拮抗剂GW6471和PPARγ特异性拮抗剂GW9662逆转,说明PPARs不同亚型对胎盘11β-HSD2表达和活性具有不同的调节作用;
     2、蛋白合成抑制剂CHX不影响GW7647和罗格列酮对11β-HSD2的调节作用,提示上述PPARs对11β-HSD2 mRNA表达的调节作用不是通过影响其他蛋白的表达的间接作用,而是直接作用于11β-HSD2;
     3、RXRs配体9-顺-维甲酸单独作用可上调胎盘11β-HSD2 mRNA和蛋白表达,且对罗格列酮上调胎盘11β-HSD2表达的作用有增强的趋势;利用RXRasiRNA干扰胎盘RXRα表达后,可逆转罗格列酮调节胎盘11β-HSD2表达的效应。以上说明PPARγ对胎盘11β-HSD2的调节作用可能是通过和RXRα形成异源二聚体这个经典途径实现的。9-顺-维甲酸对GW7647下调11β-HSD2表达的作用没有影响,且干扰胎盘RXRα表达后,PPARα的调节效应依然存在,提示RXRα不参与PPARα对胎盘11β-HSD2的调节过程;
     4、mRNA合成抑制剂5,6-二氯-1-β-D呋喃核糖苯并咪唑(5,6-dichlorobenzimidazole 1-β-D-ribfuranoside, DRB)不影响GW7647和罗格列酮对11β-HSD2的调节作用,说明上述PPARs对11β-HSD2 mRNA表达的调节作用,不是通过改变11β-HSD2 mRNA的稳定性实现的;
     5、将含11β-HSD2基因启动子的荧光素酶报道基因瞬时转染原代培养的人胎盘滋养层细胞,结果显示GW7647抑制11β-HSD2的基因转录,其作用可被GW6471所逆转;罗格列酮则促进11β-HSD2的基因转录,GW9662可逆转此上调作用。以上结果说明PPARα、PPARγ分别抑制和促进胎盘11β-HSD2的基因转录;
     6、收集正常妊娠和PIH患者分娩的胎盘组织,结果显示PIH患者胎盘11β-HSD2、PPARγmRNA及蛋白表达较正常者显著减少,而PPARα和PPARβmRNA和蛋白表达较正常者显著增加。统计学分析结果显示11β-HSD2与PPARβ之间呈负相关、11β-HSD2与PPARγ之间具有正相关,提示胎盘不同亚型PPARs参与胎盘11β-HSD2表达的精细调控过程。
     第二部分不同亚型PPARs对胎盘H_2S合成酶表达的调节作用及其意义
     1、免疫组织化学染色显示人胎盘组织表达H_2S合成酶——CBS和CSE,且主要表达于合体滋养层细胞;
     2、利用原代人胎盘滋养细胞,用不同浓度的L-半胱氨酸或/和CSE抑制剂PAG/CBS抑制剂AOAA、D-半胱氨酸及NaHS处理细胞。结果显示L-半胱氨酸及NaHS抑制胎盘细胞CRH mRNA表达和多肽水平,PAG或AOAA均可逆转L-半胱氨酸的抑制作用,而D-半胱氨酸不影响胎盘细胞CRH mRNA表达和多肽含量。以上结果说明L-半胱氨酸在胎盘H_2S合成酶作用下生成H_2S,进而抑制胎盘细胞CRH的合成和分泌。
     3、利用原代人胎盘滋养细胞,给予PPARs各亚型特异性激动剂或/和拮抗剂处理。结果显示PPARγ特异性激动剂GW7647和PPARβ特异性激动剂GW0742抑制CSE、CBS mRNA和蛋白表达,作用可分别被各自特异性拮抗剂GW6471、GSK0660所逆转;PPARγ特异性激动剂罗格列酮促进CSE、CBS的表达,此作用也可为其阻断剂GW9662所逆转,说明PPARs不同亚型对胎盘H_2S合成酶的表达具有不同的调节作用;
     4、利用原代人胎盘滋养细胞,用PPARs各亚型特异性激动剂或/和拮抗剂处理细胞。结果显示GW7647和GW0742剂量依赖性地促进胎盘细胞CRH mRNA表达、CRH多肽的合成,而不影响CRH多肽的分泌量,GW6471、GSK0660可分别逆转上述作用;罗格列酮则剂量依赖性方式抑制胎盘细胞CRH mRNA表达、CRH多肽的合成和分泌量,GW9662可逆转此下调作用。以上结果提示不同亚型PPARs对胎盘CRH的表达和分泌呈不同的调节作用。
     5、收集正常妊娠和PIH患者胎盘组织,检测CBS、CSE mRNA和蛋白的表达、H_2S的生成速率,结果显示PIH患者胎盘CBS和CSE mRNA及蛋白表达、H_2S的生成速率等较正常者显著减少。统计学相关性分析结果表明胎盘组织PPARγ表达与CSE和CBS的表达呈负相关,而PPARγ表达与CSE的表达呈正相关,提示胎盘PPARs可能参与维持胎盘H_2S合成酶表达的调节过程。
     结论:
     1、1)不同PPARs对11β-HSD2mRNA表达的调节作用不需要通过合成新蛋白、不影响11β-HSD2 mRNA的稳定性,而是直接调节11β-HSD2基因的转录,对胎盘11β-HSD2的表达和酶活性呈现不同甚至相反的调节作用;PPARγ可能通过与RXR形成异源二聚体促进胎盘11β-HSD2的表达和活性,而PPARγ对胎盘11?β-HSD2的调节过程可能不需要RXR的参与。2)胎盘组织PPARγ与11β-HSD2之间、PPARγ与11β-HSD2之间的表达具有相关性,提示PPARs可能参与胎盘11β-HSD2表达的精细调节过程,即不同PPARs亚型的表达水平和活性之间的平衡可能是胎盘维持11β-HSD2正常范围的重要影响因素;
     2、1)胎盘表达CSE和CBS,并能生成H_2S;H_2S抑制胎盘细胞CRH的合成和分泌,提示胎盘局部H_2S可能通过调控CRH的水平而参与胎盘内分泌功能的调节;2)不同亚型PPARs对胎盘H_2S合成酶CBS、CSE的表达具有不同甚至相反的调节作用;3)PIH患者胎盘与正常妊娠胎盘相比,CBS、CSE mRNA和蛋白表达、H_2S生成速率均下降,提示H_2S在PIH患者的生成减少;胎盘PPARs的表达与CSE和CBS的表达具有相关性,提示不同亚型PPARs参与胎盘H_2S合成酶正常表达的调节过程;4)不同亚型PPARs对胎盘CRH具有不同的调节作用,但此作用是PPARs的直接作用还是通过影响胎盘H_2S合成酶表达的间接作用还有待进一步研究。
Glococorticoids are essential for normal fetal organ growth and maturation. However, excessive glucocorticoid exposure in uterus leads to intrauterine growth restriction (IUGR) and pregnancy-induced hypertension (PIH). The placental enzyme 11β- hydroxysteroid dehydrogenase type 2 (11β-HSD2) is believed to play a key role in protecting the fetus from exposure to high levels of maternal glucocorticoid by converting maternal cortisol to its inactive metabolite, cortisone. Indeed, placental 11β-HSD2 activity is correlated with birth weight and is attenuated in pregnancies complicated with IUGR. Thus, the precise control of placental 11β-HSD2 expression and activity appears to be critical to normal fetal development. However, the understanding of placental 11β-HSD2 regulation is incomplete.
     Peroxisome proliferatoractivated receptors (PPARs) are members of the nuclear receptor superfamily. Three distinct PPAR subtypes have been identified, namely, PPAR?, PPAR??(also known as PPAR?) and PPAR?, with unique tissue distributions and physiological functions. Three PPAR subtypes have been found to express in the human placenta, which function in this organ is unclear. Recently PPARs-null mice exhibit placental defects and reduced birth weight, indicating a pivotal role for this nuclear receptor in placental function and fetal development. We hypothesized that this nuclear receptor may regulate human placental function in part by targeting 11β-HSD2. In the first part of present study, we conducted experiments to determine the modulation and mechanism of PPARs on 11β-HSD2 using cultured human placental trophoblast cells as a model system.
     The pharmacological, physiological and pathological roles of gasotransmitters nitric oxide (NO) and carbon monoxide (CO) have been extensively researched in the reproductive system. Hydrogen sulphide (H_2S) is another gasotransmitter that has many parallels with NO and CO. However there are few reports to date on the production and function of H_2S in reproductive tissues. H_2S is endogenously produced from L-cysteine by two pyridoxal 5' phosphate-dependent enzymes cystathionineβ-synthase (CBS) and cystathionineγ-lyase (CSE). Recently the presence of CBS and CSE enzymes was demonstrated in human intrauterine tissues including placenta. However the role and regulation of H_2S in the placenta are unclear. In the second part, we conducted experiments to observe expression level of H_2S synthetases in normal placenta and PIH placenta; to determine if PPARs modulate the expression of CBS and CSE in human placental trophoblast. As we known, Corticotropin-Releasing Hormone (CRH) takes a vital part in the progression of pregnancy and initiation of labor in human. However, the mechanism of CRH regulation is fully uncovered. So further experiment was conducted to observe whether H_2S and PPARs influence the synthesis and release of CRH in human placenta.
     Main results and conclusions are as follows:
     1 . Regulation and Mechanism of 11β-HSD2 Expression in Human Placenta Syncytiotrophoblasts by PPARs
     1) Treatment of placental cells with PPARγagonist GW7647 caused a decrease in the mRNA and protein expression as well as the activity of 11β-HSD2. These effects could be blocked by PPARγantagonist GW6471. PPARγagonist rosiglitazone dose-dependently stimulated the expression and activity of 11β-HSD2. PPARγantagonist GW9662 reversed the effects of rosiglitazone.
     2) Placental Cells were treated with PPARs agonists in the absence and presence of CHX, a protein synthesis inhibitor. It was found that GW7647 and rosiglitazone were equally effective in modulating 11β-HSD2 mRNA in the absence and presence of CHX, indicating that de novo protein synthesis was not required.
     3) RXR ligand 9-cis-RA alone could increase the expression of 11β-HSD2 in the placental cells. And 9-cis-RA potentiated the effect induced by PPAR? agonist. Transfected the placental cells with RXRαsiRNA abolished the effect by rosiglitazone, whereas the effect of GW7647 was not influenced. The results suggested that the modulation of PPARγnot PPAR? depended on RXRα.
     4) To elucidate the molecular mechanisms by which PPARs regulated 11β-HSD2 mRNA, cells were treated with DRB, an inhibitor of mRNA synthesis. The results showed that GW7647 and rosiglitazone did not alter the half-life of 11β-HSD2 mRNA. 5) GW7647 repressed whereas rosiglitazone stimulated the promoter activity of 11β-HSD2 gene. GW6471 and GW9662 could reverse the effects of GW7647 and rosiglitazone respectively. The results suggested that GW7647 and rosiglitazone could regulate genetic transcription of 11β-HSD2.
     6) Western blot hybridization and real-time PCR showed that the expression of 11β-HSD2, ?and PPARγwere significantly lower in placentas from women with PIH compared with those with normal pregnant, while the expression of PPARγand PPARγwas opposite. Moreover, Statistical analyses showed that there is a negative correlation between the expression of 11β-HSD2 and PPARγ, whereas a positive correlation existed between the expression of 11β-HSD2 and PPARγin human placenta. Results suggested that PPARs involve in maintain of 11β-HSD2 expression in placenta.
     2.Regulation of Synthetases Responsible for H_2S Production in Human Placenta Syncytiotrophoblasts by PPARs.
     1) Both H_2S synthetases, CBS and CSE, express in human placenta showed by immunochemistry.
     2) Treatment the placental cells with L-cysteine or sodium hydrosulfide, CRH mRNA expression and CRH IR concentration in media and cell lysis of cells decreased. The effect of L-cycsteine was blocked in the presence of CSE antagonist PAG or CBS antagonist AOAA. Meanwhile D-cysteine had no effect on CRH mRNA and IR concentration. The results suggested that H_2S regulate CRH synthesis and secretion in placenta.
     3) PPARγagonist GW7647 and PPARβagonist GW0742 significantly down-regulated the mRNA and protein expression of CBS and CSE in placental trophoblast cells, while PPARγagonist rosiglitazone stimulated the expression of CBS and CSE. The above effects of PPARs were reversed by PPARs subtypes antagonists repectively.
     4) Treatment the placental cells with PPARαand PPARβagonists, CRH mRNA expression and IR concentration in media and cell lysis of cells increased. The effects of PPARγand PPARγwere reversed by PPARγand PPARγantagonist respectively. Meanwhile PPARγhad down-regulation on CRH mRNA expression and IR concentration.
     5) The mRNA and protein expression of CBS and CSE were significantly decreased in PIH placental biopsies compared to those of normal samples. Statistical analyses showed that there is a negative correlation between PPARγand CBS, PPARγand CSE, while a positive correlation existed between CSE and PPARγin human placenta. To define the real-time kinetics of H_2S production by placenta, we used miniaturized H_2S micro-respiration sensor to measure its production. Results showed that the level of H_2S production in PIH placenta significantly decreased compared to normal placenta. It suggested that H_2S maybe involve in the pathological progress of PIH.
     In summary, the above results demonstrated:
     These data suggested that PPARγand PPARγdifferentially modulate the expression and activity of 11β-HSD2 in human trophoblast cells, these effects are mediated primarily at transcriptional level. Moreover, the results suggested that PPARs regulate the expression of CBS and CSE in human placenta, which effects were different. Furthermore, the above effects could modulate the production of H_2S in placenta, which further effect the synthesis and secrete of CRH in placenta. In fact the results showed that both H2S and PPARs subtypes coulud modulate the synthsis and secretion of CRH in placnta.
     Also the results showed that there is a correlation between the expression of 11β-HSD2 and PPARs, H2S Synthetases and PPARs in human placenta. Thus, the present study indicates that PPARs may modulate the human placental function, and, consequently, fetal development.
引文
1. Kapoor A, Petropoulos S, Matthews SG. Fetal programming of hypothalamic–pituitary–adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res Rev 2008; 57:586-595.
    2. Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal 'programming' of adult pathophysiology. Nat Clin Pract Endocrinol Metab. 2007; 3:479-488.
    3. O'Donnell K, O'Connor TG, Glover V. Prenatal stress and neurodevelopment of the child: focus on the HPA axis and role of the placenta. Dev Neurosci. 2009; 31:285-292.
    4. Bloom SL, Leveno KJ. Corticosteroid use in special circumstances: preterm ruptured membranes, hypertension, fetal growth restriction, multiple fetuses. Clin Obstet Gynecol. 2003, 46:150-160.
    5. Causevic M, Mohaupt M. 11beta-Hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia. Mol Aspects Med. 2007;28:220-226.
    6. Benediktsson R, Calder AA, Edwards CR, Seckl JR. Placental 11 beta hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol (Oxf). 1997;46:161-166.
    7. Sun K, Adamson SL, Yang K, Challis JR. Interconversion of cortisol and cortisone by 11beta-hydroxysteroid dehydrogenases type 1 and 2 in the perfused human placenta. Placenta. 1999;20:13-19.
    8. Shams M, Kilby MD, Somerset DA, Howie AJ, Gupta A, Wood PJ, Afnan M, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum Reprod. 1998;13:799-804.
    9. Sun K, Yang K, Challis JR. Regulation of 11beta-hydroxysteroid dehydrogenase type 2 by progesterone, estrogen, and the cyclic adenosine 5'-monophosphate pathway in cultured human placental and chorionic trophoblasts. Biol Reprod. 1998;58:1379-1384.
    10. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999;20:649-88.
    11. Froment P, Gizard F, Defever D, Staels B, Dupont J. Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. J Endocrinol. 2006: 189: 199-209.
    12. Biscetti F, Straface G, Pitocco D., Zaccardi F., Ghirlanda G., Flex A. Peroxisome proliferator-activated receptors and angiogenesis. Nutr Metab Cardiovas Dis. 2009; 19: 751-759.
    13. McMullen S et al. Alterations in placental 11β-hydroxysteroid dehydrogenase (11βHSD) activities and fetal cortisol: cortisone ratios induced by nutritional restriction prior to conception and at defined stages of gestation in ewes. Reproduction. 2004;127: 717–725.
    14. Connor KL, Bloomfield FH, Oliver MH, Harding JE, Challis JR. Effect of periconceptional undernutrition in sheep on late gestation expression of mRNA and protein from genes involved in fetal adrenal steroidogenesis and placental prostaglandin production. Reprod Sci. 2009;16:573-583.
    15. Pan, T.-T., et al., Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2006. 40(1): 119-130.
    16. Patel, P., et al., The endogenous production of hydrogen sulphide in intrauterine tissues. Reproductive Biology and Endocrinology, 2009: p. 9.
    17. Sasaki, A., et al., Immunoreactive corticotropin-releasing hormone in human plasma during pregnancy, labor, and delivery. J Clin Endocrinol Metab, 1987. 64(2): 224-229.
    18. McLean, M., et al., A placental clock controlling the length of human pregnancy. Nat Med, 1995. 1: 460-463.
    19. Clifton, V.L., et al., Corticotropin-releasing hormone-induced vasodilatation in the human fetal-placental circulation: involvement of the nitric oxide-cyclic guanosine 3',5'-monophosphate-mediated pathway. J Clin Endocrinol Metab, 1995. 80: 2888-2893.
    20. Mancuso C. Heme oxygenase and its products in the nervous system. Antioxid Redox Signal. 2004;6:878-887.
    21. Navarra P, Dello Russo C, Mancuso C, Preziosi P, Grossman A. Gaseous neuromodulators in the control of neuroendocrine stress axis. Ann N Y Acad Sci. 2000;917:638-646.
    22. FritzWieser, LeslieWaite, Christophe Depoix, et al. PPAR Action in Human Placental Development and Pregnancy and Its Complications. PPAR Research, volume 2008, Article ID 527048, 14 pages.
    23. M. J. Holness, G.K.Greenwood, N. D. Smith, andM.C. Sugden,“Peroxisome proliferator-activated receptor-αand glucocorticoids interactively regulate insulin secretion during pregnancy,”Diabetes. 2006, 55: 3501–3508.
    24. K. Nadra, S. I. Anghel, E. Joye, et al.,“Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptorβ/δ,”olecular and Cellular Biology, 2006, :3266–3281.
    25. E. Lord, B. D. Murphy, J. A. Desmarais, S. Ledoux, D. Beaudry, and M.-F. Palin,“Modulation of peroxisome proliferator-activated receptorδandγtranscripts in swine endometrial tissue during early gestation,”Reproduction. 2006, 131:929–942.
    26. J. Berger and D. E. Moller,“The mechanisms of action of PPARs,”Annual Review of Medicine. 2002, 53: 409–435.
    27. Y. Barak, M. C. Nelson, E. S. Ong, et al.,“PPARγis required for placental, cardiac, and adipose tissue development,”Molecular Cell. 1999, 4: 585–595.
    28. X. Zhang and H. A. Young,“PPAR and immune system—what do we know?”International Immunopharmacology. 2002, 2: 1029–1044.
    29. Desvergne B, Wahli W Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649-688.
    30. Biscetti F, Straface G, Pitocco D., Zaccardi F., Ghirlanda G., Flex A. Peroxisomeproliferator-activated receptors and angiogenesis. Nutr Metab Cardiovas Dis 2009; 19: 751-759.
    31. Huang TH, Teoh AW, Lin B, Lin DS, Roufogalis B. The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol Res. 2009;
    32. Q. Wang, H. Fujii, and G. T. Knipp,“Expression of PPAR and RXR isoforms in the developing rat and human term placentas,”Placenta. 2002, 23: 661–671.
    33. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999;4:585-595.
    34. Barak Y, Liao D, He W, Ong ES, Nelson MC, Olefsky JM, et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci U S A 2002; 99:303-308.
    35. D. K. Kr¨amer, L. Al-Khalili, B. Guigas, Y. Leng, P. M. Garcia-Roves, and A. Krook,“Role of AMP kinase and PPARδin the regulation of lipid and glucose metabolism in human skeletal muscle,”Journal of Biological Chemistry. 2007, 282:19313–19320.
    36. Holdsworth-Carson S.J., Lim R., Mitton A., Whitehead C., Rice G.E, Permezel M., Lappas M. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: Gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta. 2010;31:222-229.
    37. Kitanaka S, Tanae A, Hibi I. Apparent mineralocorticoid excess due to11 beta-hydroxysteroid dehydrogenase deficiency: a possible cause of intrauterine growth retardation. Clin Endocrinol (Oxf). 1996; 44:353-359.
    38. Shams M, Kilby MD, Somerset DA, Howie AJ, Gupta A, Wood PJ, Afnan M, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 2 in human pregnancy and reduced expression in intrauterine growth restriction. Hum Reprod. 1998;13:799-804.
    39. Hewitt DP, Mark PJ, Waddell BJ. Placental expression of peroxisome proliferator-activated receptors in rat pregnancy and the effect of increased glucocorticoid exposure. Biol Reprod. 2006;74:23-28.
    40. Julan L, Guan H, van Beek JP, Yang K. Peroxisome proliferator-activated receptor {delta} suppresses 11{beta}-hydroxysteroid dehydrogenase type 2 gene expression in human placental trophoblast cells. Endocrinology. 2005;146:1482-1490.
    41. Kimura, H., Hydrogen sulfide: its production, release and functions. Amino Acids, 2010.
    42. C. Dello Russo, G. Tringali, E. Ragazzoni, N. Maggiano. Evidence That Hydrogen Sulphide Can Modulate Hypothalamo-Pituitary-Adrenal Axis Function: In Vitro and In Vivo Studies in the Rat. Journal of Neuroendocrinology, 2000, 12, 225–233.
    43. Swaroop, M., et al., Rat cystathionine beta-synthase. Gene organization and alternative splicing. J Biol Chem, 1992. 267: 11455-11461.
    44. Cheng, Y., et al., Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol, 2004. 287: 2316-2323.
    45. Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev. 1997;18:378-403.
    46. Chan J, Rabbitt EH, Innes BA, Bulmer JN, Stewart PM, Kilby MD, Glucocorticoid-induced apoptosis in human decidua: a novel role for 11beta-hydroxysteroid dehydrogenase in late gestation. J Endocrinol. 2007;195:7-15.
    47. Lucassen PJ, Bosch OJ, Jousma E, Krmer SA, Andrew R, Seckl JR, Neumann ID.Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: possible key role of placental 11beta-hydroxysteroid dehydrogenase type 2. Eur J Neurosci. 2009;29:97-103.
    48. Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19-25.
    49. Causevic M, Mohaupt M. 11?- hydroxysteroid dehydrogenase type 2 in pregnancy and preeclamsia. Mol Asp Med. 2007: 28: 220-226.
    50. Cekmen M B, Erbagci A B, Balat A, et a1. PIasma lipi and lipoprotein concentrations in pregnancy induced hypertension[J]. Clin Biochem. 2003;36:575-578.
    51. Schoof E, Girstl M, Frobenius W, Kirschbaum M, Repp R, Rascher W. Course of placental 11beta-hydroxysteroid dehydrogenase type 2 and 15-hydroxyprostaglandin dehydrogenase mRNA expression during human gestation. Eur J Endocrinol. 2001;145:187-92.
    52. Julan L, Guan H, van Beek JP, Yang K. Peroxisome proliferator-activated receptor {delta} suppresses 11{beta}-hydroxysteroid dehydrogenase type 2 gene expression in human placental trophoblast cells. Endocrinology. 2005;146:1482-1490.
    53. Desvergne B, Wahli W Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649-688
    54. Lu Gao, Ping He, Jinyan Sha, et al.Corticotropin-Releasing Hormone Receptor Type 1 and Type 2 Mediate Differential Effects on 15-Hydroxy Prostaglandin Dehydrogenase Expression in Cultured Human Chorion Trophoblasts. Endocrinology. 2007, 148: 3645–3654.
    55. Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 2005;48:1147-1153.
    56. Tesse A, Al-Massarani G, Wangensteen R, Reitenbach S, Martínez MC, Andriantsitohaina R. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, prevents microparticle-induced vascular hyporeactivity through the regulation of proinflammatory proteins. J Pharmacol Exp Ther. 2008;324:539-547.
    57. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999;4:585-595.
    58. Tarrade A, Schoonjans K, Guibourdenche J, Bidart JM, Vidaud M, Auwerx J, et al. PPAR gamma/RXR alpha heterodimers are involved in human CG beta synthesis and human trophoblast differentiation. Endocrinology 2001;142:4504-4514.
    59. Kehrer JP, Biswal SS, La E, Thuillier P, Datta K, Fischer SM, Vanden Heuvel JP. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886. Biochem J. 2001;356:899-906.
    60. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002; 53: 409-435.
    61. Gollamudi R, Gupta D, Goel S, Mani S. Novel orphan nuclear receptors-coregulator interactions controlling anti-cancer drug metabolism. Curr Drug Metab. 2008, 9:611-3.
    62. J. Tremblay, D.B. Hardy, L.E. Pereira, and K. Yang2. Retinoic Acid Stimulates the Expression of 11b-Hydroxysteroid Dehydrogenase Type 2 in Human Choriocarcinoma JEG-3 Cells1. Biology Reproduction 60, 1999,
    63. Tan NS, Michalik L, Desvergne B, Wahli W. Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. J Steroid Biochem Mol Biol. 2005;93:99-105.
    64. Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, Fruchart JC, Tedgui A, Haegeman G, Staels B 1999 Peroxisome proliferator-activated receptor negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kB and AP-1. J Biol Chem 274:32048–32054.
    65. Li M, Pascual G, Glass CK 2000 Peroxisome proliferator-activated receptor??-dependent repression of the inducible nitric oxide synthase gene. Mol Cell Biol 20:4699–4707.
    66. Shi Y, Hon M, EvansRM2002 The peroxisome proliferator-activated receptor, an integrator of transcriptional repression and nuclear receptor signaling. Proc Natl Acad Sci USA 99:2613–2618
    67. Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM, Curtiss LK 2003 Transcriptional repression of atherogenic inflammation: modulation by PPAR?. Science 302:453–457.
    68. Meissner M, Stein M, Urbich C, Reisinger K, Suske G, Staels B, Kaufmann R, Gille J 2004 PPAR_ activators inhibit vascular endothelial growth factor receptor-2 expression by repressing Sp1-dependent DNA binding and transactivation. Circ Res 94:324–332.
    69. Sugawara A, Uruno A, Kudo M, Ikeda Y, Sato K, Taniyama Y, Ito S, Takeuchi K 2002 Transcription suppression of thromboxane receptor gene by peroxisome proliferator-activated receptor-? via an interaction with Sp1 in vascular smooth muscle cells. J Biol Chem 277:9676–9683
    70. Agarwal AK, White PC 1996 Analysis of the promoter of the NAD+ dependent 11β-hydroxysteroid dehydrogenase (HSD11K) gene in JEG-3 human choriocarcinoma cells. Mol Cell Endocrinol 121:93–99.
    71. Nawrocki AR, Goldring CE, Kostadinova RM, Frey FJ, Frey BM 2002 In vivo footprinting of the human 11_-hydroxysteroid dehydrogenase type 2 promoter: evidence for cell-specific regulation by Sp1 and Sp3. J Biol Chem 277:14647–14656
    72. M. J. Reginato, S. L. Krakow, S. T. Bailey, and M. A. Lazar,“Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptorγ,”Journal of Biological Chemistry, 1998, 273: 1855–1858.
    73. Q.Wang, H. Fujii, and G. T. Knipp,“Expression of PPAR and RXR isoforms in the developing rat and human term placentas,”Placenta, 2002, 23: 661–671.
    74. B. W. Arbogast, S. C. Leeper, R. D. Merrick, K. E. Olive, and R. N. Taylor,“Which plasma factors bring about disturbance of endothelial function in pre-eclampsia?”The Lancet, 1994. 343: 340–341.
    75. D. Hornung, I. P. Ryan, V. A. Chao, J.-L. Vigne, E. D. Schriock, and R. N. Taylor,“Immunolocalization and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells,”Journal of Clinical Endocrinology & Metabolism, 1997, 82: 1621–1628.
    76. R. Artal, R. B. Catanzaro, J. A. Gavard, D. J. Mostello, and J. C. Friganza,“A lifestyle intervention of weight-gain restriction: diet and exercise in obese women with gestational diabetes mellitus,”Applied Physiology, Nutrition, and Metabolism, 2007, 32: 596–601.
    77. Buhimschi I, Yallampalli C, Dong YL, Garfield RE: Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of human uterine contractility during pregnancy. Am J Obstet & Gynecol, 1995; 172:1577-1584.
    78. Wang R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J, 2002;16: 1792-1798.
    79. Warenycia, M. W., Goodwin, L. R., Benishin, et al. Acute hydrogen sulfide poisoning: demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem. Pharmacol, 1989; 38: 973–981.
    80. Hosoki, R., N. Matsuki, and H. Kimura, The Possible Role of Hydrogen Sulfide as an Endogenous Smooth Muscle Relaxant in Synergy with Nitric Oxide. Biochemical and Biophysical Research Communications, 1997. 237: 527-531.
    81. Abe, K. and H. Kimura, The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996. 16: 1066-1071.
    82. Collin, M., et al., Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. British Journal of Pharmacology, 2005. 146: 498-505.
    83. Mok, Y.-Y.P., et al., Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis. British Journal of Pharmacology, 2004. 143: 881-889.
    84. Cheng, Y., et al., Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol, 2004. 287: 2316-2323.
    85. Riley, S.C. and J.R. Challis, Corticotrophin-releasing hormone production by the placenta and fetal membranes. Placenta, 1991. 12: 105-119.
    86. Goland, R.S., et al., High levels of corticotropin-releasing hormone immunoactivity in maternal and fetal plasma during pregnancy. J Clin Endocrinol Metab, 1986. 63: 1199-1203.
    87. Sasaki, A., et al., Immunoreactive corticotropin-releasing hormone in human plasma during pregnancy, labor, and delivery. J Clin Endocrinol Metab, 1987. 64: 224-229.
    88. Smith, R., Alterations in the hypothalamic pituitary adrenal axis during pregnancy and the placental clock that determines the length of parturition. J Reprod Immunol, 1998. 39: 215-220.
    89. McLean, M., et al., A placental clock controlling the length of human pregnancy. Nat Med, 1995. 1: 460-463.
    90. McLean, M. and R. Smith, Corticotrophin-releasing hormone and human parturition. Reproduction, 2001. 121: 493-501.
    91. Reis, F.M., et al., Corticotropin-releasing factor, urocortin and endothelin-1 stimulate activin A release from cultured human placental cells. Placenta, 2002. 23: 522-525.
    92. Gao, L, et al. Differential Regulation of prostaglandin production mediated by corticotropin-releasing hormone receptor type 1 and type 2 in cultured human placental trophoblasts. Endocrinology, 2008. 149: 2866 - 2876.
    93. Wang MJ, Cai WJ, Zhu YC. Mechanisms of angiogenesis: role of hydrogen sulphide. Clin Exp Pharmacol Physiol. 2010, 37: 764-771.
    94. Doeller, J.E., et al., Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Analytical Biochemistry, 2005. 341: 40-51.
    95. Sidhu R, Singh M, Samir G, Carson RJ. L-cysteine and sodium hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips invitro. Pharmacol. Toxicol. 2001, 88: 198–203.
    96. Giles W, O’Callaghan S, Read M, Gude N, King R, Grennecke S. Placental nitric oxide synthase activity and abnormal umbilical artery flow velocity waveforms. Obstet Gynecol. 1997, 89:49–52.
    97. Ni X, Chan E-C, Fitter JT, Smith R. Nitric oxide inhibits corticotropinreleasing hormone exocytosis but not synthesis by cultured human trophoblasts. J Clin Endocrinol Metab. 1997, 82:4171– 4175.
    1. G. Rizzo and S. Fiorucci,“PPARs and other nuclear receptors in inflammation,”Current Opinion in Pharmacology, 2006,vol. 6, no. 4, pp. 421–427.
    2. A. Margeli, G. Kouraklis, and S. Theocharis,“Peroxisome proliferator activated receptor-γ(PPAR-γ) ligands and angiogenesis,”Angiogenesis, 2003, vol. 6, no. 3, pp. 165–169.
    3. W. T. Schaiff, Y. Barak, and Y. Sadovsky,“The pleiotropic function of PPARγin the placenta,”Molecular and Cellular Endocrinology, 2006, vol. 249, no. 1-2, pp. 10–15.
    4. M. J. Holness,G.K.Greenwood, N. D. Smith, andM.C. Sugden,“Peroxisome proliferator-activated receptor-αand glucocorticoids interactively regulate insulin secretion during pregnancy,”Diabetes, 2006,vol. 55 : 3501–3508.
    5. Sher T, Yi HF, McBride OW, Gonzalez FJ. cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry; 1993,32:5598-604.
    6. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997;272:18779-18789.
    7. T. Fournier, V. Tsatsaris, K. Handschuh, et al. PPARs and the Placenta. Placenta. 2007, 28: 65-76.
    8. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999;20:649-88.
    9. Laudet V, Hanni C, Coll J, Catzeflis F, Stehelin D. Evolution of the nuclear receptor gene superfamily. EMBO J 1992;11:1003-13.
    10. Chinetti-Gbaguidi G, Fruchart JC, Staels B. Pleiotropic effects of fibrates. Curr Atheroscler Rep 2005;7:396-401.
    11. Green S, Chambon P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 1988;4:309-314.
    12. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992; 358:771-774.
    13. Gray JP, Davis 2nd JW, Gopinathan LG, Leas TL, Nugent CA, Vanden Heuvel JP. The ribosomal protein rpL11 associates with and inhibits the transcriptional activity of peroxisome proliferator-activated receptor-{alpha}. Toxicol Sci; 2005.
    14. Gray JP, Burns KA, Leas TL, Perdew GH, Vanden Heuvel JP. Regulation of peroxisome proliferator-activated receptor alpha by protein kinase C. Biochemistry 2005;44:10313-21.
    15. FritzWieser, LeslieWaite, Christophe Depoix, et al. PPAR Action in Human Placental Development and Pregnancy and Its Complications. PPAR Research, volume 2008, Article ID 527048, 14 pages.
    16. K. Nadra, S. I. Anghel, E. Joye, et al.,“Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptorβ/δ,”olecular and Cellular Biology, 2006, vol. 26, no. 8, pp. 3266–3281.
    17. E. Lord, B. D. Murphy, J. A. Desmarais, S. Ledoux, D. Beaudry, and M.-F. Palin,“Modulation of peroxisome proliferator-activated receptorδandγtranscripts in swine endometrial tissue during early gestation,”Reproduction, 2006, vol. 131, no. 5, pp. 929–942.
    18. J. Berger and D. E. Moller,“The mechanisms of action of PPARs,”Annual Review of Medicine, 2002, vol. 53, pp. 409–435.
    19. Y. Barak, M. C. Nelson, E. S. Ong, et al.,“PPARγis required for placental, cardiac, and adipose tissue development,”Molecular Cell, 1999, vol. 4, no. 4, pp. 585–595.
    20. X. Zhang and H. A. Young,“PPAR and immune system—what do we know?”International Immunopharmacology, 2002, vol. 2, no. 8, pp. 1029–1044.
    21. S. Kersten, B. Desvergne, and W. Wahli,“Roles of PPARs in health and disease,”Nature, 2000, vol. 405, no. 6785, pp. 421–424.
    22. B. Delage, C. Bairras, B. Buaud, V. Pallet, and P. Cassand,“A high-fat diet generates alterations in nuclear receptor expression: prevention by vitamin A and links with cyclooxygenase- 2 andβ-catenin,”International Journal of Cancer, 2005, vol. 116, no. 6, pp. 839–846.
    23. Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 1997;272:3406-3410.
    24. Huang TH, Teoh AW, Lin B, Lin DS, Roufogalis B. The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol Res. 2009; 60:195-206.
    25. G. Krey, A. Mahfoudi, and W. Wahli,“Functional interactions of peroxisome proliferator-activated receptor, retinoid-X receptor, and Sp1 in the transcriptional regulation of the acyl- coenzyme-A oxidase promoter,”Molecular Endocrinology, 1995, vol. 9, no. 2, pp. 219–231.
    26. Mukherjee R, Jow L, Croston GE, Paterniti Jr JR. Identification, characterization, and tissue distribution of human peroxisome proliferator-activated receptor (PPAR) isoforms PPARgamma2 versus PPARgamma1 and activation with retinoid X receptor agonists and antagonists. J Biol Chem 1997;272:8071-8076.
    27. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 1998;395:137-143.
    28. Zhu Y, Kan L, Qi C, Kanwar YS, Yeldandi AV, Rao MS, et al. Isolation and characterization of peroxisome proliferator-activated receptor (PPAR) interacting protein (PRIP) as a coactivator for PPAR. J Biol Chem 2000;275:13510-13516.
    29. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O’Malley B, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science 1999;286:1368-71.
    30. Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM, et al. Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 2003;302:453-7.
    31. Genolet R, Wahli W, Michalik L. PPARs as drug targets to modulate inflammatory responses? Curr Drug Targets Inflamm Allergy 2004; 3:361-375.
    32. Nadra K, Anghel SI, Joye E, Tan NS, Basu-Modak S, Trono D, et al. Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta. Mol Cell Biol 2006;26:3266-3281.
    33. Delerive P, De Bosscher K, Vanden Berghe W, Fruchart JC, Haegeman G, Staels B. DNA binding-independent induction of Ikappa-Balpha gene transcription by PPARalpha. Mol Endocrinol 2002; 16:1029-1039.
    34. Gervois P, Torra IP, Chinetti G, Grotzinger T, Dubois G, Fruchart JC, et al. A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity. Mol Endocrinol 1999;13:1535-1549.
    35. Baes M, Castelein H, Desmet L, Declercq PE. Antagonism of COUPTF and PPAR alpha/RXR alpha on the activation of the malic enzyme gene promoter: modulation by 9-cis RA. Biochem Biophys Res Commun 1995;215:338-345.
    36. IJpenberg A, Tan NS, Gelman L, Kersten S, Seydoux J, Xu J, et al. In vivo activation of PPAR target genes by RXR homodimers. EMBO J 2004;23:2083-2091.
    37. Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 1996;274:2100-2103.
    38. Camp HS, Tafuri SR. Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 1997;272:10811-10816.
    39. Adams M, Montague CT, Prins JB, Holder JC, Smith SA, Sanders L, et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest 1997;100:3149-3153.
    40. Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 1999;4:585-595.
    41. T. Fournier, V. Tsatsaris, K. Handschuh, and D. Evain-Brion,“PPARs and the placenta,”Placenta, 2007, vol. 28, no. 2-3, pp. 65–76.
    42. Wang Q, Fujii H, Knipp GT. Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta 2002;23: 661-671.
    43. Asami-Miyagishi R, Iseki S, Usui M, Uchida K, Kubo H, Morita I. Expression and function of PPARgamma in rat placental development. Biochem Biophys Res Commun 2004;315:497-501.
    44. Waite LL, Person EC, Zhou Y, Lim KH, Scanlan TS, Taylor RN. Placental peroxisome proliferator-activated receptor-gamma is upregulated by pregnancy serum. J Clin Endocrinol Metab 2000;85: 3808-3814.
    45. J.-C. Huang, W.-S. A. Wun, J. S. Goldsby, I. C. Wun, D. Noorhasan, and K. K. Wu,“Stimulationof embryo hatching and implantation by prostacyclin and peroxisome proliferator-activated receptorδactivation: implication in IVF,”Human Reproduction, 2006, vol. 22, no. 3, pp. 807–814.
    46. R. Asami-Miyagishi, S. Iseki, M.Usui, K.Uchida,H. Kubo, and I. Morita,“Expression and function of PPARγin rat placental development,”Biochemical and Biophysical Research Communications, 2004, vol. 315, no. 2, pp. 497–501.
    47. Y. Wan, A. Saghatelian, L.-W. Chong, C.-L. Zhang, B. F. Cravatt, and R. M. Evans,“Maternal PPARγprotects nursing neonates by suppressing the production of inflammatory milk,”Genes & Development, 2007, vol. 21, no. 15, pp. 1895–1908.
    48. Hewitt DP, Mark PJ, Waddell BJ. Placental expression of peroxisome proliferator-activated receptors in rat pregnancy and the effect of increased glucocorticoid exposure. Biol Reprod 2006;74:23-28.
    49. Sapin V, Dolle P, Hindelang C, Kastner P, Chambon P. Defects of the chorioallantoic placenta in mouse RXRalpha null fetuses. Dev Biol 1997;191:29-41.
    50. Zhu Y, Qi C, Jia Y, Nye JS, Rao MS, Reddy JK. Deletion of PBP/PPARBP, the gene for nuclear receptor coactivator peroxisome proliferator-activated receptor-binding protein, results in embryonic lethality. J Biol Chem 2000;275:14779-14782.
    51. Ma GT, Roth ME, Groskopf JC, Tsai FY, Orkin SH, Grosveld F, et al. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 1997;124:907-914.
    52. Antonson P, Schuster GU, Wang L, Rozell B, Holter E, Flodby P, et al. Inactivation of the nuclear receptor coactivator RAP250 in mice results in placental vascular dysfunction. Mol Cell Biol 2003;23: 1260-1268.
    53. Barak Y, Liao D, He W, Ong ES, Nelson MC, Olefsky JM, et al. Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci U S A 2002; 99:303-308.
    54. Nadra K, Anghel SI, Joye E, Tan NS, Basu-Modak S, Trono D, et al. Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta. Mol Cell Biol 2006;26:3266-3281.
    55. D. K. Kr¨amer, L. Al-Khalili, B. Guigas, Y. Leng, P. M. Garcia-Roves, and A. Krook,“Role of AMP kinase and PPARδin the regulation of lipid and glucose metabolism in human skeletal muscle,”Journal of Biological Chemistry, 2007, vol. 282, no. 27, pp. 19313–19320.
    56. J. Banerjee and C. M. Komar,“Effects of luteinizing hormone on peroxisome proliferator-activated receptorγin the rat ovary before and after the gonadotropin surge,”Reproduction, 2006, vol. 131, no. 1, pp. 93–101.
    57. Q. Wang, H. Fujii, and G. T. Knipp,“Expression of PPAR and RXR isoforms in the developing rat and human term placentas,”Placenta, 2002, vol. 23, no. 8-9, pp. 661–671.
    58. A. Tarrade, R. Lai Kuen, A. Malassin′e, et al.,“Characterization of human villous and extravillous trophoblasts isolated from first trimester placenta,”Laboratory Investigation, 2001, vol. 81, no. 9,pp. 1199–1211.
    59. A. Yessoufou, A. Hichami, P. Besnard, K. Moutairou, and N. A. Khan,“Peroxisome proliferator-activated receptorαdeficiency increases the risk of maternal abortion and neonatal mortality in murine pregnancy with or without diabetes mellitus:modulation of T cell differentiation,”Endocrinology, 2006, vol. 147, no. 9, pp. 4410–4418.
    60. S.J. Holdsworth-Carson, M. Permezel, C. Riley, et al. Peroxisome Proliferator-activated Receptors and Retinoid X Receptor-alpha in Term Human Gestational Tissues: Tissue Specific and Labour-associated Changes. Placenta, 2008.11.013.
    61. Seckl JR. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol 2001; 185:61-71.
    62. Schaiff WT, Carlson MG, Smith SD, Levy R, Nelson DM, Sadovsky Y. Peroxisome proliferator-activated receptor-gamma modulates differentiation of human trophoblast in a ligand-specific manner. J Clin Endocrinol Metab 2000;85:3874-3881.
    63. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241-252.
    64. Tarrade A, Schoonjans K, Guibourdenche J, Bidart JM, Vidaud M, Auwerx J, et al. PPAR gamma/RXR alpha heterodimers are involved in human CG beta synthesis and human trophoblast differentiation. Endocrinology 2001;142: 4504-4514.
    65. Cronier L, Bastide B, Herve JC, Deleze J, Malassine A. Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin. Endocrinology 1994;135:402-408.
    66. Schaiff WT, Bildirici I, Cheong M, Chern PL, Nelson DM, Sadovsky Y. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor signaling regulate fatty acid uptake by primary human placental trophoblasts. J Clin Endocrinol Metab 2005;90: 4267-4275.
    67. L. L. H. Peeters, J.-L. Vigne,M. K. Tee, D. Zhao, L.Waite, and R. N. Taylor,“PPARγrepresses VEGF expression in human endometrial cells: implications for uterine angiogenesis,”Angiogenesis, 2006, vol. 8, no. 4, pp. 373–379.
    68. Hewitt DP, Mark PJ, Waddell BJ. Placental expression of peroxisome proliferator-activated receptors in rat pregnancy and the effect of increased glucocorticoid exposure. Biol Reprod 2006;74: 23-28.
    69. M. Lappas, M. Permezel, H. M. Georgiou, and G. E. Rice,“Nuclear factorκB regulation of proinflammatory cytokines in human gestational tissues in vitro,”Biology of Reproduction, 2002, vol. 67, no. 2, pp. 668–673.
    70. M. Lappas, M. Permezel, and G. E. Rice,“15-deoxy-Δ12,14-rostaglandin J2 and troglitazone regulation of the release of phospholipid metabolites, inflammatory cytokines and proteases from guman gestational tissues,”Placenta, 2006, vol. 27, no. 11-12, pp. 1060–1072.
    71. L. R. Dunn-Albanese, W. E. Ackerman IV, Y. Xie, J. D. Iams, and D. A. Kniss,“Reciprocalexpression of peroxisome proliferator-activated receptor-γand cyclooxygenase-2 in human termparturition,”American Journal of Obstetrics & Gynecology, 2004, vol. 190,: 809–816,.
    72. Y. Jia,C.Qi, Z. Zhang, Y. T. Zhu, S.M. Rao, andY.-J. Zhu,“Peroxisome proliferator-activated receptor-binding protein null mutation results in defective mammary gland development,”Journal of Biological Chemistry, 2005, vol. 280:10766– 10773,.
    73. Rodie VA, Young A, Jordan F, Sattar N, Greer IA, Freeman DJ. Human placental peroxisome proliferator-activated receptor delta and gamma expression in healthy pregnancy and in preeclampsia and intrauterine growth restriction. J Soc Gynecol Invest 2005;12:320-9.
    74. J. R. Higgins and M. de Swiet,“Blood-pressure measurement and classification in pregnancy,”The Lancet, 2001, vol. 357, no. 9250, pp. 131–135.
    75. Johnson RD, Polakoski KL, Huang X, Sadovsky Y, Nelson DM. The release of 15-hydroxyeicosatetraenoic acid by human placental trophoblast is increased in preeclampsia. AmJ Obstet Gynecol 1998;178: 54-58.
    76. C. A. Hubel,“Oxidative stress in the pathogenesis of preeclampsia,”Proceedings of the Society for Experimental Biology and Medicine, 1999, vol. 222, no. 3, pp. 222–235.
    77. L.Waite, R. E. Louie, and R. N. Taylor,“Circulating activators of peroxisome proliferator-activated receptors are reduced in preeclamptic pregnancy,”Journal of Clinical Endocrinology & Metabolism, 2005, vol. 90, no. 2, pp. 620–626.
    78. A. Jawerbaum, E. Capobianco, C. Pustovrh, et al.,“Influence of peroxisome proliferator-activated receptorγactivation by its endogenous ligand 15-deoxyΔ12,14 prostaglandin J2 on nitric oxide production in term placental tissues from diabetic women,”Molecular Human Reproduction, 2004, vol. 10, no. 9, pp. 671–676.
    79. R. N. Taylor, C. J. M. de Groot, Y. K. Cho, and K.-H. Lim,“Circulating factors as markers and mediators of endothelial cell dysfunction in preeclampsia,”Seminars in Reproductive Endocrinology, 1998, vol. 16, no. 1, pp. 17–31.
    80. M. J. Reginato, S. L. Krakow, S. T. Bailey, and M. A. Lazar,“Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptorγ,”Journal of Biological Chemistry, 1998, vol. 273, no. 4, pp. 1855–1858.
    81. P. L. Ogburn Jr., S. B. Johnson, P. P. Williams, and R. T. Holman,“Levels of free fatty acids and arachidonic acid in pregnancy and labor,”Journal of Laboratory and ClinicalMedicine, 1980, vol. 95, no. 6, pp. 943–949.
    82. P. L. Ogburn Jr., P. P. Williams, S. B. Johnson, and R. T. Holman,“Serum arachidonic acid levels in normal and preeclamptic pregnancies,”American Journal of Obstetrics & Gynecology, 1984, vol. 148, no. 1, pp. 5–9.
    83. E. T. McKinney, R. Shouri, R. S. Hunt, R. A. Ahokas, and B. M. Sibai,“Plasma, urinary, and salivary 8-epi-prostaglandin F2αlevels in normotensive and preeclamptic pregnancies,”American Journal of Obstetrics & Gynecology, 2000, vol. 183, no. 4, pp. 874–877.
    84. D. Hornung, I. P. Ryan, V. A. Chao, J.-L. Vigne, E. D. Schriock, and R. N. Taylor,“Immunolocalization and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells,”Journal of Clinical Endocrinology & Metabolism, 1997, vol. 82, no. 5, pp. 1621–1628.
    85. L. Jovanovic and D. J. Pettitt,“Gestational diabetes mellitus,”Journal of the American Medical Association, 2001, vol. 286, no. 20, pp. 2516–2518.
    86. C. B. Rudra, T. K. Sorensen, W. M. Leisenring, E. Dashow, andM. A.Williams,“Weight characteristics and height in relation to risk of gestational diabetes mellitus,”American Journal of Epidemiology, 2007, vol. 165, no. 3, pp. 302–308.
    87. C. J. P. Jones and H. Fox,“Placental changes in gestational diabetes. An ultrastructural study,”Obstetrics & Gynecology, vol. 48, no. 3, pp. 274–280, 1976.
    88. S. Blackburn and D. Loper, Maternal Fetal and Neonatal Physiology: A Clinical Perspective, Harcourt Brace Jovanovic, Philadelphia, Pa, USA, 1992.
    89. W. W. Hay Jr.,“Placental transport of nutrients to the fetus,”Hormone Research, 1994, vol. 42, no. 4-5, pp. 215–222.
    90. S. Fukuen, M. Iwaki, A. Yasui, M. Makishima, M. Matsuda, and I. Shimomura,“Sulfonylurea agents exhibit peroxisome proliferator-activated receptorγagonistic activity,”Journal of Biological Chemistry, 2005, vol. 280, no. 25, pp. 23653–23659.
    91. A.Meirhaeghe, C. A. G. Boreham, L. J.Murray, et al.,“A possible role for the PPARG Pro12Ala polymorphism in preterm birth,”Diabetes, 2007, vol. 56, no. 2, pp. 494–498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700