细胞分裂素与生长素之间的互作决定拟南芥离体再生苗的干细胞特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物离体器官发生是快速无性繁殖植物的重要途径,是植物基因转化的基础,也是研究植物发育问题的主要实验系统之一。目前人们已经可以成功的诱导拟南芥离体苗的再生,在这一过程中干细胞被诱导形成。然而迄今为止,有关离体植株再生过程中是何种因素决定了干细胞的性质,仍然知之甚少。建立一个高频的拟南芥离体再生苗系统,进而深入研究其中的激素调节机制将为解释干细胞特征决定的机理提供重要信息。
     利用拟南芥雌蕊为外植体,在含有高浓度生长素的培养基上诱导愈伤组织的形成。然后将愈伤组织转移到含有高浓度细胞分裂素的培养基上诱导离体苗的产生。为了研究离体苗发生过程中干细胞的形成,对干细胞决定基因WUSCHEL(WUS)和CLAVATA3(CLV3)在离体苗发生过程中的表达模式进行了分析。研究结果显示,在未经诱导的成熟愈伤组织中均未检测到WUS和CLV3的表达信号。当转入诱导离体苗形成的分化培养基上,首先检测到WUS基因在愈伤组织内部的一群细胞中表达,我们称之为组织中心,随后在组织中心上方1~3层细胞中检测到干细胞特征决定基因CLV3的表达。在茎顶端分生组织形成过程中,两基因的表达均逐渐集中在茎顶端分生组织中。诱导反义WUS基因表达,干细胞和再生苗的形成受到抑制。表明组织中心的细胞先于干细胞形成,WUS在此过程中起关键作用,并决定了茎顶端分生组织的形成。
     在此基础上,研究了细胞分裂素和生长素在离体苗再生过程中的分布规律。利用对细胞分裂素起响应的TCS和表征细胞分裂素分布的A类反应调节因子ARR15与GFP的表达载体,证明了在离体苗再生过程中,在未经诱导的成熟愈伤组织中细胞分裂素在愈伤组织周围的数层细胞中均匀分布。然而在苗诱导分化培养过程中,细胞分裂素向着将要产生茎顶端分生组织的区域集中,并且细胞分裂素响应信号较强的区域正是WUS诱导表达的位置。利用对生长素起响应的DR5rev::GFP表达载体研究了生长素的分布。结果显示在未经诱导的成熟愈伤组织中,其分布模式与细胞分裂素相同,即在愈伤组织周围数层细胞中呈现均匀的分布。在分化培养基上,生长素在愈伤组织内亦逐渐呈现区域性分布,最终WUS基因表达区域周围生长素响应信号较强。生长素的分布模式与PIN蛋白的极性定位有关。在未经诱导的愈伤组织中,检测到PIN蛋白的微弱信号,但未呈现极性定位。然而在诱导分化后短时间内出现了PIN蛋白的极性定位信号,并且出现极性分布的区域增多。
     进而,研究了细胞分裂素和生长素对干细胞诱导形成的作用。当利用细胞分裂素合成抑制剂降低愈伤组织中细胞分裂素的水平,以及在细胞分裂素信号转导组分的多突变体中,生长素的分布模式均发生了改变。生长素分布模式的改变导致WUS基因不再被诱导表达,苗的诱导受到抑制。说明细胞分裂素的水平及其信号转导控制生长素的分布模式和干细胞的形成。如果使用细胞分裂素合成抑制剂,PIN1的极性定位信号消失。因此细胞分裂素对生长素分布的影响可能是通过控制PIN1的极性定位来实现的。如果在诱导过程中添加生长素极性运输抑制剂,生长素和细胞分裂素的分布不再出现区域化,维持了一种在愈伤组织周围数层细胞中近乎均匀的分布模式,并且检测不到WUS信号。这一结果在PIN1的诱导型反义转基因植株诱导苗再生过程中亦得到了证实。说明生长素的极性运输通过控制生长素的分布进而影响细胞分裂素的分布,并决定干细胞形成。
     综上所述提出如下实验模型:当将成熟的愈伤组织转入含有高水平细胞分裂素的苗诱导培养基后,生长素和细胞分裂素首先通过调节PIN蛋白极性定位启动生长素的极性运输。随后生长素的极性运输决定了生长素由均匀分布到区域化分布,同时影响了细胞分裂素的区域性分布。最终在细胞分裂素响应信号较强和生长素响应信号较弱的区域诱导了干细胞组织中心特征决定基因WUS的表达,进而干细胞特征决定基因CLV3被诱导表达,随后茎顶端分生组织建成。在这一过程中细胞分裂素的分布及其对WUS的诱导依赖于生长素的极性运输,而生长素的分布又受到细胞分裂素的合成及其信号转导的影响。因此细胞分裂素和生长素之间的相互作用诱导了组织中心细胞和干细胞的形成,启动了茎顶端特征基因的表达,最终决定茎顶端分生组织的出现。
Plant organ regeneration plays an important role in plant reproduction and genetic engineering, and also provides an experimental system to study molecular mechanism of plant development. Shoot regeneration is an important way for plant propagation in vitro. So far, shoot regeneration of Arabidopsis was achieved successfully. Stem cells are critical for the formation of shoot apical meristem and must be induced within the callus during shoot induction. Little is understood however about the regulation of this process and how the stem-cell fate becomes determined during this process. In our current study, we showed that the fate of stem cells is determined by cytokinin and auxin within the callus after induction. Using stage-10 pistils as explants, calli were induced on the callus induced medium.
     Shoots were subsequently induced after each callus was transferred onto the shoot induced medium. Following induction treatment, WUSCHEL (WUS) was firstly expressed in a group of cells within callus, named it the organizing center and then, the expression of CLAVATA3(CLV3) was detected in the cells of layer 1-3 above the organization center. Finally, the transcripts of CLV3 and WUS were localized in the tissues that form the shoot meristem. By inhibition of WUS expression, the regeneration of shoot was significantly reduced. Thus, these results indicate that WUS is induced within the callus and its expression is essential for the in vitro shoot regeneration.
     We next visualized the behavior and interaction of cytokinin and auxin during stem-cell formation. In the non-induced callus, either cytokinin or auxin gradients were established in its surrounding edge region. However, the regional distribution of both hormones occurred following induction after which WUS was found to be induced in the region containing high levels of cytokinin and low levels of auxin. Furthermore, the polarized PIN-FORMED (PIN) proteins, which are auxin-efflux carriers, were also observed in the regions close to the edge of the callus after induction. Upon the inhibition of cytokinin biosynthesis, the auxin levels decreased and a normal distribution pattern for WUS induction was not observed. Disruption of cytokinin signaling also resulted in an abnormal distribution pattern for auxin. Following inhibition of auxin transport or inhibition of PIN1 expression, the regional distribution of auxin gradients was not detected within the callus and notably, the regional distribution of cytokinin gradients was also not observed. In addition, the pattern of cell proliferation supports the notion that cytokinin and auxin interact.
     Taken together, our current results suggest that a positive interaction between cytokinin and auxin controls the stem-cell fate, and we propose a model for stem-cell specification control during in vitro shoot induction in Arabidopsis by cytokinin and auxin.
引文
谷瑞升,蒋湘宁,郭仲琛(1999).植物离体培养中器官发生调控机制的研究进展.植物学通报16: 238-244.
    陆文梁(2005).植物器官的克隆——实践、理论和在人与动物器官克隆中应用的可能性.农业生物技术学报13: 1-9.
    徐云远,种康(2005).植物干细胞决定基因WUS的研究进展.植物生理与分子生物学学报31: 461-468.
    郑丙莲,张素芝,孙加强,邓岩,左建儒(2003).细胞分裂素信号转导:已知的简单性与未知的复杂性.科学通报48: 885-891.
    Abas, L., Benjamins, R., Malenica, N., Paciorek, T., Wi?niewska, J., Moulinier-Anzola, J.C., Sieberer, T., Friml, J., and Luschnig, C. (2006). Intracellulartrafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8: 249-256.
    Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, YS., Amasino, R., and Scheres B. (2004). The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119: 109-120.
    Akiyoshi, D.E., Klee, H., Amasino, R.M., Nester, E.W. and Gordon PM. (1984). T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81: 5994-5998.
    ?stot, C., Dolezal, K., Nordstr?m, A., Wang, Q., Kunkel, T.,Moritz, T., Chua, N-H. and Sandberg, G. (2000). An alternative cytokinin biosynthesis pathway. Proc Natl Acad Sci USA 97: 14778-14783.
    Avivi, Y., Morad, V., Ben-Meir, H., Zhao, J., Kashkush, K., Tzfira, T., Citovsky, V. and Grafi, G. (2004). Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev. Dyn. 230: 12-22.
    Bailly, A., Sovero, V., Vincezetti, V., Santelia, D., Bartnik, D., Koenig, B.W.,Mancuso, S., Martinoia, E., and Geisler, M. (2008). Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins.J. Biol. Chem. 283: 21817-21826.
    Bainbridge, K., Guyomarc’h, S., Bayer, E., Swarup, R., Bennett, M., Mandel,T., and Kuhlemeier, C. (2008). Auxin influx carriers stabilize phyllotactic patterning. Genes Dev. 22: 810-823.
    Benjamins, R., and Scheres, B. (2008). Auxin: the looping star in plant development. Annu. Rev. Plant Biol. 59: 443-465.
    Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., and Friml, J. (2003). Local, efflux-dependent auxin gradients as a common model for plant organ formation. Cell 115: 591-602.
    Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A.,Walker, A.R., Schulz, B., and Feldmann, K.A. (1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273: 948-950.
    Binding, H. (1986). Regeneration from Protoplasts. In Cell Culture and Somatic Cell Genetics of Plants 2, I.K. Vasil, ed. (Amsterdam: Elsevier Science & Technology Books), pp. 259–269.
    Blakeslee, J.J., Bandyopadhyay, A., Lee, OR., Mravec, J., Titapiwatanakun, B., Sauer, M., Makam, S.N., Cheng, Y., Bouchard, R., Adamec, J., Geisler, M., Nagashima, A., Sakai, T., Martinoia, E., Friml, J., Peer, WA., and Murphy, A.S. (2007). Interactions among PIN-FORMED and P-glycoprotein auxin transporters inArabidopsis. Plant Cell 19: 131–147.
    Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., and Scheres, B. (2005). The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433: 39-44.
    Brandstatter, I., and Kieber, J.J. (1998). Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell 10:1009-1020.
    Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R. (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617-619.
    Brand, U., Grunewald, M., Hobe, M., and Simon, R. (2002). Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant physiol. 129: 565-575.
    Braun, N., Wyrzykowska, J., Muller, P., David, K., Couch, D., Perrot-Reichenmann, C., and Fleming, A.J. (2008). Conditional repression of AUXIN BINDING PROTEIN1
    reveals that it coordinates cell division and cell expansion during postembryonic shoot development in Arabidopsis and tobacco. Plant Cell. 20: 2746-2762.
    Brawley, C., and Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 304: 331–1334.
    Brzobohaty, B., Moore, I., Kristoffersen, P., Bako, L., Campos, N., Schell, J., Palme, K. (1993). Release of active cytokinin by a-glucosidase localized to the maize root meristem. Science 262: 1051-1054.
    Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martienssen, R.A. (2000a). Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408: 967-971.
    Cary, A.J., Che, P., and Howell, S.H. (2002). Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J. 32: 867–877.
    Casson, S. A., Chilley, P. M., and Topping, J. F. (2002). The POLARIS gene of Arabidopsis encodes a predicted peptide required for correct root growth and leaf vascular patterning. Plant Cell 14:1705-1721.
    Che, P., Lall, S., Nettleton, D., and Howell, S.H. (2006). Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant physiol. 141: 620-637.
    Che, P., Lall, S. and Howell, S.H. (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226: 1183-1194.
    Chen, J.G., Ullah, H., Young, J.C., Sussman, M.R., and Jones, A.M. (2001). ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis.Genes Dev. 15: 902-911.
    Cheng, Y., Dai, X., and Zhao, Y. (2006). Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20: 1790-1799.
    Cheng, Y., Dai, X., and Zhao, Y. (2007). Auxin synthesized by the YUCCA flavinmonooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19: 2430-2439.
    Cho, M., Lee, S.H., and Cho, H.T. (2007). P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells.Plant Cell 19: 3930-3943.
    Christianson, M.L., and Warnick, D.A. (1983). Competence and Determination in the Process of Invitro Shoot Organogenesis. Dev. Biol. 95: 288-293.
    Clark, S.E., Williams, R.W., and Meyerowitz, E.M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89: 575-585.
    Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
    Corbesier, L., Prinsen, E., Jacqmard, A., Lejeune, P., Van Onckelen, H., Périlleux, C., and Bernier, G. (2003). Cytokinin levels in leaves, leaf exudates and shoot apical meristem of Arabidopsis thalinan during floral transition. Journal of Experimental Botany 54: 2511-2517.
    D’Agostino, I.B., Deruere, J., and Kieber, J.J. (2000). Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124: 1706-1717
    D’Agostino, I.B., and Kieber, J.J. (1999). Phosphorelay signal transduction:the emerging family of plant response regulators.Trends Biochem Sci 24: 452-456.
    Daimon, Y., Takabe, K., and Tasaka, M. (2003). The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol.44: 113–121. Davies, P.J. (2004). Plant Hormones: Biosynthesis, Signal Transduction, Action! (London: Kluwer Academic Publishers).
    del Pozo, J.C., Lopez-Matas, M.A., Ramirez-Parra, E. and Gutierrez, C. (2005). Hormonal control of the cell cycle. Physiol. Plant. 123: 173-183.
    Dixon, S.C., Martin. R.C., Mok. M.C., Shaw. G. and Mok, D.W.S. (1989). Zeatin glycosylation enzymes in Phaseolus: isolation of O-glucosyltransferase from P. lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol 90: 1316-1321.
    Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005a). The F-box protein TIR1 is an auxin receptor. Nature 435: 441-445.
    Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jürgens, G., and Estelle, M. (2005b). Plant development is regulated by a family of auxin receptor F box proteins. Dev. Cell 9: 109-119.
    Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D.G., Mravec, J., Stierhof, Y.D., and Friml, J. (2007). Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. 17: 520-527.
    Dhonukshe, P., Grigoriev, I., Fischer, R., Tominaga, M., Robinson, D.G., Hasek, J., Paciorek, T., Petrásek, J., Seifertová, D., Tejos, R., Meisel, L.A., Zazímalová, E., Gadella, T.W. J., Stierhof, Y.D., Ueda, T., Oiwa, K., Akhmanova, A., Brock, R., Spang, A., and Friml J. (2008a). Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics indiverse eukaryotes. Proc. Natl. Acad. Sci. USA 105: 4489-4494.
    Dhonukshe, P., Tanaka, H., Goh, T., Ebine, K., M?h?nen, AP., Prasad, K., Blilou, I., Geldner, N., Xu, J., Uemura, T., Chory, J., Ueda, T., Nakano, A., Scheres, B., and Friml, J. (2008b). Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions. Nature 456: 962-966.
    Dreher, K.A., Brown, J., Saw, R.E., and Callis, J. (2006). The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness.Plant Cell 18: 699-714.
    Dubrovsky, J.G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M., Friml,J., Shishkova, S., Celenza, J., and Benková, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl. Acad.Sci. USA 105: 8790-8794.
    Duval, M., Hsieh, T.F., Kim, S.Y. and Thomas, T.L.,(2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50: 237-248.
    Entchev, E.V., and González-Gaitán, M.A. (2002). Morphogen gradient formation and vesicular trafficking. Traffic 3: 98-109.
    Faiss, M., Zalubilova, J., Strnad, M. and Schmulling, T. (1997). Conditional transgenicexpression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J 12: 401-415.
    Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911-1914.
    Fletcher, J.C. (2002). Shoot and floral meristem maintenance in arabidopsis. Annual review of plant biology 53, 45-66.
    Fiers, M., Hause, G., Boutilier, K., Casamitjana-Martinez, E., Weijers, D., Offringa, R., van der Geest, L., van Lookeren Campagne, M., and Liu, CM. (2004). Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem. Gene 327: 37-49.
    Fiers, M., Golemiec, E., Xu, J., van der Geest, L., Heidstra, R., Stiekema, W., and Liu CM. (2005) . The 14-amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway. Plant Cell 17: 2542-2553.
    Friml, J. (2003). Auxin transport–shaping the plant. Curr. Opin. Plant Biol. 6: 7-12.
    Friml, J., Benková, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jürgens, G., and Palme, K. (2002a). AtPIN4 mediates sink driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661-673.
    Friml, J., Wi?niewska, J., Benková, E., Mendgen, K., and Palme, K. (2002b). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.Nature 415: 806-809.
    Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa,R., and Jürgens, G. (2003). Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 426: 147-153.
    Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B., Ljung, K., Sandberg, G., Hooykaas, P.J., Palme, K., and Offringa, R. (2004). A PINOIDdependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306: 862-865.
    Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R., and Scheres,B. (2007). PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449: 1053–1057.
    Gallois, J.L., Nora, F.R., Mizukami, Y., and Sablowski, R. (2004). WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev. 18: 375-380.
    Gao, X., Nagawa, S., Wang, G., and Yang, Z. (2008). Cell Polarity Signaling: Focus on Polar Auxin Transport. Mol. Plant 1: 899-909.
    Gautheret, R.J. (1985). History of plant tissue and cell culture: A personal account. In Cell Culture and Somatic Cell Genetics of Plants: Cell Growth, Nutrition, Cytodifferentiation and Cryopreservation, I.K. Vasil, ed. (Amsterdam: Elsevier Science & Technology Books).
    Gautheret, R.J. (2003). Plant tissue culture: the history. In Plant Tissue Culture:100 Years since Gottlieb Haberlandt (New York: SpringWien), pp. 205–214.
    G?weiler, L., Guan, C., Müller, A., Wisman, E., Mendgen, K., Yephremov, A.,and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282: 2226-2230.
    Geisler, M., Blakeslee, J.J., Bouchard, R., Lee, O.R., Vincenzetti, V., Bandyopadhyay, A., Titapiwatanakun, B., Peer, W.A., Bailly, A., Richards, E.L., Ejendal, K.F., Smith, A.P., Baroux, C., Grossniklaus, U., Müller, A., Hrycyna, C.A., Dudler, R., Murphy, A.S., and Martinoia, E. (2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 44: 179-194.
    Geldner, N., Friml, J., Stierhof, Y.-D., Jürgens, G., and Palme, K. (2001). Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413: 425-428.
    Gillissen, B., Burkle, L., Andre, B., Kuhn, C., Rentsch, D., Brandl, B., and Frommer, W.B. (2000). A new family of highaffinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12: 291-300.
    Gordon, S.P., Heisler, M.G., Reddy, G.V., Ohno, C., Das, P., and Meyerowitz, E.M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134: 3539-3548.
    Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001). Auxin regulatesSCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271-276.
    Grieneisen, V.A., Xu, J., Maree, A.F., Hogeweg, P., and Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449: 1008–1013.
    Guilfoyle, T.J. and Hagen, G. (2007). Auxin response factors. Curr. Opin. Plant Biol. 10: 453-460.
    Guzzo, F., Baldan, B., Mariani, P., Lo Schiavo, F., and Terzi,M. (1994). Studies on the origin of totipotent cells in explants of Daucus carota L. J. Exp. Bot. 45: 1427–1432.
    Halperin, W. (1986). Attainment and retention of morphogenetic capacity in vitro.In Cell Culture and Somatic Cell Genetics of Plants, Vol. 3. Plant Regeneration and Genetic Variability (Orlando, FL: Academic Press, Inc.), pp. 3–47.
    Hardtke, C.S., Ckurshumova, W., Vidaurre, D.P., Singh, S.A., Stamatiou, G., Tiwari, S.B., Hagen, G., Guilfoyle, T.J. and Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131: 1089-1100.
    Hawker, N.P., and Bowman, J.L. (2004). Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol. 135:2261-2270.
    Heidstra, R., Welch, D., and Scheres, B. (2004). Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes Dev. 18: 1964-1969.
    Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., and Meyerowitz, E.M. (2005). Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15: 1899-1911.
    Hertel, R., Thompson, K.S. and Russo, V.E.A. (1972 ). In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107: 325-340.
    Hibara, K., Takada, S., and Tasaka, M. (2003). CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J. 36: 687–696.
    Hicks, G.S. (1994). Shoot Induction and Organogenesis in-Vitro- a Developmental Perspective. In Vitro Cell. Dev. Biol., Plant 30: 10-15.
    Houba-Herin, N., Pethe, C., d’Alayer, J., and Laloue, M. (1999). Cytokinin oxidase from Zea mays: purification, cDNA cloning and expression in moss protoplasts. Plant J 17: 615-626
    Hwang, I., and Sheen, J. (2001). Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389
    Imamura, A., Hanaki, N., Nakamura, A., Suzuki, T., Taniguchi, M., Kiba, T., Ueguchi, C., Sugiyama, T., and Mizuno, T. (1999). Compilation and characterization of Arabidopsis thaliana response regulators implicated in His-Asp phosphorelay signal transduction. Plant Cell Physiol 40: 733-742.
    Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K., and Kakimoto, T. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis.Nature 409: 1060–1063.
    Jeong, S., Trotochaud, A.E., and Clark, S.E. (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11: 1925-1933.
    Jones, A.M., Im, K.H., Savka, M.A., Wu, M.J., DeWitt, N.G., Shillito, R., and Binns, A.N. (1998). Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282: 1114-1117.
    Jones, A.R., Kramer, E.M., Knox, K., Swarup, R., Bennett, M.J., Lazarus, C.M., Leyser, H.M.O., and Grierson, C.S. (2009). Auxin transport through non-hair cells sustains root-hair development. Nat. Cell Biol. 11: 78-84.
    Jones, R.J., and Schreiber, B.M.N (1997). Role and function of cytokinin oxidases in plants. Plant Growth Regul 23:122-134.
    Kakimoto, T. (1996). CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982-985.
    Kakimoto, T. (2001a). Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol 42:677-685.
    Kakimoto, T. (2001b). Biosynthesis and perception of cytokinins (abstract). In 17th International Conference on Plant Growth Substances Brno, Czech Republic, July 1-6.
    Kanyuka, K., and Couch, D., Hooley, R. (2001). A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Curr Biol 11: 535.
    Kepinski, S. and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446-451.
    Kiba, T., Taniguchi, M., Imamura, A., Ueguchi, C., Mizuno, T., and Sugiyama, T. (1999). Differential expression of genes for response regulators in response to cytokinins and nitrate in Arabidopsis thaliana. Plant Cell Physiol 40: 767-771.
    Kim, J., Harter, K., and Theologis, A. (1997). Protein-protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. USA 94: 11786-11791.
    Kleine-Vehn, J., Dhonukshe, P., Sauer, M., Brewer, P., Wi?niewka, J., Paciorek,T., Benková, E., and Friml, J. (2008). ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr. Biol. 18: 526-531.
    Kovtun, Y., Chiu, W.-L., Zeng, W., and Sheen, J. (1998). Suppression of auxin signal transduction by a MAPK cascade in higher plants. Nature 395: 716-720.
    Krikorian, A.D., and Berquam, D.L. (1969). Plant cell and tissue cultures: The role of haberlandt. Bot. Rev. 35: 59–88.
    Kwon, C.S., Chen, C., and Wagner, D. (2005). WUSCHEL is a primary target for transcriptional regulation by SPLAYED in dynamic control of stem cell fate in Arabidopsis. Genes Dev 19: 992-1003.
    Lau, S., Jürgens, G. and De Smet, I. (2008). The evolving complexity of the auxin pathway. Plant Cell 20: 1738-1746.
    Laux, T., Mayer, K.F., Berger, J., and Jurgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96.
    Leblanc, N., David, K., Grosclaude, J., Pradier, J.-M., Barbier-Brygoo, H., Labiau,S., and Perrot-Rechenmann, C. (1999). A novel immunological approach establishes that the auxin-binding protein, Nt-abp1, is an element involved in auxin signaling at the plasma membrane. J. Biol. Chem. 274: 28314-28320.
    Lee, J.S., Wang, S., Sritubtim, S., Chen, J.G., and Ellis, B.E. (2009). Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J. 57: 975-985.
    Leibfried, A., To, J.P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J., and Lohmann, J.U. (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438: 1172-1175.
    Lenhard, M., Bohne, A., Jurgens, G., and Laux, T. (2001).Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cett. 105: 805-814.
    Leyser, H.M.O., Lincoln, C.A., Timpte, C., Lammer, D., Turner, J., and Estelle, M. (1993). Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature 364: 161-164.
    Li, J., Yang, H., Peer, W.A., Richter, G., Blakeslee, J., Bandyopadhyay, A., Titapiwantakun, B., Undurraga, S., Khodakovskaya, M., Richards, E.L., Krizek, B., Murphy, A.S., Gilroy, S., and Gaxiola, R. (2005). Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310: 121-125.
    Li, Q.Z., Li, X.G., Bai, S.N., Lu, W.L., and Zhang, X.S. (2002). Isolation of HAG1and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta, 215: 533-540.
    Lohrmann, J., Buchholz, G., Keitel, C., Sweere, C., Kircher, S., Baürle, I., Kudla, J., and Harter, K. (1999). Differentiallyexpressed and nuclear-localized response regulator-like proteins from Arabidopsis thaliana with transcription factor properties. J Plant Biol 1: 495-506.
    Luschnig, C., Gaxiola, R.A., Grisafi, P., and Fink, G.R. (1998). EIR1, a rootspecific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 12: 2175-2187.
    Ma¨ho¨nen, A.P., Bonke, M., Kaupinnen, L., Riikonen, M., Benfey, P.N., and Helariutta, Y. (2000). A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14: 2938-2943
    Marchant, A., Bhalerao, R., Casimiro, I., Ekl?f, J., Casero, P.J., Bennett, M., and Sandberg, G. (2002). AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14: 589-597.
    Martin, R.C., Mok, M.C., Habben, J.E., and Mok, D.W.S. (2001). A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc Natl Acad Sci USA 98:5 922-5926
    Martin, R.C., Mok, C., and Mok, D.W.S. (1999a). A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. Plant Physiol 120: 553-557
    Martin, R.C., Mok, C., and Mok, D.W.S. (1999b). Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase of P. lunatis. Proc Natl Acad Sci USA 96:284-289
    Mason, M.G., Mathews, D.E., Argyros, D.A., Maxwell, B.B., Kieber, J.J., Alonso, J.M., Ecker, J.R., and Schaller, G.E. (2005). Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17: 3007-3018.
    Mattsson, J., Ckurshumova, W., and Berleth, T. (2003). Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol. 131: 1327-1339.
    Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95: 805-815.
    Merks, R.M.H., Van de Peer, Y., Inzé, D., and Beemster, G.T.S. (2007). Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci.12: 384-390.
    Michniewicz, M., Zago, M.K., Aba,s L., Weijers, D., Schweighofer, A., Meskiene, I., Heisler, M.G., Ohno, C., Zhang, J., Huang, F., Schwab, R., Weigel, D., Meyerowitz, E.M., Luschnig, C., Offringa, R., and Friml, J. (2007). Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130: 1044-1056.
    Mockaitis, K., and Howell, S.H. (2000). Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 24: 785-796.
    Mockaitis, K., and Estelle, M. (2008). Auxin receptors and plant development:A new signaling paradigm. Annu. Rev. Cell Dev. Biol. 24: 55-80.
    Mordhorst, A.P., Voerman, K.J., Hartog, M.V., Meijer, E.A., Went, J.v., Koornneef, M., and Vries, S.C.d. (1998). Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics 149: 549-563.
    Mordhorst, A.P., Voerman, K.J., Hartog, M.V., Meijer, E.A., Went, J.v., Koornneef, M., and Vries, S.C.d. (1999). Facilitated initiation of somatic embryogenesis in Arabidopsisthaliana by mutations in genes repressing meristematic cell divisions. In Plant biotechnology and in vitro biology in the 21st century. Proceedings of the IXth International Congress of the International Association of Plant Tissue Culture and Biotechnology, Jerusalem, Israel, 14-19 June 1998., pp. 73-76.
    Mravec, J., Kube?, M., Bielach, A., Gaykova, V., Petrá?ek, J., Sk?pa, P.,Chand, S., Benková, E., Za?ímalová, E., and Friml, J. (2008). Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development.Development 135: 3345-3354.
    Mok, D.W., and Mok, M.C. (2001). Cytokinin metabolism and action.Annu Rev Plant Physiol Plant Mol Biol 52: 89-118.
    Morris, R.O., Bilyeu, K.D., Laskey, J.G., and Cheikh, N.N. (1999). Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255: 328-333.
    Murphy, A.S., Hoogner, K.R., Peer, W.A., and Taiz, L. (2002). Identification,purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. PlantPhysiol. 128: 935-950.
    Müller, B., and Sheen, J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453: 1094-1097.
    Muto, H., Watahiki, M.K., Nakamoto, D., Kinjo, M., and Yamamoto, K.T. (2007). Specificity and similarity of functions of the Aux/IAA genes in auxin signalingof Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiol. 144: 187-196.
    Nakajima, K., Sena, G., Nawy, T., and Benfey, P.N. (2001). Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413: 307-311.
    Nakagawa, T., Nabeshima, Y., and Yoshida, S. (2007). Functional identificationof the actual and potential stem cell compartments in mouse spermatogenesis.Dev. Cell 12: 195–206.
    Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S., and Ueguchi, C. (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16: 1365-1377.
    Nordstrom, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K., and Sandberg, G. (2004). Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Nat1. Acad. Sci. U.S.A. 101: 8039-8044.
    Nystul, T.G. and Spradling, A.C. (2006). Breaking out of the mold:diversity within adult stem cells and their niches. Curr. Opin. Genet.Dev. 16: 463-468.
    O'Mahony, A. 1992: prospects for marginal rural areas. Paper presented at the TEAGASC-AFDA Conference, The challenge of 1992 for the rural economy, held on September 28, 1988, University College Dublin, Belfield, Dublin 4, Irish Republic. In 1992: prospects for marginal rural areas. Paper presented at the TEAGASC-AFDA Conference, The challenge of 1992 for the rural economy, held on September 28, 1988, University College Dublin, Belfield, Dublin 4, Irish Republic., pp. 36pp.
    Paciorek, T., Za?íalová, E., Ruthardt, N., Petrá?k, J., Stierhof, Y.D., Kleine-Vehn, J., Morris, D.A., Emans, N., Jürgens, G., Geldner, N., and Friml, J. (2005). Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435: 1251-1256.
    Pan, G.J., Chang, Z.Y., Scholer., and H.R., Pei, D. (2002). Stem cell pluripotency and transcription factor Oct4. Cell Res. 12: 321-329.
    Pernisová, M., Klíma, P., Horák, J., Válková, M., Malbeck, J., Sou?ek, P., Reichman, P., Hoyerová, K., Dubová, J., Friml, J., Za?ímalová, E., and Hejátko, J. (2009). Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc. Natl. Acad. Sci. U.S.A. 106: 3609-3614.
    Petrá?k, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertová, D., Wi?niewska, J., Tadele, Z., Kube?, M., and ?ovanová, M. (2006). PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312: 914-918.
    Reinhardt, D., Frenz, M., Mandel, T., and Kuhlemeier, C. (2003). Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130: 4073-4083.
    Pickett, F.B., Wilson, A.K., and Estelle, M. (1990). The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol. 94:1462-1466.
    Posas, F., Takekawa, M., and Saito. H. (1998). Signal transduction by MAP kinasecascades in budding yeast. Curr Opin Microbiol 1: 175-182.
    Prantl, K. (1874). Untersuchungen uber die Regeneration des Vegetationspunktes an Agiospermenwurzeln. Arb. Bot. Inst. Wurzburg 4, 546–562. Randolph, H. (1892). The regeneration of the tail in lumbriculus. J. Morphol. 7: 317–344.
    Raven, J.A. (1975). Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport.New Phytol. 74: 163-172.
    Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett,M., Traas, J., Friml, J., and Kuhlemeier, C. (2003). Regulation of phyllotaxis by polar auxin transport. Nature 426: 255-260.
    Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H.,Nishiyama, T., Perroud, P.-F., Lindquist, E.A., Kamisugi, Y., et al. (2008). ThePhyscomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64-69.
    Riou-Khamlichi, C., Huntley, R., Jacqmard, A., and Murray, J.A.H. (1999). Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science 283: 1541-1544.
    Riefler, M., Novak, O., Strnad, M., and Schmülling, T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40-45.
    Rojo, E., Sharma, V.K., Kovaleva, V., Raikhel, N.V., and Fletcher, J.C. (2002). CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14: 969-977.
    Rouse, D., Mackay, P., Stirnberg, P., Estelle, M., and Leyser, O. (1998). Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371-1373.
    Rubery, P.H., and Sheldrake, A.R. (1974). Carrier-mediated auxin transport.Planta 118: 101-121.
    Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., and Estelle, M. (1998). The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev. 12: 198-207.
    Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J.,Benfey, P.,Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999). An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463-472.
    Sabatini, S., Heidstra, R., Wildwater, M., and Scheres, B. (2003). SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 17: 354-358.
    Sachs, T. (1991). Cell polarity and tissue patterning in plants. Dev. Suppl. 1,83-93.
    Sakai, H., Aoyama, T., and Oka, A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators.Plant J 24: 703-711.
    Sakai, H., Honma, T., Aoyama, T., Sato, S., Kato, T., and Tabata, S., Oka, A. (2001). ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519-1521.
    Sakakibara, H., Suzuki, M., Takei, K., Deji, A., Taniguchi, M., and Sugiyama, T. (1998). A response-regulator homologue possibly involved in nitrogen signal transduction mediated by cytokinin in maize. Plant J 14: 337-344.
    Sauer, M., Balla, J., Luschnig, C., Wi?niewska, J., Rein?hl, V., Friml, J., and Benková, E. (2006). Canalization of auxin flow by Aux/IAA-ARF-dependent feed-back regulation of PIN polarity. Genes Dev. 20: 2902-2911.
    Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T. (2007). Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446: 811-814.
    Scarpella, E., Marcos, D., Friml, J., and Berleth, T. (2006). Control of leaf vascular patterning by polar auxin transport. Genes Dev. 20: 1015-1027.
    Scheres, B. (2007). Stem-cell niches: nursery rhymes across kingdoms. Nat. Rev. Mol. Cell Biol. 8: 345-354.
    Scheres, B., DiLaurenzio, L., Willemsen, V., Hauser, M-T., Janmaat, K., Weisbeek, P. and Benfey, P.N. (1995). Mutations affecting the radial organization of the Arabidopsis root display specific defects throughout the embryonic axis. Development 121: 53-62.
    Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635-644.
    Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11: 118-131.
    Senn, A.P., and Goldsmith, M.H.M. (1988). Regulation of electrogenic proton pumping by auxin and fusicoccin as related to the growth of Avena coleoptiles.Plant Physiol. 88: 131-138.
    Shani, E., Yanai, O., and Ori, N. (2006). The role of hormones in shoot apical meristem function. Curr. Opin. Plant Biol. 9: 484-489.
    Shin, R., Burch, A.Y., Huppert, K.A., Tiwari, S.B., Murphy, A.S., Guilfoyle, T.J., and Schachtman, D.P. (2007). The Arabidopsis transcription factor MYB77 modulates auxin signal transduction. Plant Cell 19: 2440-2453.
    Shishova, M., and Lindberg, S. (2004). Auxin induces an increase of Ca2+concentration in the cytosol of wheat leaf protoplasts. J. Plant Physiol. 161: 937-945.
    Shimizu-Sato, S., Tanaka, M., and Mori, H. (2009). Auxin-cytokinin interactions in the control of shoot branching. Plant Mol. Bio. 69: 429-435.
    Sieberer, T., Seifert, G.J., Hauser, M.T., Grisafi, P., Fink, G.R., and Luschnig,C. (2000). Post-transcriptional control of the Arabidopsis auxin efflux carrier EIR1 requires AXR1. Curr. Biol. 10: 1595-1598.
    Sieburth, L.E., and Meyerowitz, E.M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9: 355-365.
    Sinnott, E.W. (1960). Plant Morphogenesis (New York: McGraw-ill).
    Skoog, F. (1950). Chemical control of growth and organ formation in plant tissues. Annee Biol. 54: 545-562.
    Skoog, F., and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 54: 118-130.
    Smith, D.L., and Krikorian, A.D. (1989). Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am. J. Bot. 76: 1832–1843.
    Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early Flower Development in Arabidopsis. Plant Cell 2: 755-767.
    Sorefan, K., Girin, T., Liljegren, S.J., Ljung, K., Robles, P., Galván-Ampudia,C.S., Offringa, R., Friml, J., Yanofsky, M.F., and tergaard, L. (2009). A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 459: 583-586.
    Souer, E., van Houwelingen, A., Kloos, D., Mol, J., and Koes, R., (1996). The NO APICAL MERISTEM gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. Cell 85: 159-170.
    Sugiyama, M. (1999). Organogenesis in vitro. Curr. Opin. Plant Biol. 2: 61-64.
    Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.Y.,Dole?al, K., Schlereth, A., Jürgens, G., and Alonso, J.M. (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development.Cell 133: 177-191.
    Steward, F.C., Mapes, M.O., and Mears, K. (1958). Growth and organized development of cultured cells. II. Organization in cultures growtn from freely suspended cells. Am. J. Bot. 45: 705–708.
    Steward, F.C., Ammirato, P.V., and Mapes, M.O. (1970). Growth and development of totiptent cells: Some problems, procedures, and perspectives. Ann.Bot. (Lond.) 34: 761–787.
    Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., and Harada, J.J. (2001). LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences of the United States of America 98: 11806-11811.
    Stone, B.B., Stowe-Evans, E.L., Harper, R.M., Celaya, R.B., Ljung, K., Sandberg,G., and Liscum, E. (2008). Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol. Plant 1: 129-144.
    Strader, L.C., Monroe-Augustus, M., and Bartel, B. (2008). The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation. BMC Plant Biol. 8: 411-415.
    Su, Y.H., Zhao, X.Y., Liu, Y.B., Zhang, C.L., O'Neill, S.D., and Zhang, X.S. (2009). Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J. DOI: 10.1111/j.1365-313X.2009.03880.x.
    Sun, J., Niu, Q.W., Tarkowski, P., Zheng, B.,Tarkowska, D., Sandberg, G., Chua, N.H.,and Zuo, J . (2003). The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiol. 131: 167-176.
    Sun, J., Hirose, N., Wang, X., Wen, P., Xue, L.,Sakakibara, H., and Zuo, J. (2005). Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J. Integ. Plant Biol. 47: 588-603.
    Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H., Mizuno, T. (2001a). The Arabidopsis sensor kinase, AHK4, can respond to cytokinin. Plant Cell Physiol 42: 107-113.
    Suzuki, T., Sakurai, K., Imamura, A., Nakamura, A., Ueguchi, C., and Mizuno, T. (2000). Compilation and characterization of histidine-containing phosphotransmitters implicated in His-to-Asp phosphorelay in plants: AHP signal transducers of Arabidopsis thaliana. Biosci Biotechnol Biochem 64: 2486-2489.
    Suzuki, T., Sakurai, K., Ueguchi, C., and Mizuno, T. (2001b). Two types of putative nuclear factors that physically interact histidine-containing phosphotransfer (Hpt) domains,signaling mediators in His-to-Asp phosphorelay, in Arabidopsis thaliana. Plant Cell Physiol 42: 37-45.
    Swarup, K., Benková, E., Swarup, R., Casimiro, I., Péret, B., Yang, Y., Parry,G., Nielsen, E., De Smet, I., Vanneste, S., et al. (2008). The auxin influx carrier LAX3 promotes lateral root emergence. Nat. Cell Biol. 10: 946-954.
    Szemenyei, H., Hannon, M., and Long, J.A. (2008). TOPLESS mediates auxindependent transcriptional repression during Arabidopsis embryogenesis. Science 319: 1384-1386.
    Takei, K., Sakakibara, H., and Sugiyama, T. (2001a). Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276: 26405-26410.
    Takei, K., Sakakibara, H., Taniguchi, M., and Sugiyama, T. (2001b). Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42: 85-93.
    Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C., Robinson, C.V.,Estelle, M.,and Zheng, N. (2007). Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640-645.
    Tanaka, H., Dhonukshe, P., Brewer, P.B., and Friml, J. (2006). Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell. Mol. Life Sci. 63: 2738-2754.
    Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M.E., Ivans, L.J., Cheng, Y., Lim, J., Zhao, Y., Ballaré, C.L., Sandberg, G., Noel, J.P., and Chory, J. (2008). Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133: 164-176.
    Taniguchi, M., Kiba, T., Sakakibara, H., Ueguchi, C., Mizuno, T., and Sugiyama, T. (1998). Expression of Arabidopsis response regulator homologs is induced by cytokinins and nitrate. FEBS Lett 429: 259-262.
    Taya, Y., Tanaka, Y., and Nishimura, S. (1978). AMP is a direct precursor of cytokinin in Dictyostelium discoidum. Nature 271: 545-547.
    Teleman, A.A., Strigini, M., and Cohen, S.M. (2001). Shaping morphogen gradients.Cell 105: 559-562.
    Teo, L., Prakash, K., Goh, C., and Sanjay, S. (2001). The expression of Brostm, a KNOTTED1-like gene, marks the cell type and timing of in vitro shoot induction in Brassica oleracea. Plant molecular biology 46: 567-580.
    Theologis, A., Huynh, T.V., and Davis, R.W. (1985). Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J. Mol. Biol. 183: 53-68.
    Thimann, K.V. (1938). Hormones and the analysis of growth. Plant Physiol. 13: 437-449.
    Tiwari, S.B., Hagen, G., and Guilfoyle, T.J. (2004). Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16: 533-543.
    To, J.P.C., and Kieber, J.J. (2007). Cytokinin signaling:two-components and more.Trends in Plant Science 13: 1360-138.
    Toshio, Murashige., F.S. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures, Physiol. Plant. 15:473-497.
    Tzfira, T., Vaidya, M., and Citovsky, V., (2001). VIP1, an Arabidopsis protein that interactswith Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20: 3596-3607.
    Ueguchi, C., Koizumi, H., Suzuki, T., and Mizuno, T. (2001). Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol 42: 231-235.
    Uggla, C., Moritz, T., Sandberg, G., and Sundberg, B. (1996). Auxin as a positional signal in pattern formation in plants. Proc. Natl. Acad. Sci. USA 93: 9282-9286.
    Ulmasov, T., Hagen, G., and Guilfoyle, T.J. (1997). ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865-1868.
    Valvekens, D., Vanmontagu, M., and Vanlijsebettens, M. (1988).
    Agrobacterium-Tumefaciens-Mediated Transformation of Arabidopsis-Thaliana Root Explants by Using Kanamycin Selection. Proc. Natl. Acad. Sci. USA 85: 5536-5540.
    Vieten, A., Vanneste, S., Wi?niewska, J., Benková, E., Benjamins, R., Beeckman, T., Luschnig, C., and Friml, J. (2005). Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression.Development 132: 4521-4531.
    Vieten, A., Sauer, M., Brewer, P.B., and Friml, J. (2007). Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci. 12: 160-168.
    Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M.R., Kumar, P.P., Riechmann, J.L., Greenland, A.J., and Meyerowitz, E.M. (2004). Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J. 39: 273-282.
    Weigel, D., and Jürgens, G. (2002). Stem cells that make stems. Nature 415: 751-754.
    Weijers, D., Benková, E., J?ger, K.E., Schlereth, A., Hamann, T., Kientz, M.,Wilmoth, J.C., Reed, J.W., and Jürgens, G. (2005). Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J. 24: 1874-1885.
    Weijers, D., Schlereth, A., Ehrismann, J.S., Schwank, G., Kientz, M., and Jürgens, G. (2006). Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev. Cell 10:265-270.
    Werner, T., Motyka, V., Strnad, M., and Schmülling, T. (2001). Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98: 10487-10492.
    Whippo, C.W., and Hangarter, R.P. (2006). Phototropism: bending towards enlightenment.Plant Cell 18: 1110-1119.
    Williams, L., Zhao, J., Morozova, N., Li, Y., Avivi, Y., and Grafi, G. (2003). Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes. Dev. Dyn. 228: 113-120.
    Wi?niewska, J., Xu, J., Seifertová, D., Brewer, P.B., R??i?ka, K., Blilou, I.,Rouquié, D., Benková, E., Scheres, B., and Friml, J. (2006). Polar PIN localizationdirects auxin flow in plants. Science 312: 883.
    Woodward, A.W., and Bartel, B. (2005). Auxin: regulation, action, and interaction.Ann. Bot. (Lond.) 95: 707-735.
    Würschum, T., Gross-Hardt, R., and Laux, T. (2006). APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18: 295-307.
    Xu, J., Hofhuis, H., Heidstra, R., Sauer, M., Friml, J., and Scheres, B. (2006). A molecular framework for plant regeneration. Science 311: 385-388.
    Xu, H. Y., Li, X. G., Li, Q. Z., Bai, S. N., Lu, W. L. and Zhang, X. S. (2004).
    Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Molecular Biology 55: 209-220
    Xu, Y.Y., Wang, X.M.,Li J., Tan, K.H., Wu, J.S., Walker, J.C., Xu, Z.H., and Chong, K. (2005). Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliano.Plant Mol Bio.57:773-784.
    Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K.,Miwa, K., and Mizuno, T. (2001). The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol 42: 1017-1023.
    Yang, Y., Hammes, U.Z., Taylor, C.G., Schachtman, D.P., and Nielsen, E. (2006). High-affinity auxin transport by the AUX1 influx carrier protein. Curr.Biol. 16: 1123-1127.
    Yu, R.C., Pesce, C.G., Colman-Lerner, A., Lok, L., Pincus, D., Serra, E., Holl,M., Benjamin, K., Gordon, A., and Brent, R. (2008). Negative feedback that improves information transmission in yeast signalling. Nature 456: 755-761.
    Zhang, S.B., and Lemaux, P.G. (2004). Molecular analysis of in vitro shoot organogenesis.CRC Crit Rev Plant Sci. 23: 325-335.
    Zhao, Y., Christensen, S.K., Fankhauser, X., Cashman, J.R., Cohen, J.D., Weigel, D., and Chory, J. (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291: 306-309.
    Zhao, J., Morozova, N., Williams, L., Libs, L., Avivi, Y., and Grafi, G., (2001). Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J. Biol. Chem. 276: 22772-22778.
    Zuo, J.R., Niu, Q.W., and Chua, N.H. (2000). An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24: 265-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700