星星草抗碱生理适应机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据中国东北地区盐碱化草原土壤所含的可溶性盐分的组成特点,分别将中性盐NaCl、Na2SO4和碱性盐NaHCO3、Na2CO3以1:1的摩尔比混合,模拟出0-240mmol/L的盐胁迫和碱胁迫条件。选用天然高抗盐碱牧草星星草为材料,对其8周龄苗进行盐胁迫和碱胁迫处理。通过检测胁迫苗在生长、干物质积累、氮代谢、有机酸代谢、抗氧化系统、渗透调节及离子平衡等方面的生理响应,以探讨并比较星星草适应盐碱两种胁迫的生理机制及其差异。所获主要实验结果与结论如下:
     1.盐、碱胁迫对星星草生长及氮代谢的影响
     星星草幼苗在盐、碱胁迫下,总生物量、RGR和总氮量均表现出先升高后降低的变化趋势。即低浓度的中性盐(≤120mmol/L)和碱性盐(≤60mmol/L)对星星草的生长、干物质积累及氮素吸收具有明显的促进作用,而后转为抑制作用,而且随着盐度的增高抑制作用逐渐增强,就抑制幅度而言,碱胁迫大于盐胁迫。可见,盐碱两种胁迫对星星草氮代谢的影响与对其生长的影响密切相关。
     2.星星草抗氧化系统与其抗盐碱性的关系
     盐胁迫与碱胁迫均造成了丙二醛的积累和电解质外渗率的增加,就变化幅度而言,碱胁迫大于盐胁迫,这说明,碱胁迫对质膜结构的破坏程度更大,伤害更加显著。
     盐胁迫下超氧化物歧化酶(SOD)、过氧化物酶酶(POD)和过氧化氢酶(CAT)这三种抗氧化酶活性均增强;而在碱胁迫下,CAT活性逐渐降低,但是SOD活性增加了1.4倍~1.6倍,POD活性增加了3.5倍。这一现象表明了:星星草特殊的抗氧化酶系统是决定其抗盐碱性的因素之一。
     3.以柠檬酸为主的有机酸积累是星星草适应碱胁迫的关键生理响应
     结果表明,盐胁迫下星星草体内有机酸含量无明显变化甚至稍有降低,而当碱胁迫达到一定强度后(≥60 mmol/L)则引起有机酸急剧积累,而且不管是茎叶还是根中所积累的有机酸均以柠檬酸为主。可见以柠檬酸为主的有机酸积累是星星草针对碱胁迫的特异生理响应。碱胁迫下星星草体内特异积累以柠檬酸为主的有机酸的生理作用可能与其体内pH的调节及离子平衡密切相关。只有碱胁迫才能引起了星星草体内有机酸的特异积累,这一现象充分证明了植物对碱胁迫和盐胁迫有着不同的生理适应机制。
     4.碱胁迫下星星草根系有机酸积累和分泌的特点
     碱胁迫下星星草根部的有机酸含量很低而且变化不明显,其原因一方面是根部代谢特点所决定,另外也与根系的分泌作用有关。在碱胁迫下的根系分泌物中,柠檬酸是唯一可以检测出来的有机酸,其数量较少,仅仅为5.92微摩尔/株/天。但是星星草根系对碱性环境的适应能力及pH调节作用却非常显著。据此可以认为,星星草对碱胁迫引起的环境高pH的调节作用可能是通过分泌有机酸和呼吸释放CO2来完成,作用部位可能是根尖部皮层的质外体空间而非根表皮之外。
     5.盐、碱胁迫下的渗透调节和离子平衡作用
     结果表明:在盐、碱胁迫下脯氨酸含量明显增加,但是其含量对于总溶质含量来说却非常低,因此它对渗透调节的作用是非常有限的。盐胁迫下星星草的主要渗透调节剂是Na+、K+和Cl-,而碱胁迫下则是Na+、K+和有机酸。从有机酸含量与其它溶质含量的相关性分析结果来看,碱胁迫下有机酸积累与Na+含量增加密切正相关。碱胁迫造成植物体内Na+含量急剧的上升,导致细胞内离子平衡破坏,这可能就是引起有机酸相应大量积累的主要原因。
     盐碱两种胁迫下,不同阴离子对总阴离子的贡献率差异明显,有机酸在碱胁迫下的贡献率高达68%,而在盐胁迫下仅为39%,可见两种胁迫下星星草体内的离子平衡特点明显不同。
     总之,在碱胁迫下,星星草通过在体内积累有机酸,进行渗透调节、维持离子平衡,通过根系分泌有机酸来调节外部环境的高pH造成的胁迫。因此,在碱胁迫下,有机酸是调节植物体内外环境的最关键物质。
According to the soluble components of salt-alkaline grassland of the Northeast of China, eight-week-old seedlings of Puccinellia tenuiflora were stressed by exposure to 1:1 molar-ratio mixtures either of the two neutral salts NaCl and Na2SO4 or of the two alkali salts NaHCO3 and Na2CO3, which were simulated conditions of 0-24mmol/L salt stress or alkali stress. To identify the physiological mechanisms involved in this plant’s resistance to alkali stress, the relative growth rates, dry matter accumulation, nitrogen metabolism, organic acid metabolism, anti-oxidative system, osmotic adjust and ionic balance to salt or alkaline stress were detected and measured.
     The experimental results and conclusions were as follows:
     1. Effects on Growth and Nitrogen Metabolism of P. tenuiflora under Salt and Alkali Stresses.
     The total biomass, relative growth rates, total nitrogen of P. tenuiflora under salt or alkali stress initially increased and then decreased. The results showed that lower salinity of neutral salts (≤120mmol/L) or alkali salts promoted the growth, dry matter accumulation, nitrogen absorption of P. tenuiflora, while higher salinity of neutral salts or alkali salts inhibited its growth and nitrogen absorption evidently, and their inhibition became more and more obvious with the salinity increased although alkali stress was more inhibitory than salt stress. Therefore, the effects of salt stress and alkali stress on nitrogen metabolism in P. tenuiflora correlated with effects on its growthe under salt stress and alkali stress.
     2. Relation between Anti-oxidative System and Salt- or Alkali- Resistance. in P. tenuiflora
     Both salt stress and alkali stress led to the accumulation of malonaldehyde and the increasing of osmosis of electrolytes outside the membrane, however, alkali stress was predominantly obvious than salt stress. This demonstrated that the alkali stress was more destructive to membrane.
     The activities of superoxid dismutase (SOD), perodidase (POD) and catalase (CAT) increased under salt stress, while the activity of catalase decreased gradually although SOD activity increased by 1.4~1.6times of it and POD activity increased by 3.5 times of it. This demonstrated that the unique anti-oxidative system was one of main factors related to its salt or alkali resistance.
     3. Accumulating Large Quantities of Organic Acids with Citric Acid As a Dominant Component were the Key Physiological Responses of P. tenuiflora to Alkali Stress
     The results indicate that organic acid concentrations in P. tenuiflora have no obviously changes and even decreased slightly. However, organic acids accumulate in detectable quantities only under alkali stress above 60 mM. Citric acid is always the dominant component of the accumulating organic acids in both the shoots and the roots. Therefore, the accumulation of organic acids, mostly citric acid, appears to be a specific physiological response of P. tenuiflora to alkali stress. Therefore, accumulating large quantities of organic acids with citric acid as a dominant component in P. tenuiflora under alkali Stress is closely related to the pH regulation and iron balance. Only alkali stress caused organic acids to accumulate, plants clearly shows that they have different physiological mechanisms under alkali stress and salt stress.
     4. The Characteristics of Organic Acid Accumulation in P. tenuiflora Roots Under Alkali Stress
     The organic acid concentration in the roots of P. tenuiflora under alkali stress was very low and has no obviously changes. The one of reasons is decided by the metabolism character in P. tenuiflora roots, and another reason is relative with is related to the secretary activity of the roots. Under alkali stress, the roots secreted citric acid which was the only organic acid detected. Calculation showed that the average amount of organic acid secreted each day was 5.92μmol per seedling. But it very obviously that P. tenuiflora roots adapt to alkali environment and pH regulation. Above all, the regulation roles of P. tenuiflora roots to high pH under alkali stress, perhaps were secretes organic acids and produce CO2 by respiration. The site of action is apoplast in cortex of root tips, instead of outside root epidermis
     5. Osmotic Adjust and Ionic Balance Roles under Salt and Alkali Stresses
     The result show that proline concentration under salt and alkali stresses increased obviously, but proline concentration was very low compared to total concentration. So proline contributed in a very limited way to total osmotic adjustment. Under salt stress, important osmolytes include Na+, K+, and Cl- are all, but under alkali stress, include Na+, K+, and organic acid.
     From the result of correlation analysis between organic acid concentration and other solute concentration, organic acid accumulation is closely correlated with Na+ concentration. Na+ concentration increased sharply under alkali stress, it induced iron balance was destroyed. Perhaps, these were primary reasons caused by organic acid accumulation. Percentage of the contribution of various free anions to total anions is deferent obviously. Under alkali stress, organic acid contributed 67.8% of total negative charge, while the total contribution of the inorganic anions was only 39%.So, the character of iron balance in P. tenuiflora is obviously different.
     Above all, organic acid accumulation, osmotic adjustment and maintaining ionic balance in P. tenuiflora under alkali stress, and adjust high pH by secreted organic acids from Rhyzosphere. Therefore, organic acid is the most key to regulate vivo and vitro.
引文
[1] Tanji K K. Nature and extent of agricultural salinity[C]. In: Tanji K. K. ed. Agricultural Salinity Assessment and Management. New York: American Society of Civil Engineers, 1990.1-17.
    [2] Katerji N, Van Hoorn J W. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods [J]. Agricultural water management, 2003, 62: 37 - 66.
    [3] Jamalian S,Tehranifar A,Tafazoli E,et al. Paclobutrazol application ameliorates the negative effect of salt stress on reproductive growth, yield, and fruit quality of strawberry plants [J]. Journal of the Korean Society for Horticultu, 2008, 49(4): 1-6.
    [4] John M. Mechanisms of salinity tolerance in plants [J]. Plant Physio, 1998, 87:547-550.
    [5] Tejera N A, Soussi M, Lluch C. Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions [J]. Environmental and Experimental Botany, 2006, 58:1-3.
    [6] Keutgen A J, Pawelzik Elke. 2009. Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry [J]. Environmental and Experimental Botany, 2009, 65(2-3):170-17.
    [7] Jiang Y Q, Yang B, Harris N S, et al. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots [J]. Journal of Experimental Botany, 2007, 58(13):3591-3607.
    [8]何生根.植物应激蛋白简介[M].生命的化学,1992,12(1):24.
    [9] Yin J D, Zhang H L, Wang S Y, et al. Salt tolerance of saline-resistant transgenic Zhongtian poplar in cutting propagation [J]. Chinese Journal of Ecology, 2006, 25 (02): 125-128.
    [10] Liu J, Zhou S F,Chen H, et al. Agrobacterium Mediated Transformation of BADH to the AtNHX1 Transgenic Tomato (Lycopersicum esculentum L.‘Moneymaker’)[J]. Scientia Agricultura Sinica 2005,38(8):20-25.
    [11] Cheeseman J M.Mechanism of salinity tolerance in plants [J]. Plant Physiol., 1988, 87: 547-550.
    [12]邹声文,我国天然草原90%在退化[J].草业科学, 2002,(4):76-78
    [13] Shi D C, Yin S J.Difference between salt (NaCl) and alkaline (Na2CO3) stress on Puccinellia tenuiflors (Griseb.) seribn. et Merr. Plants [J]. Acta Botanica Sinica., 1993, 35(2): 144-149.
    [14] Yan H, Shi D C. Effects of Ca2+, ABA and H3PO4 on relaxing stress of Na2CO3 and NaCl [J]. Chinese J Appl. Ecol, 2000, 11 (6): 889-892.
    [15] Yang C W, Shi D C and Wang D L. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.) [J]. Plant Growth Regulation, 2008, 56:179-190.
    [16] Yang C W, Chong J N, Kim C M, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions [J]. Plant Soil, 2007, 294:263-276.
    [17] Ma Y, Qu B B, Guo L Q, et al. A characteristic of the growth and solute accumulation in shoots of an alkali-tolerant Kochia sieversiana under salt-alkaline mixed stress [J]. Acta Prata Culturae Sinica,2007,16(4):25-33.
    [18] Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress [J]. Acta Bot.Sin, 2002, 44(5):537-540.
    [19] Sun G R, Yan X F, Na S H, et al. Effect of sodium carbonatedomestication progressively on alkaline resistance of seedlings of Puccinellia tenuiflora [J]. Journal of Wuhan Botanical Research, 1996, 14(1): 67-70.
    [20] Gao H M, Wang J B, Sun G R. Further Study of Physiological Mechanism of the Saline-alkali Tolerance of Puccinellia tenuiflora [J]. Acta Botanica Boreali-occidentalia Sinica, 2005, 25(8): 1589-1594.
    [21] Wu C L, Zhou C L, Yin J L, et al. Effects of Alkaline Stress on Biomass Allocation and the Contents of Soluble Osmoticum in Different Organs of Two Helianthus tuberosus L. Genotypes[J] .Scientia Agricultura Sinica,2008, 41(3):901-909.
    [22] Kawanabe, S., Zhu, T.C., Degeneration and conservational of Aneurolepidium chinense grassland in Northern China. J. Japan. Grassl. Sci. 1991, 37: 91-99.
    [23] Miao H X, Sun M G, Xia Y, et al. Effects of Salt Stress on Root Activity of Melia Azedarach L.Seedlings [J]. Journal of ShangDong Agricultural University (Natural Science), 2005, 36 (1): 9- 12.
    [24]中国饲料植物志编辑委员会编[M].中国饲料植物志(第一卷).北京:农业出版社,1978.165-168.
    [25]殷立娟,祝玲.东北盐生草甸五种习见牧草苗期抗盐碱性比较[J].四川草原,1988:2:43-49.
    [26] Yang C W, JIANAER Ahan, Shi D C,et al.Effects of complex salt and alkali conditions on the germination of seeds of Puccinellia tenuiflora[J]. Acta Prataculturae Sinica. 2005,15(5):45-51.
    [27]李艳波,陈月艳,孙国荣,等.盐碱胁迫下星星草种子萌发过程中氮代谢的初步研究[J].植物研究,1999,19(2):153—158.
    [28]陈月艳,孙国荣,李景信.Na2CO3胁迫对星星草种子萌发过程中水分吸收及膜透性的影响[J].草业科学,1997,14(2):27-30.
    [29]孙国荣,阎秀峰,肖玮.星星草耐盐碱生理机制的初步研究[J].武汉植物学研究,1997,15(2):162—166.
    [30]阎秀峰,孙国荣,李景信.人工种植星星草的光合蒸腾日变化[J].植物研究,1995,(2):252 - 255.缺卷
    [31]孙国荣,关畅,阎秀峰.Na2CO3胁迫对星星草幼苗游离氨基酸含量的影响[J].植物研究,2000,20(1):69-72.
    [32]阎秀峰,肖玮,孙国荣等.盐胁迫下星星草幼苗的生理反应——I.盐胁迫对星星草幼苗生长的影响[J].黑龙江畜牧兽医, 1994, 3:l-3.
    [33]朱宇旌,张勇,胡自治,等.小花碱茅根适应盐胁迫的显微结构研究[J].中国草地,2001,23(1):37-40.
    [34] Zhu Z J, Zhang Y. Studies on the ultrastructure of Puccinellia tenuiflora under different salinity stress [J]. Grassland of China, 2000, 4: 55—58.
    [35] Zhu YJ, Zhang Y, Hu Z Z, et al.Studies on the microscopic structure of Puccinellia tenuiflora stem under salinity Stress [J]. Grassland of China, 2000, 5:6—9.
    [36] Zhu YJ, Zhang Y, Hu ZZ, et al.Studies on the microscopic structure of Puccinellia tenuiflora leaves under different salinity stress [J].Grassland of China, 2001, 23(2):19一23.
    [37] Wei C X, Wang J J, Wang J B, et al.Effects of Na2CO3 stress on the ultrastructure of mesophyll cells in Puccinellia tenuiflora[J].Actaecologica Sinica,2006,26(1):108-114.
    [38] Yang C X,Shen J H.Megasporogenesis,microsporogenesis and the development of the female and male gametophyte of puccinellia tenuiflora[J].J. Wuhan Botanical Research, 2003, 21(6) :464—470.
    [39]杨春雪,申家恒.星星草受精作用及其胚与胚乳早期发育的现察[J].武汉植物学研究,2004,22(2):91-97.
    [40] Liu G F, Chu Y G, Wang Y C,et al.Study of expression profiles of puccinellia tenuiflora genes under NaHCO3 stress by means of the cDNA microarray[J].Acta Botanica Boreali-occidentalia Sinica,2005,25(5):887-892.
    [41] Liu G F ,Chun Y G ,Wang Y C,et al.Construction of cDNA library and cloning of metallothionein (MT-1) gene from Puccinellia tenuiflora[J].Plant Physiology Communications,2005,41(4):424-428.
    [42]王玉成,杨传平,刘桂串,等.差异显示技术研究Na2CO3胁迫下星星草基因表达[J].植物学通报,2005,22(3):307-312.
    [43] Cheng Y X. Overexpression of the PtSOS1 from puccinellia tenuiflora enhanced salt tolerance of arabidopisis [J]. Plant Physiology Communications, 2008, 44(6):1125-1130.
    [44] Solomonson L P, Barber M J. Assimilatory nitrate reductase: Functional properties and regulation [J]. A nnu Rev Plant Physiol Plant Mol Biol, 1990, 41 :225-253
    [45] Song J M, Tian J C, Zhao S J. Relationship between photosynthetic carbon and nitrogen metabolism in plants and its regulation [J]. Plant Physiol Commun , 1998, 34 (3) :230-238
    [46] Suzuki A, Cadal P. Glutamate syntheses from rice leaves [J]. Plant Physiol, 1982, 69 :848-852
    [47] Lam H M, Coschigano K T, Oliveira I C, et al. The molecular genetics of nitrogen assimilation into amino acids in higher plants [J]. Ann Rev Plant Physiol Plant Mol Biol, 1996, 47: 569-593.
    [48] Hoff J, Truong H N, Caboche M. The use of mutants and transgenic plants to study tritrate assimilation [J]. Plant Cell Environ, 1994, 17: 489-506
    [49] Serraj R, Vadez V, Denison F R. et al, Involvement of ureides in nitrogen fixation inhibition in soybean. Plant Physiol, 1999, 119 : 289-296
    [50] Vadez V, Sinclair T R, Purcell L C. Manganese application alle viates the water deficit2induced decline N2 fixation [J]. Plant Cell Envi ron , 2000, 23 :497-505
    [51] Hernández L E, Carpena-Ruiz R, Grate A. Alteration in the mineral nutrition of pea seedlings exposed to cadmium [J]. J Plant Nutr,1996, 19(12): 1581~1598
    [52] Hernández L E, Garate A, Carpena-Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum[J]. Plant Soil, 1997, 189: 97~106
    [53] Petrovic N, Kastori R, Rajcan I. The effect of cadmium on nitrate reductase activity in sugar beet (Beta vulgaris) [C]. In van Beusichem M L. Plant Nutrition Physiology and Applications. Kluwer Academic Publishers. 107~109: 1990
    [54] Gouia H, Ghorbal M H, Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean[J]. Plant Physiol Biochem, 2000, 38: 629~638
    [55] Arnon D I, Stout P R. The essentiality of certain element in minute quantity for plants with special reference to copper [J]. Plant Physiology, 1939, 14: 371- 3751
    [56] Zhou S M, Wang C Y, Zhang Z Y, et al . Effect of water logging on the growth and nutrient metabolism of the root system of winter wheat [J]. Acta Agron Sin, 2001, 27 (5):673-679.
    [57] Sinclair T R, Pinter P J, Kimball B A J, et al. Leaf nitrogen concentration of wheat subjected to elevated CO2 and either water or N deficits [J]. Agric Ecosys Environ, 2000, 79 :53-60
    [58] Li F S, Kang S Z, Zhang F C. Effect of CO2 and temperature increment on crop physiology and ecology [J]. Chi n J A ppl Ecol. 2002, 13 (9) :1169-1173
    [59] Luo Y, Field C B, Mooey H A. Predicting responses of photo synthesis and root fraction to elevated CO2: Interactions among carbon, nitrogen and growth [J]. Plant Cell Environ, 1994, 17 :1195-1204
    [60] Kingsbury R W, Epstein E and Peary R W. Physiological responses to salinity in selected lines of wheat [J]. Plant Physiol, 1984, 74: 417-423.
    [61]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学试验指南[M] .上海:科学出版社,1999 :1 - 300.
    [62] Baki G K A, Siefritz F, Man H M, et al. Nitrate reductase in Zea mays L. under salinity[J]. Plant Cell Environ , 2000, 23 :515-521
    [63] Shi D C and Wang D L. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin.) Kitag [J]. Plant Soil, 2005: 271, 15-26.
    [64] Ruiz J M, Rivero R M, Garcia P C, et al. Role of CaCl2 in Nitrate Assimilation in Leaves and Roots of Tobacco Plants. Plant Sci, 1999, 141:107-115.
    [65] Yan H, Zhao Wei, ShengYanmin,et al.Effects of alkali-stress on Aneurolepidium chinense and Helianthus annuus[J]. Chinese Journal of Applied Ecology, 2005, 16 (8)∶1497-1501.
    [66] Yin K D, Ma L J, Liu S Q. Yin K D, Ma L J, Liu S Q. Research advances on active oxygenspecial (AOS) under abiotic stress[J].Journal of Shenyang AgriculturalUniversity, 2003,34(2): 147-149. (in Chinese)
    [67] Huff A. Peroxides-catalysed oxidation of chlorophyll by hydrogen peroxide [J]. Phytochemistry, 1982, 21: 261-265.
    [68]曾韶西,王以柔,刘鸿先.低温下黄瓜幼苗子叶硫氢基(SH)含量变化与膜脂过氧化[J].植物学报, 1991, 33(1): 50-54.
    [69] Uphem B L. Photooxidative reactions in chloroplast thylakiods: Evidence for a Fentotype reaction p romoted by superoxide or ascorbate [J ] . Photo synthesis research, 1986, 8: 235-247.
    [70] Lidon F C, Teixeira M G. Oxy radical’s production and control in thechloroplast of Mn-treated rice [J]. Plant Science, 2000, 152: 7-15.
    [71] Gallego S M, Benavídes M P, Tomaro M L. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress [J]. Plant Science, 1996, 121: 151-159.
    [72]王爱国,罗广华.植物的超氧化物自由基与羟胺反应的定量关系[J] .植物生理学通讯, 1990, 26 (6) :51-57.
    [73] Zhang Yong feng, Yin Bo. Influences of salt and alkal i mixed stresses on antioxidative activity and MDA content of Medica go s ativa at seedling stage [J].Acta Prataculturae Sinica, 1997, 127:139-147.
    [74] Sheng Y M, Yin J Z, Shi D C, et al. Coordinative Effects of Salt and Alkali Stresses on Sunflower Antioxidative Enzymes[J]. Chinese Journal of Biochemistry and Molecular Biology.2008: 24 (8):704-711.
    [75] Yang C W, Li C Y, Yin H J, et al .Physiological Response of Xiaobingmai (Triticum aestivum -Agropyron intermedium) to Salt-Stress and Alkali-Stress [J].Acta Agronomica Sinica,2007,33(8):1255-126
    [76] Zhang Y B, Liu A R. Fang R. Effect of exogenous nitric oxide on the growth and antioxidant enzyme activities of Lolium perenne under Cd stress [J]. Acta Prataculturae Sinica, 2008, 17 (4):57-64.
    [77] Wang L X, Zhao Z G, Wang S M. Effect of nitric oxide on metabolism of reactive oxygen species and membrane lipid peroxidation in Triticum aestivum leaves under water stress. [J]. Acta Prataculturae Sinica, 2006, 15 (4):1042– 1045.
    [78] Liu H Y, Zhu Z J, Lu G H, Qian Q Q. Chilling tolerance and physiological parameters as influenced by grafting in watermelon seedlings [J]. Agricultural Sciences in China, 2003, 2(10):1 164-1 169.
    [79] Shi Q H, Zhu Z J, Alaghabary K, et al. Effects of iso-osmotic salt stress on the activities of antioxidative enzymes, H+-ATPase and H+-PPase in tomato plants[J]. Journal of Plant Physiology and Molecular Biology, 2004, 30(3):311-316.
    [80] Chaoui A, Mazhoudi S, Ghorbal M H, et al. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.) [J]. Plant Science, 1997, 127:139-147.
    [81] Steponkus P L. Roleof the plasma membrane in freezing injury and cold acclimation [J]. Ann Rie Plant Physiol.1984, 35:343-348.
    [82] Wilson J M, McMurde A C.Chilling injury in plamats. In Morris G J, Clarke A (eds). Effect of low temperatures on biological membrances [C]. Academic press, London, 1981, 145-172.
    [83] Wang B S, Yao Z Y. Effects of Salt Stress on Membrane Lipid Peroxidation and Protective Enzymes and SOD activity in Elaeagnus angustifolia L[J]. J. of Agricultural Uni of Hebei. 1993, 3: 20-24.
    [84] Qiu S, Yu X Y, Xie M H. et al. Effects of salt stress on osmotic adjustment substance in Hemerocallis fulva [J]. J, of Xinyang Agricultural College. 2008, 18(2): 115-118
    [85] Xia Y, Liang H M, Shu H R, et al. Changes of leaf membrane penetration, proline and mineral nutrient contents of young apple tree under NaCl stress [J]. Journal of Fruit Science , 2005,22(1):23-35
    [86]张云贵,谢永红,吴学良等. PEG诱导水分胁迫对柑桔幼苗细胞质膜透性及脯氨酸含量的影响[J].果树学报, 1995, Z1:12-18
    [87]金戈,王洪春.未结冰低温胁迫下小麦叶细胞质膜透性的变化进程及性质[J]植物生理学报,1991,17(3):295 - 300.
    [88] Hayden R I, Moyse G A, Calder F W, et al. Electrical impedance strdies on potato and alfalfa tissue [J]. J Exp Bot.1969,20: 177-200.
    [89] Stout D G. Efflect of cold accilimalton and freezing injury on electrical impecance of plant tissue [M]. In Li pH(ed) plantcold HARDINES, ARG, New York .1987, 243-258.
    [90] Olien C R. An adaptive response of freezing [J]. Crop sci. 1984, 24:51-54.
    [91] Palta J P, Li P H. Cell membrance properties in relation to freezing injury. In li P H. Sakai A (eds), Plant cold handincess and freezing stress: Mechanisms and crop implicationgs[C]. Academic press, New York. 1978, 93-116.
    [92] Drew M C, Bddle O. Effect of metabolic inhibitors and temperature on uptake and translocation of Ca and K by intact bean plants [J]. Plant physiol, 1971: 48:426-432.
    [93] Steponkus P L, Uemura M. Behavior of the plasma membrane during osmotic excursions; the effect of alterations in the plasma membrane lipid compositon. In tazawa M, Natsumi M, Masuda Y, Okamoto H (eds), Plant water relations and grwth under stress [C]. MYUKK, Tokyo. 1989, 75-82.
    [94] Lyons J M. Chilling injury on plants [J]. Ann Rev Plant physiol, 1973, 24: 445-466.
    [95] Michelet B, Boutry M. The plasma membrane H+-ATPase. A highly regulated enzyme withmultiple physiological functions [J]. Plant Physiol, 1995, 108:1 - 6.
    [96] Boulwer C, Montagu M C. Superoxide dismutase and stress tolerance [J]. Plant Physiol, 1992, 98(1):83 - 116.
    [97] Sun H, Zhang L P. Advance in modern biology [M]. Changchun: Jilin University Press, 2001.
    [98] Liang Y C, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in root s of salt2st ressed barley ( Hordeum vulgare L. ) [J]. Journal of Plant Physiology, 2003, 160:1157-1164.
    [99]郑海雷,林鹏.培养盐度对海莲和木木榄幼苗膜保护系统的影响[J] .厦门大学学报,1998 ,37( 2) :278 - 282.
    [100] Ramon S, Roberto G, Gabino R1Salt stress proteins identified by a functional approach in yeast [Z]. Monatshefte fur Chemie, 2003.
    [101] Macario B, Hilda R, ManuelM, et al1Mitigation of salt stress in wheat seedlings by a GFP - tagged Azospirillum lipoferum [J].Biol1 Fertil1 Soils, 2004, 40: 188– 193.
    [102] Akihiro U, Weiming S, Toshihide N, et al. Analysis of salt - inducible genes in barley roots by differential display [J]. J. Plant Res1, 2002, 115: 119– 130.
    [103] Wang X Y, ZhangY L, Zhang H M, et al. Influence of Sil icon on Activities of Protective Enzymes and MDA Content in Cucumber under Salt Stress Soil [J]. Acta A g ricul turae B oreal i2occi dental is S inica. 2009, 18 (1) :221-224
    [104] Gao H B, Cao L J, Liu B D. et al. Influences of Salt-alkai Stress on Biomembrane Permeability and Protective Enzyme Activicty of Five Species Forage[J]. Journal of Anhui Agri. Sci. 2008, 36( 8) : 3101- 310
    [105]张志良.植物生理学实验指导[M].北京:高等教育出版社,2000.160—162
    [106]刘友良,注良驹.植物对盐胁迫的反应和耐盐性[G] .余叔文,汤章诚.植物生理与分子生物学.北京:科学出版社,1998 :7522754.
    [107] Marschner H, Part I. Nut ritional physiology. In : Mineral nutrition of higher plants [M] . Marschner H. (ed), Academic Press Limited, London. Second edition, 1995: 18-30; 406-417; 299-300; 662-665.
    [108] Chen S Y, Liang N J, Jia L Q. et al. Effects of drought stress on lipid peroxidation and activity of defense enzymes of Dodonaea [J]. Bulletin of Botanical Research, 2006, 26 (1): 88 - 92.
    [109]蒋明义,郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯,1996 ,32.
    [110] Wang J L, Cao Z H. Nutrition environment of plant rhizosphere in relation to sustainable agriculture [J]. Plant physiology communications. 1993,29(5):329-336
    [111] Jones D L. Organic acid in the rhizosphere -- critical review [J]. Plant Soil, 1998, 205: 25-44.
    [112] Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plants [J]. Annu rev, Plant Physiol plant Mol Biol, 1995, 46: 237-260.
    [113] Larsen P B, Deganhardt J, Taicy. Aluminum-resistant arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots [J]. Plant physiol, 1998,117: 9-18
    [114] Ma J F, Zheng S N, Matumoth. Detoxifying aluminum with buckwheat [J]. Nature, 1997, 390:569-570.
    [115] Li X F. Aluminum induced secretion of organic acids from root apices in secale cereale L. [J]. Journal of Guangxi Agric.and Bilo. Science, 2002,21(2): 78-82.
    [116] Shen H. Yan X L.Exudation and Accumulation of Organic Acids in the Roots of Common Bean (Phaseolus vulgaris L.) in Respones to Low Phosphorus and Aluminum Toxicity Stress [J]. Acta Ecologica Sinica,2002,22(3):387-394.
    [117] Zhou J M, Liu W G, Zhao Q. et al., Mechanism of Organic Acid to Secrete from Plant Root and to Decrease Toxicity of Al under the Aluminum Adversity [J]. Anhui Agricultural Science Bulletin, 2008, 14(1):120-122.
    [118] Delhaize E, Ryan P R, Randall P J. Aluminum tolerance in Wheat (Triticum aestivum L)Ⅱ. Aluminum-stimulated excretion of malic acid from root apices [J]. Plant Physiol, 1993, 103: 659-702.
    [119] Miyasaka S C, Buta J G, Howell R K, et al. Mechanisms of aluminum tolerance in snapbeans[J]. Plant soil, 1991, 96: 737-743.
    [120] Pellet D M, Grumes D L, Kochian L V. Organic acid exudation as aluminum tolerance mechanism in maize [J]. Planta, 1995, 196: 788-795.
    [121] Ma J F, Hiradate S, Nomoto K, et al. Internal detoxification mechanism of Al in Hydrangea-Identification for AL from in the leaves[J]. Plant Physiol, 1997, 113: 1033-1039.
    [122] Ryan P R, Dellaze E, Randall P J.Malate efflux from root apices and tolerance to aluminum are correlated highly in wheat [J]. Plant Physiol, 1995, 122: 531-536.
    [123] Joned D L, Darrah P R. Resorption of compounds by roots of Zes mays L and its consequences in the rhizosphere. 3. Characteristics of sugar influx and efflux [J]. Plant Soil, 1996, 178: 153-160.
    [124] Kochian L V, Jones D L .Aluminum toxicity and resistance in plants [C]. In: Yokel L R, Golub M S eds. Research Issues in Aluminum Toxicity. Bristol, PA: Taylor and Fracis Publishers 1997.
    [125] Papernik L A, Kochian L V. Possible involvement of AL-induced electrical signals in AL tolerance in wheat [J]. Plant Physiol, 1997, 115: 657-667.
    [126] Ryan P R, Skerrett M, Findlay G P, et al. Aluminum activates an anion channel in the apical cell of wheat rot[J]s. Proc Natl Acad Sci, 1997, 94: 6547-6552.
    [127] Jones D L, Darrah P R, Kochian L V. Critical-evaluation of organic-acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake [J]. Plant Soil, 1996,180: 57-66.
    [128] Zhang L Y, Zhang X F. Effects of Soil Factors on Plant Chlorosis Due to Iron Deficit [J]. Chinese Journal of Soil Science, 2002, 33(1): 5-9.
    [129] Wang Q R, Li J Y, Li Z S. Studies on plant nutrition of efficient utility for soil phosphorus [J]. Journal of China Agricultural University, 1999,121:317-323.
    [130] Wang S Q, Han X Z,Q Y F,et al. Characteristics of Organic Acids Exudated from Soybean (Glycine max L.)Roots under P Deficiency Stress [J]. Soybean Science,2009,28(3):409-414
    [131] Gueriont M L, Yi Y. Iron: nutritious, noxious and not readily available [J]. Plant soil, 1994, 104: 815-820.
    [132] Ohwaki Y, Sugauara K. Active extrusion of protons and exudation of carboxylic acids in response to iron deficiency by roots of chickpea (Cicer arietinwm L.) [J].Plant soil, 1997, 189: 49-55.
    [133] Rabotti G, Zocchi G. Plasma membrane-bound H+-ATPase and reductase activities in Fe-deficient cucumber roots [J]. Plant Physiol, 1994, 90: 779-785.
    [134] Fox T C, Shaff J E, Grusak M A, et al. Direct measurement of Fe-labeled Fe2﹢influx in roots of pea using a chelator buffer system to control free Fe2+ in solution[J]. Plant Physiol, 1996, 111: 93-100.
    [135]李庆逵,胡祖光.甘家山试验厂对于磷灰石肥效试验第三次报告.土壤学报,1956,4(1):43-49.
    [136] Lanmont B.“Proteoid roots”in the Legume Viminaria juncea. Search, 1972, 3(3): 90-91.
    [137] Gardner W K. Parbery D G. Barber D A. The acquisition of phosphorus by Lupinus albusl: 1. some characteristics of the soil root interface [J]. Plant and soil, 1982, 68: 19-32.
    [138]林翠兰,曹一平,张福锁.缺磷对不同基因型玉米根系形态及吸收生理特征的影响[J].土壤与植物营养研究新动态(第一卷),1992:120-124.
    [139] Chen k, Ma L, et al. Exudation of Organic Acids by the Roots of Different Plant Species under Phosphorus Deficiency [J]. Journal of China Agricultural University, 1999,4(3):58-62.
    [140] Yu Y C, Yu J, feng L. Organic acids exudation from the roots of cunninghamia lanceolata and pinus massoniana Seedlings under low phosphorus stress [J]. Journal of Nanjing Forestry University(Natural Science Edition) ,2007,31(2):9-12.
    [141] Hoffland E, Van den Boogaard R, Nilemans J, et al. Biosynthesis and root exudation of citric and malic acid in phosphate-starved rape plants[J]. New Physiol, 1992, 122: 675-680.
    [142] Lipton D S, Blanchar R W, Blevins D G. Citrate, malate and succinate concentration in exudation from P-sufficient and P-stressed Medicago sativa L. Seedlings[J]. Plant Physiol, 1987, 85: 315-317.
    [143] Lu W L,Cao Y P,Zhan F S. Role of root-exuded organic acids in mobilization of soilphosphorus and micronutrients[J]. Chinese Journal of Applied Ecology,1999,10(3):379-382.
    [144] Keethisinghe G, Hocking P J, Ryan P R, et al. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.) [J].Plant Cell Environ, 1998, 21:467-478.
    [145] Neumann G, Massonneau A, Martinoia E ,et al. Physiological adaptations to phosphorus deficiency during proteoid root development[J]. Planta, 1999, 208:373-382.
    [146] Johnson J F, Allan D L,Vance C P, et al. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus: contribution to organic acid exudation by proteoid roots. Plant Physiol, 1996, 112:19-30.
    [147] Johnson J F, Vance C P, Allan D L. Phosphorus deficiency in Lupinus albus: altered; lateral root development and enhanced expression of phosphoenolpyruvate carboxylase [J]. Plant Physiol, 1996, 112:31-41.
    [148] Watt M, Evans J R. Proteid roots. Physiology and development [J]. Plant Physiol, 1999, 121:317-327.
    [149] Dinkelaker B, Rmheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.) [J].Plant Cell Environ, 1989, 12:285-292.
    [150] Brouquisse R, Nishimura M, Gailard J, et al. Characterization of a cytosolic aconitase in higher plant cells [J]. Plant Physiol, 1987, 84:1402-1407.
    [151] Johnson J F, Allan D L, Vance C P. Phosphorus stress-induced proteid roots show altered metabolism in Lupinus albus L [J]. Plant Physiol, 1994, 104:657-665.
    [152] Pilbeam D J, Cakmak I, Marschner H, et al. Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato [J]. Plant Soil, 1993, 154: 111-117.
    [153] Gniazdowska A, Krawczak A, Mikulska M, et al. Low phosphate nutrition alters bean plants ability to assimilate and translate nitrate [J]. Plant Nutr, 1999, 22: 551-563.
    [154] Lancien M, Ferrario-Méry S, Boux Y ,et al. Simultaneous expression of NAD-dependent isocitrate dehydrogenase and other Krebs cycle genes after nitrate resupply to short-term nitrogen starved tobacco[J]. Plant Nutr, 1999, 120:717-726.
    [155] Neumann G, R?mheld V. Root excretion of carbomylic acids and protons in phosphorus-deficient plants [J]. Plant Soil, 1999,211:121-130
    [156] Neumann G, Massonneau A, Langkade N et al. Physiological aspects of cluster root function and development in phosphorus-deficient White Lupin (Lupinus albus L.) [J].Ann Bot, 2000, 85:909-91
    [157] Yan X,Beebe S E & Lynch J P. Phosphorus efficiency in common bean genotypes in contrasting soil types.Ⅱ.Yield response [J]. Crop Science. 1995, 35: 1094-1099.
    [158] Chen G X, Shi G X., et al. Effect of mercury and cadmium on photochemical activity and polypeptide compositions of photosynthetic membranes form winter bud of Brasemiaschreben [J]. Acta scientiae Circumstantiae, 1999,19:521-525.(in Chinese with English abstract)
    [159] Van Assche F & Clijsters H. Effects of metal on enzyme activity in plants [J]. Plant Cell and Environment, 1990, 13:195-206.
    [160] Wu Y Y. Wang X. et al. Ecological Effect of compound pollution of heavy meals in soil-plant systemⅡ.Effet on element uptake by crops, alfalfa and tree [J]. Chinese Journal of applied Ecology,1997,8:545-522.(in Chines with English abstract)
    [161] Chaney R L, Bell P F, Melo I F S. Activity of microelement cation required by plants in DTPA-buffered nutrient solutions[C]. In: Agronomy Abstract Madison WI: American Society Agronomy, 1988. 232.
    [162] Krishnamurti G S R, G Ciesinski, et al. Kinetics of cadmium release from soils as influenced by organic acid: Implication in cadmium availability [J]. Environ. Qual., 1997, 26: 271-277.
    [163] Yang X E , X X Long , W Z Ni . Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulting plants [J]. Plant Nutrition and Fertilizer Science, 2002, 8(1): 8-15. (in Chinese with English abstract)
    [164] Beijing Agricultural University Compiling.1996. Advance in plant rhizosphere ecology and bio-prevention for root disease. Beijing: People University Press of China. 44-94. (in Chinese)
    [165] Chang X X, Duan C Q, Wang H X. Root excretion and plant resistance to metal toxicity [J]. Chinese Journal of Applied Ecology, 2000, 11: 315-320.
    [166] Mench, M. &E. Martin. Mobilization of cadmium and other metals from two soils by root exudates of Zea may L., Nicotiana tabacum L., and Nicotiana rustica L [J]. Plant Soil, 1991, 132:187-196.
    [167] Cislinski G, Van Rees K C J, Samigielska A M, Krishnanurti G S R and Huang P M. Low-molecula weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation[J]. Plant and Soil, 1998, 230:109-113.
    [168] Qiang W Y, Chen T et al Effect of cadmium and enhanced UV-B radiation on soybean root excretion [J]. Acta Phytoecologyica Sinica., 2003,27(3):293-298.
    [169] Fan H L, Wang X, Zhou W. Low molecular weight organic acids in rhizosphere and their effects on cadmium accumulation in two cultivars of amaranth (Amaranthus mangostanus L.) [J]. Scientia Agricultura Sinica., 2007, 4 (12) :2727-2733.
    [170] Tao L, Wei C X. The effect of exogenous organic acids and EDTA on quality of garlic sprouts planted in soils with different Pb contents [J]. Guizhou Agricultrual Sciences.,2009,37(4) :141-143 .
    [171] Zhang S Z, Li W, Shan X Q. Arenic solubility and speciation in a contaminated soil as affected by low molecular weight organic acids [J]. Journal of Guangxi normal university,2003, 21(1):22-23.
    [172] Ryan, P. R., E. D elhaize & P. J. Randall. Malate efflux from rot apices: evidence for a general mechanism of AL-tolerance in wheat [J] .Austrilian Journal of Plant Physiology, 1995, 22: 531-536.
    [173] Caldwell, M. M., L. P. Bj?n, et al. Effect of increased solar ultraviolet radiation on terrestrial ecosystems [J]. Journal of Photochemistry and Photobiology, 1998. 46: 40-52,.
    [174] Kliromomos, J. N. & M. F. Allen. UV-B mediated changes in belowground communities associated with the roots of Acer saccharum [J]. Functional Ecology, 1995, 9: 923-930.
    [175] Dubé, S. L. & J. F. Bornman. Response of spruce seedlings to simulataneous exposure to ultraviolet-B radiation and cadmim [J]. Plant Physiology and Biochemisttry, 1992, 30:761-767.
    [176] Larsson, E. H., J. F. Bornman & H.Asp. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus [J]. Journal of Experimental Botany, 1998, 49: 1031-1039.
    [177]涂书新,孙锦荷,郭智芬.富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究[J].核农学报,1999,13(5):305-311.
    [178] Kraffczyk .I, Trolldenier .G, Beringer H.Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms [J]. Soil Biol Biochenm, 1984, 16: 315-322.
    [179] Camak I, Marschner H. Increase in membrane permeability and exudation in roots of zinc deficient plants [J]. Plant Physiol, 1988, 132: 356-361.
    [180] Xia. H, Saglo P H. Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia [J]. Plant physiol, 1992, 100: 40-46.
    [181] Wang D L,Lin W H. Effects of CO2 elevation on root exudates in rice. [J]. Scta Ecologica Sinica, 1999,19(4):570-572.
    [182] Libert B. J Chromatogr [M]. 1981, 210: 540-543.
    [183]达世禄.色谱学导论[M].武汉:武汉大学出版社,1999:12-36.
    [184] Bhaskrn S, Smith R H, Newtonm R J. Physiological changes in cultured sorghum cell in response to induced water stress 1.Free proline [J]. Plant Physoil, 1985, 79:266-269.
    [185] Chen T X, Zhang J L, Lu N, et al. The characteristics of free proline distribution in various types of salt-resistant plants [J]. Acta Pratacuturae Sinica, 2006, 15 (1):36 - 41.
    [186] Song S Q, Lei Y B, Tian X R. Proline Metabolism and Cross Tolerance to Salinity and Heat Stress in Germinating Wheat Seeds [J]. Russian Journal of Plant Physiology, 2005, 52 (6):793 - 800.
    [187] Chen S L, Li J K, Bi W F,et al.Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress. Chinese bulletin of botany, 2001, 18 (5): 84-88.
    [188] Zhang M X, An L Z, Cheng T.Cascade mechanism of signal transduction in plants responding to osmotic stress [J]. Journal of Lanzhou University of Technology. 2004,30(2) :78-81.
    [189] Kern A J, Dyer W E.Betaine Biosynthesis Is Induced by Salt Stress but epressed by Auxinic Herbicides in Kochia scoparia [J].Journal Plant Growth Regulation, 2004, 23:9–19.
    [190] Jia C X, Xiong W D, Mao D B, et al. Analysis of Organic Acids in Hovenia Dulcis Thunb Peduncle by GC-MS[J]. J. Chinese Institute of food Scei and Tech. 2005, 5(1) :72-74
    [191] Timpa J D, Burke J J, Quiseberry J E, et al. Effect of water stress on organic acid and carbohydrate composition of cotton plant [J]. Plant Physiol, 1986, 82: 724–730.
    [192] Shi D C. Relaxation of Na2CO3 stress on Puccinellia tenuiflora (Griseb.) Scribn. et Merr. Plants by neutralizing with H3PO4[J]. Acta Pratacult. Sin. 1995, 4:34–38.
    [193] Maeshimal M, Nakanishi Y, Matsuura-Endo C.et al. Proton pumps of the vacuolar membrane in growing plant cells [J]. J plant res. 1996, 109: 119–125.
    [194] Sze H, Li X, Palmgren M G, Energization of plant cell membranes by H+-pumping ATPase: regulation and biosynthesis [J]. Plant Cell, 1999: 11: 677–689.
    [195] Delhaize E. Genetic control and manipulation of root exudates. In: Johnsen C, Lee KK, Sharma KK, et al eds. Genetic Manipulation of Crop Plants to Enhance Integrated Nutrient Management in Cropping System. ICRISAT,India, 1995, 145-152
    [196] Thomas B K, David R P,Richard W Z, Organic acid secretion as a mechanism of aluminum resistance: a model incorporating the root cortex, epidermis and the external unstirred layer [J]. J Exp Bot. 2005,56, 1856-1865.
    [197] Binzel, M. L., Hasegawa, et al. Solute accumulation in tobacco cells adapted to NaCl [J] .Plant Physiol. 1987,84: 1408 -1415.
    [198] Ueda A, Shiwm M, Sanmiya K, et al. Functional Analysis of Salt-Inducible proline t ransporter of Barley Roots [J] . Plant and Cell Physiology, 2001, 42: 1282 - 1289.
    [199] Bao F, Shi F J.Comparative Study on Physiological Characteristics between an invasive plant spartina alterniflora and Indigenous plant phragmites communis [J]. Bulletin of Botanical Research, 2007, 27(4):421-427
    [200] Yan X F, Sun G R, Li J, et al. Changes of several osmotica in puccinellia tenuiflora seedling under alkali salt stress [J]. Bulletin of Botanical Research, 1999, 19(3):348-355.
    [201]陈因.外源脯氨酸对受NaCl胁迫的蓝藻固氮活性的影响[J].植物生理学通讯,1992, (4) : 254- 258.
    [202]赵可夫.不同类型盐生植物脯氨酸含量的测定[J] .曲阜师范学院学报, (植物抗盐生理专刊) : 1984, 113- 114.
    [203]陈云昭.外源脯氨酸与盐胁迫下大豆愈伤组织的生理特性[A] .植物抗性生理研究[M] .济南:山东科技出版社, 1992,117- 120.
    [204] Bai H, Wang Y G.Effect of Exogenous Proline on Protein Content for Soybean Callus under Salt Stress [J]. Journal of Shanxi Agricultural University,2002,22(3):193-195.
    [205] Sun J P, Yan Q H.Research progress of the germplasm resource of Elymus L.[J].Pratacultural Science, 2005, 22:120-125.
    [206] Wang K J, Wu G L, Shi X X, et al.Advances in the research of the responses and adjustment of turf-grass to drought stress [J]. Pratacultural Science, 2006, 23(8):97-102.
    [207]候采霞,汤章城,细胞相容性物质的生理功能及作用机制.植物生理学通讯1999, 35(1):1-7.
    [208] Hajibagheri M A, Yeo A R, Flowers T J et al. Salinity resistance in Zea mays:fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids [J].Plant, Cell and Environment,1989, 12:753-757.
    [209] Mansour M M F, Salama K H A. Cellular basis of salinity tolerance in plants [J]. Environmental and experimental botanty, 2004, 52:113-122.
    [210] Zhang LX, Li S X. Research progress on relation ships betaine and Drought/salt resistance of plants [J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24 (9): 1765—1771.
    [211] Moghaieb R E A, Saneoka H, Fujita K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime [J]. Plant Science, 2004, 166:1345–1349.
    [212] Weretilnyk E A, Bednarek D, et al.Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons [J]. Planta, 1989, 178:342 - 352.
    [213] McCue K F and Hanson A D. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression [J], Plant Molecular Biology.1992, 18:1 - 11.
    [214] Ishitani M, Nakamura T, Han S Y ,et al. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid [J].Plant Molecular Biology, 1995, 27:307 - 315.
    [215]高倍铁子,耐盐作物の分子育种[J],バイオサイエソスとこイソタストリ一,1996 , 4 :273 - 275.
    [216] Zhong C B, Liu C J,Fei T, et al.Cloning,Swquencing of Suaeda heteroptera kitag CMO and Construction of its Recombinant Plant Expression Vector[J].China Biotechnology, 2006, 26 (7) : 80 - 83.
    [217] He X L, Hou X L, Wu J Z, et al.Molecular cloning and sequence analysis of betaine-aldehyde dehydrogenase (BADH) in Atriplex triangularis [J]. Journal of NanJing Agricultural University, 2004, 27 (1): 15 - 19.
    [218] Wang S H, Tao J M, Zhang H M, et al.Molecular Cloning of Betaine Synthetase in Suaeda salsa and Construction of Plant Co-expression Vector in a Single Open Reading Frame with the A Region of FMDV[J].Acta Botanica Boreali-Occidentalia Sinica, 2007, 27 (2): 215– 222..
    [219]张海燕,赵可夫.盐分和水分胁迫盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998, 40 (1) : 56 - 61.
    [220] Carpenter J F,Crowe M,Arakawa T. Comparison of solute-induced protein stabilization in aqueous solution and in the frozen and dried states[J].Journal of Dairy Science,1990,73:3 627-3 636.
    [221] Zhang M Y, Qian J, Yang Z, et al. Studies on Some physiological characteristics of salt-tolerance in wild Soybeans (Glycine soja) [J]. Journal of Fudan University(Natural Science), 2002 (41) : 6.
    [222] Yang K, Zhang B J, Hu Y G,et al.Effects of complex saline2alkaline stress on seeds germination and physiological and biochemical parameters of oats seedlings [J].Agricultural Research in the Arid Areas. 2009, 27(3): 188-192.
    [223] Yan H,Shi D C,Yin S J, et al. Effects of saline - alkaline stress on the contents of nitrogen and several organisms of Aneurolepidium chinense [J] . Journal of Northeast Normal University (Natural science edition), 2000, 32(3):47 -51.
    [224]高庆义,王宝山.高粱叶中有机渗透调节物质对NaCl胁迫的响应[J] .山东师大学报,1998 ,13 (3) :300—305.
    [225] Petrusal M, Winicol L. Proline status in salt tolerant and saltsensitive alfalfa cell lines and plants in response to NaCl [J]. Plant Physiol Biochem, 1997, 35:303—310.
    [226]王锁民,朱兴运,王增荣.渗透调节在碱茅( Puccinellia tenuiflora)幼苗适应盐逆境中的作用初探[J ] .草业学报,1993 ,2 (3) :40—46.
    [227] Pasternak D. 1982.Biosaline research in Israel: Alternative solutions to a limited fresh water supply, p. 39– 57[C]. In: A. SanPietro (ed.), Biosaline research. A look to the future. Plenum, New York.
    [228] Zhu J K.Plant sal tolerance [J].Trends plant sci, 2001, 6:66-71.
    [229] Zhang H F,Wang Suo-min.Advance in Study of Na+ Uptake and Transport in Higher Plants and Na+ Homeostasis in the Cell[J].Bulletin of Botany,2007,24:561-571.
    [230] Paul M, Hasega W, Ray A. Plant cellular and molecular responses to highsalinity [J]. Plant Physiol Plant Mol Biol, 2000, 51:463 - 499.
    [231] Chowdhury M A M, Moseki B, Bowling D J F. A method for screening rice plants for salt tolerance [J] Plant and Soil. 1995, 171:317 - 322.
    [232] Fortmeier, R., and Schubert, S. Plant, Salt tolerence of maize (zea mays L) [J]. Cell and Environment. 1995,18:1041 - 1047.
    [233] Glenn E P, Watson M C, O’Learyjwet, et al. Comparison of salt tolerance and osmoticadjustment of lowsodium and high sodium subspecies of the C4 halophyte, Atriplex canescen [J]. Plant Cell Environ, 1992, 15:711– 718.
    [234] Singh N K, LaRosa P C, Handa A K, et al. Hormonal regulation of protein synthesis associated with salt tolerance in plant cells [J]. Proc. Natl. Acad. Sci. U. S. A., 1987, 84: 739 - 743.
    [235] Ral G G, Rao G R. Pigment composition and chlorophyyase activity in pigment pea and Gingelley under Nacl salinity [J]. Indian J. Exp Biol, 1986, 19:768 - 770.
    [236] Clipson N J W, Flowers T J. Salt tolerance in the halophyte Suanda maritime L. Dum. The effect of salinity on the concentration of sodium in the xylem [J]. New Phytol, 1987, 105:359 - 366.
    [237]赵可夫,李法曾.中国盐生植物[M] .北京:科学出版社,1999.
    [238] Blumwald E, Aharon G S and Apse M P.Sodium transport in plant cells [J]. Biochim Biophys Acta, 2000, 1465:140-151.
    [239] Cohen C K, Norvell W A, Kochian L V. Induction of the root cell plasma membrane ferric reductase [J]. Plant Physiol, 1997, 114:1061 -1069.
    [240] Maathuis F J M, Amtumann A K. nutrition and Na+ toxicity: the basis of cellular K/Na ratios [J]. Ann Bot, 1999, 84:123-133.
    [241] Cramer G R, Alberico G J, Schmidt C. Salt tolerance is not associated with the sodium accu 2mulation of two maize hybrida [J]. Aust J Plant Physiol, 1994, 21:675 - 692.
    [242]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J] .应用与环境生物学报,2000 ,6(4) :379-387
    [243] Rodriguez H G, Roberts J K M, Jordan W R, et al. Growth water relations and accumuation of organic and inorganic solutes in roots of maize seedlings during salt stress [J]. Plant Physiol, 1997, 113:881 - 893.
    [244]林栖凤,李冠一.植物耐盐性研究进展[J ] .生物工程进展, 2000 ,20 (2) :20 - 25.
    [245] Guo Fangqing, BANG Zhangcheng. Enhanced H+ transport activity of tonplast vesicles isolated from roots of salt-tolerant multanto [J]. Chinese Science Bulltein, 1999, 4 (13):1198.
    [246]王保山,赵可夫.小麦叶片中Na十和K十提取方法比较[J].植物生理学通讯,1995, 3:50-5
    [247] Li C J,Zhou J K. Determination of Cl- and SO42- in nicotinic acid by ion chromatography [J]. Tianjin Pharmacy, 2006, 18(1):15-17.
    [248] De-Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress [J]. Environ Exp Bot 2003, 49:107–120.
    [249] Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars [J]. Environ Exp Bot, 2002:47:39–50.
    [250] Soussi M, Ocana A and Lluch C. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicerarietinum L) [J]. J Exp Bot, 1998, 49:1329–1337.
    [251] Foyer C H, Notor G, Lelandais M, et al. Shortterm effects of nitrate, nitrite and ammonium assimilation and amino biosynthesis in maize [J]. Planta, 1994, 192 :211-220
    [252] Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annu. Rev Plant Biol, 2008, 59: 651-681.
    [253] Zhu J K. Regulation of ion homeostasis under salt stress [J]. Curr Opin Plant Biol, 2003, 6:441–445
    [254] Munns R. Comparative physiology of salt and water stress. Plant [J], cell and Environment 2002: 25, 239-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700