滨海盐土培肥改良利用技术及植物耐盐性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滨海盐土含盐多、pH值高、结构差、肥力低,对植物生长和生态环境均有很大影响,因此,改良利用盐土具有重要意义。通过田间试验研究黄麻(Corchorus capsularis L.)连作、稻-菜轮作、稻-麦轮作以及黄麻秸秆与鸡粪配施等改良利用技术对盐土理化性状及生物性质的影响;通过盆栽试验研究滨梅(Prunus maritima)、鸡桑(Morus australis)等植物的耐盐机制和滨梅、美国白蜡(Fraxinus americana)根际微域矿质元素相对质量分数及其分布。研究结果表明:
     ⑴黄麻连作、稻-菜轮作和稻-麦轮作2 a后,0~20 cm土层的土壤密度比滨海盐土荒地分别降低了16.11%、13.42%、9.40%,黄麻连作、稻-菜轮作20~40 cm土层的土壤密度比滨海盐土荒地降低了5.30%、5.962%,而稻-麦轮作无明显差异。黄麻连作、稻-菜轮作0~20 cm土层的土壤有机质含量比滨海盐土荒地分别增加了26.66%、47.93%,20~40 cm土层增加了21.92%、9.46%,40~60 cm土层增加了15.46%、9.36%,而稻-麦轮作无明显影响。与滨海盐土荒地相比,各利用方式的土壤阳离子交换量(CEC)、全N、水解性N、速效K含量均增加,而全盐量和pH减小。黄麻连作、稻-菜轮作和稻-麦轮作的土壤蛋白酶活性比滨海盐土荒地分别增加了2.24、0.61、2.00倍,脲酶、过氧化氢酶、磷酸酶也增加。黄麻连作、稻-菜轮作和稻-麦轮作的土壤微生物总数分别比滨海盐土荒地增加了45.98、24.66、2.27倍,其中,细菌、放线菌、真菌均有不同程度增加。主成分分析可知,稻-菜轮作改良效应较好,黄麻连作次之,稻-麦轮作较弱。
     ⑵黄麻秸秆(A1、A2、A3)和鸡粪(B1、B2、B3)2个因素分设1 200、2 400、3 600 kg·hm-2 3个施用量水平。A3B1、A3B2、A3B3处理0~20 cm土层的土壤密度比CK分别降低了4.79%、6.85%、7.53%,而其它处理无明显差异。同时,土壤持水量、孔隙度随秸秆和鸡粪施用量增加而升高。A1B2~A3B3的8个处理0~20 cm土层的土壤有机质含量比CK分别增加了7.64%、8.82%、8.45%、16.73%、13.64%、25.36%、36.64%、54.64%,而A1B1无显著增加。另外,土壤N、P、K和CEC随秸秆和鸡粪施用量增加而上升,而pH、全盐量下降。A1B1~A3B3的9个处理土壤蛋白酶活性较CK分别增加了35.94%、191.48%、54.83%、67.49%、264.50%、89.98%、196.57%、274.34%、211.34%,同样,磷酸酶、蔗糖酶、过氧化氢酶、脲酶活性以及细菌、真菌数量随秸秆和鸡粪施用量增加而上升。通过主成分分析和聚类分析,A3B2、A3B3处理的盐土综合性状改良效果较好;A2B1、A2B2、A3B1、A2B3其次;CK、A1B1、A1B2、A1B3较弱。
     ⑶低质量浓度(3 g·L-1)NaCl处理下滨梅根细胞未受明显伤害,但高质量浓度(9 g·L-1)NaCl胁迫导致根细胞内降解物质增多,细胞器降解,细胞核染色质降低,质膜局部内陷,但未出现质壁分离。同时,盐分处理下滨梅根含水率、根内Ca2+、叶中Mg2+、叶中Cl-、根内Na+和叶中Na+等含量增加。另一植物鸡桑在盐分处理下根含水率、脯氨酸、超氧化物岐化酶(SOD)、过氧化物酶(POD)、根内Ca2+、根内Mg2+、叶中Mg2+、根内Cl-、叶中Cl-、根内Na+和叶中Na+等含量增加。
     ⑷滨梅根系Na、Mg的累积量随盐浓度升高而增加,9 g·L-1盐胁迫下Ca、Mg、K均向根中柱聚集。滨梅根际Cl的质量分数较低,同时,盐处理使Cl在0~100μm从对照(0 g·L-1)的累积状态转为亏缺,且盐处理滨梅根系Cl的累积量均比对照高。此外,滨梅根际Fe的质量分数较高。另一植物白蜡在对照条件下根系Cl、Ca、Na的累积量较少,低质量浓度(3 g·L-1)盐处理下白蜡根系Na、Cl、Ca、Mg的聚集量较多。高质量浓度(9 g·L-1)盐胁迫下白蜡根系Na、Ca、Mg、Cl的累积量降低,但K、Fe、Zn却升高,同样根际Na的质量分数也较高。与对照相比,盐处理使白蜡根中柱K、Ca、Mg的聚集量增加。白蜡根际0~100μm,对照Fe出现累积,而其它处理存在亏缺;9 g·L-1盐处理和对照根内Fe的质量分数均远高于3 g·L-1处理。
     综上,①各利用方式均增加土壤有机质,提高养分,改善通透性、持水力,增强生物活性,促进养分循环,且上层土壤改良效应较下层好。其中,这些利用方式的盐土改良效应大小为稻-菜轮作>黄麻连作>稻-麦轮作>滨海盐土荒地。②秸秆与鸡粪配施增加土壤有机质,降低土壤密度,增强土壤通透性和保蓄性,加速土体脱盐,降低pH,增加土壤N、P、K含量,提高蛋白酶、尿酶、蔗糖酶、过氧化氢酶和磷酸酶活性,增加微生物数量。不同用量的秸秆和鸡粪配施改良滨海盐土的效果分为3类,即CK、A1B1、A1B2、A1B3为第一类,改良效果较弱;A2B1、A2B2、A3B1、A2B3为第二类,改良效果中等;A3B2、A3B3为第三类,改良效果较强。③盐胁迫下,滨梅主要通过以下途径适应盐渍生境,增加根含水率,提高根内Ca2+、叶中Mg2+含量,但同时另一组指标如叶中Cl-、根内Na+和叶中Na+等含量增至滨梅耐受限度以外,则削弱滨梅的耐盐性,进而诱发盐害。鸡桑盐害的主要原因为根内Na+、叶中Na+、根内Cl-和叶中Cl-等含量过度增加,但同时其根含水率、脯氨酸、SOD、POD、根内Ca2+、根内Mg2+、叶中Mg2+等指标值增加有助于缓解盐害。④盐胁迫条件下,滨梅根系吸收累积过量的Na是导致盐害的重要原因,而滨梅根系Cl、Fe的吸收量与盐害关系不密切。另一植物白蜡根系吸收累积过量的Na、Cl,从而诱发盐害,至于根内过高的Fe是否也为盐胁迫的诱因有待研究。
Due to its inferior characteristics such as high pH value, high salinity, poor structure, and low fertility, coastal solonchak has adverse effect on both plant growth and eco-environment. Therefore, it is important to improve and utilize the soil. This author researched effects of continuous cropping by jute, rotation by paddy and rape, rotation by paddy and wheat on the physico-chemical properties and biological properties for the coastal solonchak, and researched ameliorative effects of different level of jute straw and chicken manure on the soil by way of field experiment. Moreover, pot culture experiments were conducted to document the salt-tolerant mechanisms of beach plum (Prunus maritima) and Japanese mulberry (Morus australis) and to assess the contents and distributions of salinity on mineral elements in rhizosphere microzone of beach plum and white ash (Fraxinus americana) under four salinity levels (0, 3, 6, and 9 g·L-1 NaCl in the irrigation water). The results were shown as follows:
     ⑴The coastal solonchak was ameliorated by each land use. Compared with the control, for three plots by continuous cropping with jute, rotation with paddy and rape, rotation with paddy and wheat for two-year, their soil density at the 0~20 cm soil layer was respectively decreased by 16.11%, 13.42%, and 9.40%, decreased by 5.30% and 5.96% at the 20~40 cm, whereas no significant changes occurred between the plot by rotation with paddy and wheat and the control. Compared with the control, for the plots by continuous cropping with jute, rotation with paddy and rape, their organic content was respectively increased by 26.66 % and 47.93% at the 0~20 cm soil layer, increased by 21.92% and 9.46% at the 20~40 cm, increased by 15.46% and 9.36% at the 40~60 cm, but the organic content was not significantly increased by rotation with paddy and wheat. In addition, soil cation exchange capacity (CEC), total N, hydrolysable N, available K were all promoted, whereas soil salt content and pH value were reduced by way of those land use. For the plots by continuous cropping with jute, rotation with paddy and rape, rotation with paddy and wheat, their soil protease activity at the 0~20 cm soil layer was respectively increased by 2.24, 0.61, and 2.00 times as against the control, microbes by 45.98, 24.66, and 2.27 times. Moreover, the number of bacteria, of actinomycetes, of fungi and activity of urase, of hydrogen peroxidase, of phosphatase were also increased. By using principal component analysis, the plot by rotation with paddy and rape ranked the highest, whereas the lowest by rotation with paddy and wheat in terms of the ameliorative effect.
     ⑵Jute straw (A1, A2, A3) and chicken manure (B1, B2, B3) have 3 application levels (1 200, 2 400, and 3 600 kg·hm-2) respectively. Compared with CK, for A3B1, A3B2, and A3B3, their soil density at the 0~20 cm soil layer was decreased by 4.79%, 6.85%, and 7.53% respectively, whereas the differences in soil density among other treatments were not significant. Compared to CK, the organic content from A1B2 to A3B3 was increased by 7.64%, 8.82%, 8.45%, 16.73%, 13.64%, 25.36%, 36.64%, 54.64% except A1B1. Meanwhile, soil N, P, K, and CEC were also rised with organic fertilizer addition, and pH value, salt content were declined. The soil protease activity from A1B1 to A3B3 was increased by 35.94%, 191.48%, 54.83%, 67.49%, 264.50%, 89.98%, 196.57%, 274.34%, 211.34% compared with CK, so are phosphatase, invertase, hydrogen peroxidase, urease, fungus, and bacterium. According to principal component analysis and cluster analysis, the ameliorative effect of A3B2, A3B3 is good, that of A2B1, A2B2, A3B1, and A2B3 takes second place, and that of CK, A1B1, A1B2, A1B3 is weak.
     ⑶Beach plum came to no harm at low salinity (3 g·L-1), whereas at high salinity (9 g·L-1) it was observed that the addition of the degradable substance in the cell, organelle degradation, the nucleus chromatin reduction, and part invagination of plama membranes, but the plasmolysis did not occur. Meanwhile, NaCl treatments stimulated an increase in these parameters, i.e., water content in the root of beach plum, Ca2+ content in the root, Mg2+ content in the leaf, Cl- content in the leaf and Na+ content in the leaf or the root. In addition, salt treatments led to an increase in water content in the root of Japanese mulberry, proline content, activity of superoxide dismutase (SOD) and peroxidase (POD), the content of Ca2+, Mg2+ in the root, the content of Mg2+ in the leaf, Cl- content in the root or the leaf, and Na+ content in the leaf or the root.
     ⑷K, Mg, and Ca were aggregated in the stele of the root of beach plum under the treatment of 9 g·L-1 NaCl. Meanwhile, contents of Na, Mg in the root were increased with the addition of NaCl concentration. Cl content was relatively low in the rhizosphere of beach plum. NaCl treatments made Cl transform its accumulation into a deficit at 1~100μm in the rhizosphere of beach plum, and the content of Cl in the root was higher under the NaCl treatments compared to the control. The content of Fe was high in rhizosphere of beach plum. Contents of Cl, Ca, and Na in the root of white ash were low under the control. Contents of Na, Cl, Ca, and Mg in the root of white ash were higher at low salinity (3 g·L-1) compared to the control. At high salinity (9 g·L-1), contents of Na, Ca, Mg, and Cl in the root of white ash were declined, and increased for K, Fe, Zn. Meanwhile, the content of Na was relatively high in the rhizosphere, K, Ca, and Mg were accumulated in the stele of white ash under the NaCl treatments. The accumulation for Fe occurred at 1~100μm in the rhizosphere of white ash under the control, but the deficit for Fe under the NaCl treatments. Moreover, the content of Fe in the root was higher compared with the treatment of 3 g·L-1 NaCl.
     Those results indicated that:①Each land use can increase the organic content, improve soil perviousness and water retention ability, raise soil nutrients, enhance biological activity, promote nutrient cycle, and the ameliorative effect at the 0~20 cm soil layer was better than that in 20~40 cm or 40~60 cm. Those land use was put in order with ameliorative effect: rotation with paddy and rape>continuous cropping with jute>rotation with paddy and wheat>barren coastal solonchak.②The application of jute straw and chicken manure increased the organic content, reduced soil density, enhanced soil perviousness, accelerated desalting, reduced pH value, raised soil N, P, K content. Moreover, the activity of soil urease, invertase, hydrogen peroxidase, phosphatase was increased with the addition of jute straw and chicken manure, and the change of the microbial number is similar to that of those enzymes activity. The classification of the coastal solonchak according to ameliorative effect of different levels of jute straw and chicken manure was obtained, namely CK, A1B1, A1B2, A1B3 belonging to the first kind, their weak amelioration; A2B1, A2B2, A3B1, A2B3 belonging to the second kind, their medium amelioration; A3B2, A3B3 belonging to the third kind, their strong amelioration.③Beach plum has evolved its mechanisms to adapt to salt stress by the following way: an increase in water content in the root, an accumulation in the content of Ca2+ in the root, of Mg2+ in the leaf of beach plum, but the salt-tolerance of beach plum was weakened by a simultaneous increase in the content of Cl- in the leaf, the content of Na+ in the root or the leaf. It was an excess of the content of Na+ in the root or the leaf of Japanese mulberry, the content of Cl- in the root or the leaf that caused the salt injury. However, Japanese mulberry’s positive response to salinity depends on the following way: an increase in water content in the root, an accumulation of proline, an ascent in activity of SOD and POD, an increase in the content of Ca2+, Mg2+ in the root, in the content of Mg2+ in the leaf.④The root absorption of Cl, Fe didn’t correlate closely with salt injury of beach plum, whereas over-accumulation of Na might be main mechanism of generating salt injury. Over-accumulation of Na, Cl in the root resulted in salt injury of white ash, but it is not known for Fe.
引文
1. Abd-alla M H,Omar S A. Wheat straw and cellulolytic fungi application increase nodulation,nodule efficiency and growth of fenugreek (rigonella foenum-graceum L.) grown in saline soil [J]. Biology and Fertility of Soils,1998,26(1):58~65.
    2. Abd-El Baki G K,Siefritz F,Man H M, et al. Nitrate reductase in Zea mays L. under salinity[J]. Plant, Cell﹠Environment,2000,23(5):515~521.
    3. Agarwal S,Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia[J]. Biologia. Plantarum,2004,48(4): 555~560.
    4. Aldesuquy H S. Effect of seawater salinity and gibberllic acid on abscisic acid, amino acids and water-use efficiency of wheat plants[J]. Agrochimica,1998,42:147~157.
    5. Allakhverdiev S I,Sakamoto A,Nishiyama Y, et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystemsⅠandⅡin Synechococcus sp[J]. Plant Physiology,2000,123:1 047~1 056.
    6. Almansa M S,Hernandez J A,Jimenez A, et al. Effects of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different root stock-scion combinations[J]. Biologia Plantarum,2002,45(4):545~549.
    7. Apse M P,Aharon G S,Wayne A, et al. Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999,285:1 256~1 258.
    8. Asada K,Takahashi M. Production and scavenging of active oxygen radicals in photosynthesis[J]. Photoinhibition,1987,9:227~288.
    9. Bacilio M,Rodriguez H,Moreno M, et al. Mitigation of salt stress in wheat seedlings by a gfp-tagged Azospirillum lipoferum[J]. Biology and Fertility of Soils,2004,40(3):188~193.
    10. Ball M C,Farquhar G D. Photosynthetic and stomatal responses of two mangrove species, Avicennia marina and Aegiceras corniculatum, to long term salinity and humidity conditions[J]. Plant Physiology,1984,74(1):1~6.
    11. Bano A,Fatima M. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas[J]. Biology and. Fertility of Soils,2009,45(4):405~413.
    12. Barrett-lennard E G. Restoration of saline land through revegetation[J]. Agricultural Water Management,2002,53:213~226.
    13. Bauder J W,Brock T A. Irrigation water quality, soil amendments, and crop effects on sodium leaching[J]. Arid Lands Research Management,2001,15(2):101~113.
    14. Bhatti A U,Khan Q,Gurmani A H, et al. Effect of organic manure and chemical amendments on soil properties and crop yield on a salt affected Entisol[J]. Pedosphere,2005,15(1):46~51.
    15. Bian J M,Tang J,Lin N F. Relationship between saline-alkali soil formation and neotectonic movement in Songnen Plain, China[J]. Environmental Geology,2008,55(7):1 421~1 429.
    16. Bohnert H J,Jensen R G. Strategies for engineering water-stress tolerance in plants[J]. Trends in Biotechnology,1996,14(3):89~97.
    17. Bohnert H J,Nelson D E,Jensen R G. Adaptations to environmental stresses[J]. The Plant Cell,1995,7:1 099~1 111.
    18. Bray E A. Plant responses to water deficit[J]. Trends Plant Science,1997,2(2):48~54.
    19. Breckle S W. How do halophytes overcome salinity? In: Khan Ml (ed.). Biology of salt tolerant plants. Michigan,USA,1995,199~203.
    20. Buckland G D,Bennett D R,Mikalson D E, et al. Soil salinization and sodication from alternate irrigations with saline-sodic water and simulated rain[J]. Canadian Journal of Soil Science,2002,82(3):297~309.
    21. Chang H,Siegel B Z,Siegel S M. Salinity-induced changes in isoperoxidases in taro, Colocasia esculenta[J]. Phytochemistry,1984,23(2):233~235.
    22. Chartzoulakis K,Klapaki G. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages[J]. Scientia Horticulturae,2000,86(3):247~260.
    23. Cheeseman J M. Mechanisms of salinity tolerance in plants [J]. Plant Physiology,1988,87:547~550.
    24. Chen S,Li J,Wang S, et al. Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl[J]. Trees-Structure Function,2001,15(3):186~194.
    25. Chino M,Hidaka H. Direct observation and X-ray micro–analysis of frozen specimens of plant root in soil[J]. Soil Science and Plant nutrition,1977,23(2):195~200.
    26. Clipson N J W,Flowers T J. Salt tolerance in the halophyte Suaeda maritime L. Dum. The effect of salinity on the concentration of sodium in the xylem[J]. New Phytologist,1987,105:359~366.
    27. Clough B. F. Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff. in relation to salinity[J]. Australian Journal of Plant Physiology,1984,11(5):419~430.
    28. Constable S. Marine electromagnetic methods-A new tool for offshore exploration[J]. Society of Exploration Geophysicists,2006,25(4):438~444.
    29. Cramer G R,Epstein E,Lauchli A. Effects of Sodium potassium and calcium on salt stressed barely (II) Elemental analysis [J]. Plant Physiology,l991,(81):197~202.
    30. Crowe J H,Hoekstra F A,Crowe L M. Anhydrobiosis[J]. Annual Review of Physiology,1992,54:579~599.
    31. Cui X Y,Wang Y,Guo J X. Osmotic regulation of betaine content in Leymus chinensis under saline-alkali stress and cloning and expression of betaine aldehyde dehydrogenase(BADH) gene[J]. Chemical Research Chinese Universities,2008,24(2):204~209.
    32. Cushman J C,Meyer G,Michalowski C B, et al. Salt stress leads to differential expression of two isogenes of Phosphoenol Pyruvate Carboxylase during Crassulacean Acid Metabolism induction in the common ice plant[J]. The Plant Cell,1989,1(7):715~725.
    33. Dash M,Panda S K. Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds[J]. Biologia. Plantarum,2001,44(4):587~589.
    34. de la Paz Jimenez M,de la Horra A M,Pruzzo L, et al. Soil quality: a new index based on microbiological and biochemical parameters[J]. Biology and Fertility of Soils,2002,35(4):302~306.
    35. Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants[J]. The Plant Journal,1993,4(2):215~223.
    36. Dessalegne L,Wetten A C,Caligari P D S, et al. Production of transgenic tomatos expressing oxalate oxidese [J]. Acta Horticulturae,1997,447:457~458.
    37. Dhindsa R S,Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation[J]. Journal of Experimental Botany,1981,32(1):79~91.
    38. Dietz K J,Tavakoli N,Kluge C, et al. Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level[J]. Journal of Experimental Botany,2001,52(363):1 969~1 980.
    39. Dopp M, Larther F, Weigel P. Osmotic adaption in Australian mangroves[J]. Plant Ecology,1985,61:247~253.
    40. Dubey R S,Singh A K. Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants[J]. Biologia Plantarm,1999,42(2):233~239.
    41. Dudeck A E,Peacock C H. Effects of salinity on seashore paspalum turfgrasses[J]. Agronomy. Journal,1985,77: 47~50.
    42. El-shintinawy F,El-shourbagy M N. Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine[J]. Biologia Plantarum,2001,44(4):541~545.
    43. Fang H L,Liu G H,Kearney M. Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China[J]. Environmental Management,2005,35(1):72~83.
    44. Fang R Z, Song C,Ying M, et al. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress[J]. Environmental Pollution,2008,155:284~289.
    45. Farr E. Measurement of ionic concentration gradients in soil near roots[J]. Soil Science,1969,107:385~391.
    46. Flowers T J,Troke P F,Yeo A R. The mechanism of salt tolerance in halophytes[J]. Annual Review of Plant Physiology,1977,28:89~121.
    47. Foolad M R,Lin G Y. Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato[J]. Plant Breeding,1997,116(4):363~367.
    48. Ford C W. Accumulation of low molecular solutes in water stress tropical legumes[J]. Phytochemistry,1984,23:1 007~1 015.
    49. Gao Z F,Sagi M,Lips S H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity[J]. Plant Science,1998,135:149~159.
    50. Giridara-Kumar S,Lakshmi A,Madhusudhan K V, et al. Photosynthesis parameters in two cultivars of mulberry differing in salt tolerance[J]. Photosynthetica,1999,36(4):611~616.
    51. Glu B E,Gan F E,Yücel M, et al. Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress[J]. Plant Growth R egulation,2004,42:69~77.
    52. Gomez J M,Jimenez A,Olmos E, et al. Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts[J]. Journal of Experimental Botany,2004,55(394):119~130.
    53. Gómez -Cadenas A,Tadeo F R,Primo-Millo E, et al. Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock[J]. Physiologia plantarum,1998,103(4):475~484.
    54. Grattan S R,Grieve C M. Mineral element acquisition and growth response of plants grown in saline environments[J]. Agriculture Ecosystems & Environment,1992,38(4):275~300.
    55. Gueta-Dahan Y,Yaniv Z,Zilinskas B A, et al. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus[J]. Planta,1997,203(4): 460~469.
    56. Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine[M]. Oxford: Clarendon Press, 1989:356~364.
    57. Harper D B,Harvey B M R. Mechanisms of paraquat tolerance in perennial ryegrass II. Role of superoxide dismutase, catalase, and peroxidase[J]. Plant, Cell﹠Environment,1978,1(3):211~215.
    58. Hasegawa P M,Bressan R A,Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463~499.
    59. Hasegawa P M,Zhu J K,Bohnert H J, et al. Plant cellular and molecular responses to high salinity[J]. Annual Review of Plant Physiology Plant Molecular Biology,2000,51:463~499.
    60. Hendriks M,Jungk A. Erfassung der Mineral stoffverleilung in wnrzelnahe durch getrennte Analyse von Rhizound restboden[J]. Z Planzenernahung und Bodenkunded,1981,144:276~282.
    61. Imlay J A,Linn S. DNA damage and oxygen radical toxicity[J]. Science,1988,240(4857):1 302~1 309.
    62. Itai C,Benzion A. Water and plant life[M]. Springer-Verlag,Berlin,Heidelberg,New York,1976:207~224.
    63. Izzo R,Navari Izzo R,Navari-Izzo F, et al. Growth and mineral absorption in maixe seedling as affected by increasing NaCI concentrations[J]. Journal of Plant Nutrition,1991,33:687~699.
    64. Jain M, Mathur G,Koul S, et al. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.)[J]. Plant Cell Reports,2001,20(5):463~468.
    65. Jin H,Kim H R,Plaha P, et al. Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinese[J]. Plant Science,2008,175(6):784~792.
    66. Karin I K. The effect of NaCl on growth, dry matter allocation and ion uptake in salt marsh and inland populations of Armeria maritine[J]. New phytologist,1997,135(2):213~225.
    67. Kautz T,Wirth S,Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime[J]. European Journal of Soil Biology,2004,40(2):87~94.
    68. Khatkar D,Kuhad M S. Short-term salinity induced changes in two wheat cultivars at different growth stages[J]. Biologia Plantarum,2000,43(4):629~632.
    69. Khavari-nejad R A,Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars[J]. Photosynthetica,1998,35(1):151~154.
    70. Kirst G O. Salinity tolerance of eucaryotic marine algae[J]. Annual Review Plant Physiology Plant Molecular Biology,1990,41:21~53.
    71. Klages K,Boldingh H,Smith G S. Accumulation of myo-Inositol in Actinidia seedlings subjected to salt stress[J]. Annals of Botany,1999,84:521~527.
    72. Koca H,Bor M,?zdemir F, et al. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars[J]. Environmental and Experimental Botany,2007,60(3):344~351.
    73. K?hler B,Raschke K. The delivery of salt to the xylem. Three types anion conductance in the plasmalemma of the xylem parenchyma of roots of barley[J]. Plant Physiology,2000,122:243~254.
    74. Kraus T E,Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved?[J]. Plant and Cell Physiology,1994,35(1):45~52.
    75. Kumar S G,Reddy A M,Sudhakar C. NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance[J]. Plant Science,2003,165(6):1 245~1 251.
    76. Leung J,Giraudat J. Abscisic acid signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:199~222.
    77. Liu F J,Hu W Y,Li Q Y. Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds[J]. Journal of Environmental Sciences,2002,14(3):339~344.
    78. Liu H Q,Xu J W,Wu X Q. Present situation and tendency of saline-alkali soil in west Jilin Province[J]. Journal of Geographical Sciences,2001,11(3):321~328.
    79. Luo Q Y,Yu B J,Liu Y L. Stress of Cl- is stronger than that of Na+ on Glycine max seedling under NaCl stress[J]. Agricultural Sciences in China,2002,1(12):1 404~1 409.
    80. Maathuis F J M,Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios[J]. Annals of Botany,1999,84:123~133.
    81. Maeshima M. Tonoplast transporters: organization and function[J]. Annual Review Plant Physiology and Plant Molecular Biology,2001,52:469~497.
    82. Mansour M F. NaCl alteration of plasma membrane of A lliumcepa epidermal cells, alleviation by calcium[J]. Plant Physiology,1994,145:726~730.
    83. Mansour M F. Nitrogen containing compounds and adaptation of plants to salinity stress[J]. Biologia Plantarum,2000,43(4):491~500.
    84. Maser P,Eckelman B,Vaidyanathan R, et al. Altered shoot/root Na(+) distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na(+) at transporter AtHKT1[J]. FEBS Letters,2002,531(2):157~161.
    85. Mattioni C,Lacerenza N G,Troccoli A, et al. Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings[J]. Physiologia Plantarum,1997,101(4):787~792.
    86. Meyer M J,Smith M A L,Knight S L. Salinity effects on St. Augustinegrass:A novel system to quantify stress response[J]. Journal of P1ant Nutrition,1989,12(7):893~908.
    87. Micic S,Shang J Q,Lo K Y, et al. Electrokinetic strengthening of a soft marine sediment using intermittent current[J]. Canadian Geotechnical,2001,38:287~302.
    88. Minhas P S. Saline water management for irrigation in India[J]. Agricultural Water Management, 1996, 30(1):1~24.
    89. Misra N,Dwivedi U N. Genotypic difference in salinity tolerance of green gram cultivars[J]. PlantScience,2004,166(5):1 135~1 142.
    90. Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405~410.
    91. Miyama M,Tada Y. Transcriptional and physiological study of the response of Burma mangrove (Bruguiera gymnorhiza) to salt and osmotic stress[J]. Plant Molecular Biology,2008,68:119~129.
    92. Moreno F,Cabrera F,Fernandez-Boy E, et al. Irrigation with saline water in the reclaimed marsh soils of south-west Spain:impact on soil properties and cotton and sugar beet crops[J]. Agricultural Water Management,2001,48:133~150.
    93. Munns, R. Comparative physiology of salt and water stress[J]. Plant Cell and Environment, 2002, 25: 239~250.
    94. Munns R. Genes and salt tolerance: bringing them together[J]. New Phytologist,2005,167(3):645~663.
    95. Munns R,Termaat A. Whole-plant responses to salinity[J]. Australian Journal of Plant Physiology, 1986,13(1):143~160.
    96. Muranaka S,Shimizu K,Kato M. Ionic and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance[J]. Photosynthetica,2002,40(2):201~207.
    97. Muthukumarasamy M,Gupta S D,Pannerselvam R. Enhancement of peroxidase, polyphenol oxidase and superoxide dismutage activities by triadimefon in NaCl stressed Raphanus sativus L.[J]. Biologia Plantarum,2000,43:317~320.
    98. Nerd A,Karadi A,Mizrahi Y. Salt tolerance of prickly pear cactus (Opuntia ficus-indica)[J]. Plant and Soil,1991,137(2):201~207.
    99. Parida A,Das A B,Das P. NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures[J]. Journal of Plant Biology,2002,45(1):28~36.
    100. Pedranzani H,Racagni G,Alemano S, et al. Salt tolerant tomato plants show increased levels of jasmonic acid[J]. Plant Growth Regulation,2003,41(2):149~158.
    101. Petrusa L M,Winicov L. Proline status in salt-tolerance and salt sensitive alfalfa cell lines and plants in response to NaCl[J]. Plant Physiology and Biochemistry,1997,35(4):303~310.
    102. Pilon-Smits E A H,Ebskamp M J M,Paul M J, et al. Improved performance of transgenic fructan-accumulating tobacco under drought stress[J]. Plant Physiology,1995,107(1):125~130.
    103. Plaza C,Hernandez D,García-Gil J C, et al. Microbial activity in pig slurry-amended soils under semiarid conditions[J]. Soil Biology and Biochemistry,2004,36(10):1577~1585.
    104. Popova L P,Stoinova Z G,Maslenkova L T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress[J]. Journal of Plant Growth Regulation,1995,14(4):211~218.
    105. Oster J D,Grattan S R. Drainage water reuse[J]. Irrigation and Drainage Systems,2002,16:297~310.
    106. Qadir M,Ghafoor A,Murtaza G. Use of saline-sodic waters through phytoremediation of calcareous saline-sodic soils[J]. Agricultural Water Management,2001,50(3):197~210.
    107. Qadir M,Oster J D. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture[J]. The Science of the Total Environment,2004,323:1~19.
    108. Qadir M,Steffens D,Yan F, et al. Proton release by N2-fixing plant roots:a possible contribution to phytoremediation of calcareous sodic soils[J]. Journal of Plant Nutrition Soil Science,2003,166(1):14~22.
    109. Rai S P,Luthra R,Kumar S. Salt-tolerant mutants in glycophytic salinity response (GSR) genes in Catharanthus roseus[J]. TAG Theoretical Applied Genetics,2003,106: 221~230.
    110. Rhodes D,Hanson A D. Quaternary ammonium and tertiary sulponium compounds in higher plants[J]. Annual Review Plant Physiology and Plant Molecular Biology,1993,44:357~384.
    111. Rieger M,Duemmel M J. Comparison of drought resistance among Prunus species from divergent habitats[J]. Tree physiology,1992,11(4):369~380.
    112. Riley D,Barber S A. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface[J]. Soil Science Society of America,1969,33:905~908.
    113. Riley D,Barber S A. Salt accumulation at the soybean (Glycine max(L.) Merr.) root-soil interface[J]. Soil Science Society of America,1970,34:154~155.
    114. Rygol J,Zimmermann U. Radial and axial turgor pressure measurements in individual root cells of Mesembryanthemun crystallinum grown under various saline conditions[J]. Plant, Cell﹠ Environment,1990,13(1):15~26.
    115. Sadiq M,Hassan G,Mehdi S M, et al. Amelioration of saline-sodic with tillage implements and sulfuric acid application[J]. Pedosphere,2007,17(2):182~190.
    116. Sairam R K,Rao K V,Srivastava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration[J]. Plant Science,2002,163(5):1 037~1 046.
    117. Santa-Cruz A,Acosta M,Rus A, et al. Short-term salt tolerance mechanisms in differentially salt tolerant to mato species[J]. Plant Physiology and Biochemistry,1999,37(1):65~71.
    118. Sasaki Y,Asamizu E,Shibata D, et al. Genome-wide expression-monitoring of jasmonate-responsive genes of Arabidopsis using cDNA arrays[J]. Biochemical Society Transactions,2000,28:863~864.
    119. Sawahel W A,Hassan A H. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline[J]. Biotechnology Letters,2002,24(9):721~725.
    120. Serrano R,Mulet J,Rios G, et al. 1999. A glimpse of the mechanisms of ion homeostasis during salt stress[J]. Journal of Experimental Botany,50:1 023~1 036.
    121. Shalata A,Neumann P M. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation[J]. Journal Experimental Botany,2001,52(364):2 207~2 211.
    122. Shannon M C,Grieve C M. Tolerance of vegetable crops to salinity[J]. Scientia Horticulturae, 1999, 78(1/4):5~38.
    123. Singh S K,Sharma H C,Goswami A M, et al. In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride[J]. Biologia Plantarum,2000,43(2):283~286.
    124. Smirnoff N,Cumbes Q J. Hydroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry,1989,28(4):1 057~1 060.
    125. Soussi M,Ocana A,Lluch C. Effects of salt stress on growth, photosynthesis and nitrogen fixation inchick-pea (Cicer arietinum L.)[J]. Journal Experimental Botany,1998,49(325):1 329~1 337.
    126. Steiger H M,Beck E,Beck R. Oxygen concentration in isolated chloroplasts during photosynthesis[J]. Plant Physiology,1977,60:903~906.
    127. Sudhakar C,Lakshmi A,Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity[J]. Plant Science, 2001, 161(3): 613~619.
    128. Sugimoto M,Sakamoto W. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress[J]. Genes﹠Genetic Systems,1997,72(5):311~316.
    129. Sultana N,Ikeda T,Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains[J]. Environmental and Experimental Botany,1999,42(3):211~220.
    130. Sweeney S M,Stevens R M. Growth and water use of eucalypt trees irrigated with saline drainage water[J]. Irrigation Science,1997,17(4):173~181.
    131. Tan K H,Nopamornbodi O. Electron microbeam analysis and scanning electron microscopy of soil-root interface[J]. Soil Science,1981,131(2):100~106.
    132. Tan K H,Nopamornbodi O. Electron microbeam scanning of element distribution zones in soil rhizosphere and plant tissue[J]. Soil Science,1979,127(4):235~241.
    133. Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91 (5):503~527.
    134. Thomas J C,McElwain E F,Bohnert H J. Convergent induction of osmotic stress-responses[J]. Plant Physiology,1992,100:416~423.
    135. Tisdall J M. Fungal hypae and structural stability of soil[J]. Australian Journal of Soil Research, 1991, 29(6):729~743.
    136. Vaidyanathan R,Kuruvilla S,Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice[J]. Plant Science,1999,140(1):21~30.
    137. Vernon D M,Tarczynski M C,Jensen R G, et al. Cyclitol production in transgenic tobacco[J]. The Plant Journal,1993,4(1):199~205.
    138. Visser S,Parkinson D. Soil biological criteria as indicators of soil quality:soil microorganisms[J]. American Journal of Alternative Agriculture,1992,7:33~37.
    139. Wang B S,Lüttge U,Ratajczak R. Effects of salt treatmentand osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa[J]. Journal of Experimental Botany,2001,52(365):2 355~2 365.
    140. Wang Y,Nil N. Changes in chlorophyll ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress[J]. Horticultural Science and Biotechnology,2000,75:623~627.
    141. Wang Y R,Kang S Z,Li F H, et al. Saline water irrigation scheduling through a crop-water-salinity production function and a soil-water-salinity dynamic model[J]. Pedosphere,2007,17(3):303~317.
    142. Willekens H,Chamnongpol S,Davey M,et al. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants[J]. The EMBO Journal,1997,16:4 806~4 816.
    143. Wise R R,Naylor A W. Chilling-enhanced photooxidation: evidence for the role of singlet oxygen andsuperoxide in the breakdown of pigments and endogenous antioxidants[J]. Plant Physiology, 1987, 83: 278~282.
    144. Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiology, 1996, 110(1):249~257.
    145. Xu Y L,Yu S W. Solute Accumulation in the process of adaptation of Alfalfa Callus to NaCl[J]. Acta Photophysiologica Sinica,1992,18(1):93~99.
    146. Yan Z Z, Wang, W Q, Tang D L. Effect of different time of salt stress on growth and some physiological processes of Avicennia marina seedlings[J]. Marine Biology,2007,152(3):581~587.
    147. Yeo A R,Kramer D, Liuchli A, et al. Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium[J]. Journal of Experimental Botany,1977,28(102):17~29.
    148. Zhu J,Meinzer F C. Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress[J]. Australian Journal of Plant Physiology,1999,26(1):79~86.
    149. Zhu J K. Plant salt tolerance[J]. Trends in Plant Science,2001,6(2):66~71.
    150. Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review Plant Biology, 2002, 53:247~273.
    151.曹福亮,赵永艳,张往祥,等.盐胁迫对南方7个树种生理特性的影响[J].山东林业科技,1997,(6):1~8.
    152.陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报,2003,21(2):177~182.
    153.陈慧,郝慧荣,熊君,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报, 2007, 18(12):2 755~2 759.
    154.陈巍,陈邦本,沈其荣.滨海盐土脱盐过程中pH变化及碱化问题研究[J].土壤学报, 2000, 37 (4):521~528.
    155.陈阳,王贺,张福锁,等.硅盐互作下小獐毛植物体内元素分布及生理特性的研究[J].植物生态学报, 2003,27(2):189~195.
    156.崔保山,贺强,赵欣胜,等.水盐环境梯度下翅碱蓬(Suaeda salsa)的生态阈值[J].生态学报, 2008, 28(4):1 408~1 418.
    157.杜中军,翟衡,潘志勇,等.盐胁迫下苹果砧木光合能力及光合色素的变化[J].果树学报, 2001, 18 (4):200~203.
    158.段英华,张亚丽,沈其荣.水稻根际的硝化作用与水稻的硝态氮营养[J].土壤学报, 2004, 41 (5): 803~809.
    159.房玉林,宋士任,王华,等. NaCl胁迫对葡萄幼苗根际pH值及营养成分的影响[J].植物营养与肥料学报, 2008,14(4):814~818.
    160.戈敢.盐碱地改良[M].北京:水利电力出版社, 1987:6~8.
    161.葛菁萍,林鹏.盐度变化对秋茄种群遗传分化的影响[J].生态学报,2004,24(4):730~735.
    162.韩刚,党青,赵忠.干旱胁迫下沙生灌木花棒的抗氧化保护响应研究[J].西北植物学报,2008,28(5):1 007~l 013.
    163.韩志平,郭世荣,冯吉庆,等.盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响[J].南京农业大学学报,2008,31(2):32~36.
    164.郝建军,康宗利.植物生理学[M].北京:化学工业出版社,2005:61~273.
    165.洪春来,魏幼璋,黄锦法,等.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报:农业与生命科学版,2003,29(6):627~633.
    166.侯明,张利香,那佳.小麦根际土壤汞的分布和形态变化[J].生态环境,2008,17(5):1 843~1 846.
    167.胡靄堂,周立祥.植物营养学[M].北京:中国农业大学出版社,2004:48~207.
    168.化党领,介晓磊,张一平,等.有机肥对石灰性土壤肥力属性的长期影响[J].生态学杂志, 2005, 24 (9):1053~1057.
    169.黄建国.植物营养学[M].北京:中国林业出版社,2003:47.
    170.惠红霞,许兴,李守明.盐胁迫抑制枸杞光合作用的可能机理[J].生态学杂志,2004,23(1):5~9.
    171.吉志军,唐运平,张志扬,等.不同基底处理下碱蓬种植对滨海盐渍土的改良与修复效应初探[J].南京农业大学报,2006,29(1):138~141.
    172.克热木·伊力,侯江涛,买合木提,等.盐胁迫对扁桃光合特性和叶绿体超微结构的影响[J].西北植物学报,2006,26(11):2220~2226.
    173. Larcher W,翟志席,郭玉海,等.植物生态生理学[M].北京:中国农业大学出版社,1997:242~310.
    174.李潮海,赵霞,刘天学,等.麦茬处理方式对夏玉米(Zea mays L.)根际生物活性的影响[J].生态学报,2008,28(5):2169~2175.
    175.李才生,马惠丽,黄鹏飞.盐胁迫下不同浓度锌对水稻幼苗生长及细胞膜的影响[J].安徽农业科学, 2008,36(22):9 380~9 381,9 427.
    176.李法虎.土壤物理化学[M].北京:化学工业出版社,2006:23~25.
    177.李合生,孟庆伟,夏凯,等.现代植物生理学[M].北京:高等教育出版社,2002:119~216.
    178.李焕珍,张忠涂,杨伟奇,等.玉米秸秆直接还田培肥效果的研究[J].土壤通报,1996,27(5):213~215.
    179.李婧男,刘强,贾志宽,等.盐胁迫对沙冬青幼苗生长与生理特性的影响[J].植物研究, 2009, 29(5): 553~558.
    180.李平华,张慧,王宝山.盐胁迫下植物细胞离子稳态重建机制[J].西北植物学报,2003,23(10):1 810~1 817.
    181.李杨,李登煜,黄明勇,等.从盐碱土中分离的几株硅酸盐细菌的生物学特性初步研究[J].土壤通报, 2006,37(1):206~208.
    182.梁洁,严重玲,李裕红,等. Ca(NO3)2对NaCl胁迫下木麻黄扦插苗生理特征的调控[J].生态学报, 2004,24(5):1073~1077.
    183.林大仪,黄昌勇.土壤学[M].北京:中国林业出版社,2002:123~126.
    184.林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2):20~25.
    185.蔺昕,李培军,孙铁珩,等.石油污染土壤修复植物的根-土界面微生物特征[J].应用生态学报, 2007, 18(3):607~612.
    186.林学政,沈继红,刘克斋,等.种植盐地碱蓬修复滨海盐渍土效果的研究[J].海洋科学进展, 2005, 23 (1):65~70.
    187.刘长江,李取生,李秀军.不同耕作方法对松嫩平原苏打盐碱化旱田改良利用效果试验[J].干旱地区农业研究, 2005,23(5):13~16.
    188.刘恩科,赵秉强,李秀英,等.长期施肥对土壤微生物量及土壤酶活性的影响[J].植物生态学报, 2008,32(1):176~182.
    189.刘世平,聂新涛,张洪程,等.稻麦两熟条件下不同土壤耕作方式与秸秆还田效用分析[J].农业工程学报,2006,22(7):48~51.
    190.刘兆普,陈铭达,刘玲,等.半干旱地区海水灌溉下滨海盐土盐分运动研究[J].土壤学报, 2004, 41(5): 823~826.
    191.刘芷宇,李良谟,施卫明.根际研究法[M].南京:江苏科学技术出版社, 1997:30~45.
    192.刘芷宇,施卫明.应用电子探针对植物根际和根内营养元素微区分布的探讨[J].植物生理学报, 1988,14(1): 23~28.
    193.刘祖褀,张石城.植物抗性生理学[M].北京:中国农业出版社,1993:248~249.
    194.陆景陵.植物营养学[M].北京:中国农业出版社,2003:256~258.
    195.吕琳,何聪芬,董银卯,等.环境胁迫对库拉索芦荟叶片超微结构影响研究[J].西北植物学报,2006,(9):188~193.
    196.吕萍萍,胡军,沈昕,等.抗盐胡杨Na+/H+逆向转运蛋白基因PeNhaDl的功能[J].植物生理与分子生物学学报,2007,33(2):173~178.
    197.吕雯,汪有科.不同秸秆还田模式冬麦田土壤水分特征比较[J].干旱地区农业研究, 2006, 24(3): 68~71.
    198.马海燕,林松明,徐迎春,等.氯化钠胁迫对2个中山杉无性系生长及离子吸收运输的影响[J].浙江林学院学报,2008,25(3):319~323.
    199.毛才良,刘友良.盐胁迫大麦苗体内的Na+,K+分配与叶片耐盐量[J].南京农业大学学报, 1990, 13 (3):32~26.
    200.毛达如.植物营养研究方法[M].北京:中国农业大学出版社,2004:419~423.
    201.牟金明,宋日,姜亦梅,等.不同作物根茬还田对土壤酶活性的影响[J] .吉林农业大学学报, 1997, 19 (4):65~69.
    202.南京林业大学土壤教研组.土壤学[M]. 2001:137~147.
    203.牛灵安,郝晋珉,张宝忠,等.盐渍化改造区土壤有机质变化与培肥系统研究[J].中国农业大学学报, 2003,8(增刊):26~30.
    204.潘保原,宫伟光,张子峰,等.大庆苏打盐渍土壤的分类与评价[J].东北林业大学学报, 2006, 34 (2): 57~59.
    205.潘瑞炽.植物生理学[M].北京:高等教育出版社,2008:29~31.
    206.彭长连,林植芳.人为干扰对亚热带森林木本植物叶片抗氧化能力的影响[J].生态学报,1998,18(1):101~106.
    207.任红旭,王亚馥.抗旱性不同的小麦幼苗对水分和NaCl胁迫的反应[J].应用生态学报, 2000, 11 (5):718~722.
    208.阮长春,李宇,张俊杰,等.锌肥对盐碱土水稻产量性状及产量的影响[J].吉林农业大学学报, 2006, 28(6):591~593.
    209.邵明安,王全九,黄明斌,等.土壤物理学[M].北京:高等教育出版社,2006:37~38.
    210.沈艳华,徐锡增,方升佐.硅对盐胁迫下杨树根系中离子微域分布的影响[J].林业科技开发, 2008, 22(2):15~18.
    211.申源源,陈宏.秸秆还田对土壤改良的研究进展[J].中国农学通报,2009,25(19):291~294.
    212.施卫明,刘芷宇.电子探针在土壤-植物研究上的应用[J].土壤学进展,1987,15(5):50~55.
    213.石元春.盐碱土改良—诊断、管理、改良[M].北京:农业出版社,1996:1~22.
    214.宋福南,杨传平,刘雪梅,等.盐胁迫对柽柳超氧化物歧化酶活性的影响[J].东北林业大学学报, 2006,34(3):54~56.
    215.苏宝玲,韩士杰,王建国.根际微域研究中土样采集方法的研究进展[J].应用生态学报, 2000, 11 (3): 477~480.
    216.孙振元,刘金,赵梁军,等.盐碱土绿化技术[M].北京:中国林业出版社,2004:157~159.
    217.汤章城.逆境条件下植物脯氨酸的积累及其可能的意义[J].植物生理学通讯,1984,(3):51~54.
    218.王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报, 1997, 14: 25~30.
    219.王高升,刘文耀,付昀,等.哀老山湿性常绿阔叶林林冠和林地腐殖质理化特性、微生物量及酶活性比较[J].生态学报,2008,28(3):1328~1336.
    220.王桂君,张丽辉,赵骥民,等.盐性条件下的AM真菌以及AM真菌提高植物耐盐性研究[J].长春师范学院学报,2004,23(4):64~68.
    221.王立春,谢佳贵,秦裕波,等.测土配方施肥方法研究[J].土壤通报,2008,39(4):865~870.
    222.王宁堂,王军利,李建国.农作物秸秆综合利用现状、途径及对策[J].陕西农业科学,2007(2):112~114.
    223.王启明.镍对大豆种子萌发和膜脂过氧化作用及体内保护酶活性的影响[J].种子,2006,25(7):9~12.
    224.王瑞刚,陈少良,刘力源,等.盐胁迫下3种杨树的抗氧化能力与耐盐性研究[J].北京林业大学学报, 2005,27(3):46~52.
    225.王素平,郭世荣,胡晓辉,等. NaCl胁迫对黄瓜幼苗体内K+、Na+和Cl-分布的影响[J].生态学杂志, 2007,26(3):348~354.
    226.王小彬,Klein K K.加拿大草原地区的残茬覆盖管理[J].土壤肥料,1996,2:34~37.
    227.王月福,于振文,李尚霞,等.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响[J].西北植物学报,2002,23(3):417~421.
    228.王遵亲.中国盐渍土[M].北京:科学出版社,1993:1~138.
    229.韦存虚,王建军,王建波. Na2CO3胁迫对星星草叶肉细胞超微结构的影响[J].生态学报, 2006, 26 (1): 108~113.
    230.吴成龙,周春霖,尹金来,等. NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响[J].西北植物学报, 2006,26(11):2289~2296.
    231.吴敏,薛立,李燕.植物盐胁迫适应机制研究进展[J].林业科学,2007,43(8):111~117.
    232.吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报:自然科学版,2002,26(3):19~22.
    233.夏尚光,张金池,梁淑英. NaCl胁迫对3种榆树幼苗生理特性的影响[J].河北农业大学学报,2008,31(2):52~56.
    234.谢晓蓉,刘金荣,金自学,等.黑河灌区盐碱化土地的修复与调控研究[J].水土保持通报, 2006, 26 (2):107~110.
    235.熊明彪,罗明盛,田应兵,等.小麦生长期土壤养分与根系活力变化及其相关性研究[J].土壤肥料, 2005,(3):8~11.
    236.许卉.盐碱地对植树造林的影响及耐盐树种的选择[J].滨州教育学院学报,1998,(1):55~56.
    237.许曼丽,刘芷宇.土壤-根系微区养分状况的研究Ⅱ.钾离子的富集与亏缺[J].土壤学报, 1982, 19 (4):295~302.
    238.徐锡增,徐呈祥.硅对盐胁迫下枣树根尖离子微域分布的影响[J].南京林业大学学报:自然科学版, 2006,30(2):85~88.
    239.许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379~387.
    240.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报, 2002,39(1):89~96.
    241.徐云岭,余叔文.植物盐胁迫蛋白[J].植物生理学通讯,1989,(2):12~16.
    242.徐云岭,余叔文.苜蓿愈伤组织盐适应过程中的溶质积累[J].植物生理学报,1992,18(1):93~99.
    243.闫永庆,王文杰,朱虹,等.混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响[J].应用生态学报,2009,20(9):2085~2091.
    244.杨静,陈金林,徐柏森,等.盐胁迫对美国白蜡和滨梅根系超微结构的影响[J].西南林学院学报, 2009,29(5):23~26.
    245.杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报, 2003, 23 (2):271~277.
    246.姚槐应.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006:186~191.
    247.姚瑞玲,方升佐.盐胁迫对青钱柳根部离子分布及幼苗生长的影响[J].林业科学,2008,44(6):66~72.
    248.叶勇,卢昌义,胡宏友,等.三种泌盐植物对盐胁迫的耐受性比较[J].生态学报,2004,24(11):2 444~2 450.
    249.余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998,7 652~7 691.
    250.郁万文,曹帮华,曹福亮.刺槐生长及盐离子吸收分配对干旱和旱盐胁迫的响应[J].浙江林学院学报,2007,24(3):290~296.
    251.袁琳,克热木·伊力,张利权. NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):985~991.
    252.张承元,单志芬,赵连胜.略论稻田养鱼与农田生态[J].生态学杂志,2001,20(3):24~26.
    253.张海波,曾幼玲,兰海燕,等.盐胁迫下盐桦生理响应的变化分析[J].云南植物研究,2009,31(3):260~264.
    254.张海燕,范哲峰.运城盐湖十种耐盐植物体内无机及有机溶质含量的比较研究[J].生态学报, 2002, 22(3):352~358.
    255.张宏飞,王锁民.高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展[J].植物学通报, 2007, 24 (5):561~571.
    256.张立功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响[J].植物学通报, 1999,16(4):429~432.
    257.张润花,郭世荣,樊怀福,等.外源亚精胺对盐胁迫下黄瓜幼苗体内抗氧化酶活性的影响[J].生态学杂志,2006,25(11):1 333~1 337.
    258.张万钧,郭育文,王斗天,等.滨海生态系统废弃物资源综合利用的生态恢复工程[J].土壤通报, 2001,32:151~155.
    259.张秀实,吴征镒.中国植物志[M].北京:科学出版社, 1998:20.
    260.张献义,张荣盛,陈金林.应用电子探针技术进行苗木根际元素分布研究[J].南京林业大学学报:自然科学版,1992,16 (4):1~5.
    261.张宇博,杨海军,王德利,等.受损河岸生态修复工程的土壤生物学评价[J].应用生态学报, 2008, 19 (6):1 374~1 380.
    262.赵斌,何绍红.微生物学实验[M] .北京:科学出版社,2002:69~72.
    263.赵凤云,郭善利,王增兰,等.耐盐转基因植物研究进展[J].植物生理与分子生物学报, 2003, 29 (3): 171~178.
    264.赵可夫,李法曾.中国盐生植物[M].北京:科学出版社,1999:26~39.
    265.赵兰坡,王宇,马晶,等.吉林省西部苏打盐碱土改良研究[J].土壤通报,2001,32(3):91~96.
    266.赵旭,王林权,周春菊,等.盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响[J].生态学报,2007,27(1):205~213.
    267.赵自国,陆静梅.植物耐盐性研究进展[J].长春师范学院学报,2002,21(1):51~53.
    268.郑红丽,周晓荣,樊明寿.燕麦根际有机磷细菌的分离及其有关生理特性的研究[J].干旱地区农业研究,2007,25(5):1~5.
    269.郑青松,刘玲,刘友良,等.盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响[J].植物生理与分子生物学学报,2003,29(6):585~588.
    270.中华人民共和国林业部科技司.林业标准汇编[G].北京:中国林业出版社,1991:96~293.
    271.周礼恺.土壤酶学[M].北京:科学出版社,1987:203~204.
    272.朱广新,张其德. NaCl对光合作用影响的研究进展[J].植物学通报,1999,16(4):332~338.
    273.朱进,别之龙. NaCl胁迫下温室内两个砧木的生理响应机制[J].农业工程学报,2008,24(8):227~231.
    274.朱庭芸,何守成.滨海盐渍土的改良和利用[M].北京:农业出版社,1983:1.
    275.朱玉芹,邱玉兰.玉米秸秆还田培肥地力研究综述[J].玉米科学,2004,12(3):106~108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700