小立碗藓抗逆相关基因PpDREB-like的克隆及其功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在生长发育过程中能感受干旱、高盐、寒冷等环境胁迫信号并通过一系列信号转导途径的作用诱导与抗逆相关功能蛋白的表达或调节酶的活性,以适应或抵御逆境胁迫。其中,转录因子对相关基因的表达起关键调控作用,并受信号转导途径的调节。在植物中存在着许多与胁迫相关的转录因子。DREB转录因子在干旱、高盐,及低温胁迫信号传递过程中起重要作用。该类转录因子特异存在于植物中,属于AP2/EREBP家族。一个DREB转录因子可以调控多个与植物干旱、高盐,及低温耐性有关的功能基因的表达。因此,利用转录因子来改良植物抗逆性,可以获得较为理想的综合效果,具有理论和实际意义。
     小立碗藓(Physcomitrella patens)具有很强的抗旱、抗冷和抗盐胁迫的能力,体内存在丰富的高抗性基因资源。本实验利用RT-PCR,RACE的方法在小立碗藓中克隆了一个含有保守的AP2/EREBP DNA结合结构域的基因,命名为PpDREB-like。该基因属于AP2/EREBP家族转录因子,和ERF亚家族相比,该基因与DREB亚家族同源性更高。同时,PpDREB-like基因具有DREB亚家族成员所保守的V14和E19两个氨基酸,因此我们将该基因归属为DREB亚家族。对在胁迫处理下该基因的表达模式进行分析发现,PpDREB-like受干旱的快速和强烈诱导,在复水时,PpDREB-like基因的表达水平又下降到与正常水平几乎相同,在冷和高盐胁迫处理5hr时该基因也基本不受诱导表达。
     我们构建了酵母重组质粒载体pREP5N+PpDREB-like和植物重组质粒载体pPZP+PpDREB-like,继而得到转基因酵母和烟草悬浮细胞,均表现出一定的抗性。这说明该基因转入细胞后,可能作为上游的调控因子启动了某些基因的表达,提高了它们的抗性。另外,我们还构建了一个植物反义表达载体,并将其转入烟草悬浮细胞,目前已经得到了愈伤组织,需要通过筛选和验证,进一步分析PpDREB-like基因的功能。
The plants are greatly affected by environmental stresses such as freezing, drought, and salt. The plants can activate some proteins that are related to the tolerance or regulate the activity of enzymes by the signal pathway. The transcription factors play crucial roles in gene expression. There are some transcription factors related to abiotic stresses in plants.and they can be regulated by the signal transduction pathway. DREB proteins belong to AP2/EREBP transcription factors and are specific in plants. They are very important in mediating abiotic stresses such as cold, drought and high salt. DREB ptoteins can induce the expression of some target genes so that the plants can enhance the tolerance to drought and other stesses.Improving the tolerance of plants by using transcription factors has significance in theoretical and practical aspects.Physcomitrella patens has strong resistance to cold, drought and salty stresses and there are so many genes that can improve the tolerence of plants. Here, a gene is cloned by RT-PCR and RACE in physcomitrella patens It has a conserved AP2 domain and we named it PpDREB-like gene. The PpDREB-like gene belongs to AP2/EREBP transcription factors and the blast results show that it has more homology with DREB subfamily. In addition, it has conserved V14 and E19 of DREB subfamily. So the PpDREB-like gene is thought to be one of DREB subfamily. The results of RT-PCR under different stress conditions show that the expression of PpDREB-like can be induced by drought but not by redehydration and cold, high salt in 5 hours..Forthermore, the PpDREB-like gene was transformed into yeast and tabacoo suspension cell and its function is analyzed simply. Transgenic yeast and BY-2 cell exhibit certain resistance to osmotic stress compared with control. It indicates that the PpDREB-like protein can activte some target genes as a regulatory protein so that the cells can improve the torlerance to drought and other stresses. For further functional analysis on this gene, a anti-sense vector was constructed and transformed into BY-2 cell. The callus is being researched.
引文
1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. 1997. Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell, 9(10): 1859-68.
    2. Aukerman MJ, Schmidt RJ, Burr B, Burr FA. 1991. An arginine to lysine substitution in the bZIP domain of an opaque-2 mutant in maize abolishes specific DNA binding. Genes Dev, 5(2):310-20.
    3. Busk P K, Jensen AB and Montserrat pages. 1997. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab 17 from maize. The plant journal, 11:1285-1296.
    4. Caren Chang and Richard C. Stewart 1998.The Two-Component Systeml Regulation of Diverse Signaling Pathways in Prokaryotes and Eukaryotes . Plant Physiol, 117: 723-731.
    5. Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J. 2003. Mutations in the Ca2+/H+ transporter CAXl increase CBF/DREBl expression and the cold-acclimation response in Arabidopsis. Plant Cell, 15:2940-51.
    6. Chinnusamy V, Ohta M, Kanrar S. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis.Genes Dev, 17:1043-54
    7. Chinnusamy V, Schumaker K, Zhu JK. 2004. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot, 55:225-36.
    8. Choi H, Hong J, Ha J, Kang J, Kim SY. 2000. a family of ABA-responsive element binding factors. J Biol Chem, 275(3): 1723-30.
    9. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.2003.OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 33(4): 751-63.
    10. Goff SA, Cone KC, Chandler VL. 1992. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev, 6(5):864-75.
    11. Gilmour S.J, Zarka DG, Stockinger EJ. 1998. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.Plant J, 16:433-42.
    12. Gilroy S, Read ND, 1990. Trewavas AJ.Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature, 346(6286):769-71.
    13. Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvier-Durand M, Vartanian N. 1994. Current advances in abscisic acid action and signalling. Plant Mol Biol, 26(5): 1557-77.
    14. Gutterson N, Reuber TL.2004. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol, 7:465-71
    15. Haake V, Cook D, Riechmann JL. 2002. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 130:639-48.
    16. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. 2000. plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 51:463-499.
    17. Hill A, Nantel A, Rock CD, Quatrano RS. 1996. A conserved domain of the viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors. J Biol Chem, 271(7):3366-74.
    18. Hu, Y. X,Wang, Y. X., Liu. 2004. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. CELL RESEARCH, 14:8-15.
    19. Ingram J, Bartels D. 1996.the molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol, 47:377-403.
    20. Jaglo KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 280:104-6.
    21. Jaglo KR, Kleff S, Amundsen K L. 2001. Components of the arabidopsis c- repeat/dehydration-responsive element binding factor cold-response pathway are conserbed in brassica napus and other plant species. Plant physiol, 127: 910-917.
    22. Kazuo Shinozaki and Kazuko Yamaguchi-Shinozaki. 1997. gene expression and signal transduction in water-stress response. physiol plant, 115;327-334.
    23. Kasuga M, Liu Q, Miura S.1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor.. Nat Biotechnol, 17:287-91.
    24. Kizis D, Lumbreras V, Pages M. 2001. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett, 498:187-189.
    25. Kroemer K, Reski R, Frank W. 2004. Abiotic stress response in the moss Physcomitrella patens: evidence for an evolutionary alteration in signaling pathways in land plants. Plant Cell Rep, 22(11):864-70.
    26. Liu Q, M Kasuga, Y Sakuma.1998.Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 10:1391-1406.
    27. Marcotte WR Jr, Russell SH, Quatrano RS. 1989.Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell, 1(10) :969-76.
    28. McAinsh MR, Brownlee C, Hetherington AM. 1997. Calcium ions as second messengers in guard cell signal transduction. Physiol Plant, 100, 16-29.
    29. McCarty DR. 1995. Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Physiology and Plant Molecular Biology, 46: 71-93.
    30. Medina J, Bargues M, Terol J. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by absci;:ic acid or dehydration. Plant Physiol, 119:463-70.
    31. Merlot S, Giraudat J. 1997. Genetic analysis of abscisic acid signal transduction. Plant Physiol, 114(3):751-7.
    32. Nakashima K, Kiyosue T, Yamaguchi SK. 1997. A nuclear gene, erd1, encoding a chloroplast-Targeted Clp Protease regulatory subunit homolog is not only induced by water stress but also developmenlally up-regulated during senescence in Arabidopsis thaliana. Plant J, 12:851-61.
    33. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. 2000. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression. Plant Mol Biol, 42:657-65.
    34. Novillo F, Alonso JM, Ecker JR, Salinas J. 2004. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA, 101:3985-90.
    35. Pei, Z-M, Murata Y, Benning G, Thomine S, Kl ener B, Allen G, Grill E., and Schroeder, J.I. 2000. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 406:731-734.
    36. Paul MH, Ray AB, Zhu JK. 2000. Plant celluler and molecular responses to high salinity. Annu. Rev. Plant Physiol, 51:463-499.
    37. Riechmann.JL, Heard.J, 2000. Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes, Science, 290:2105-2110.
    38. Sakuma Y,Liu Q,Dubouzet JG,Abe H. 2002. DNA-Binding Specificity of the ERF/AP2 Domain of Arabidopsis DREBs,Transcription Factors Involved in Dehydration-and Cold-inducible Gene. Biochem Biophys Res Commun, 290:998-1009.
    39. Schaefer DG. 2001. Gene targeting in physcomitrella patens. Currt Opin Plant Biol, 4:143-150.
    40. Shinozaki K Yamaguchi SK, 1996. molecular responses to drought and cold stress. curr opin biotechnol,7: 161-167.
    41. Shinozaki K Yamaguchi SK. 1997. Gene expressing and signal transduction in water-stress response. Plant Physiol, 115;327-334.
    42. Shinozaki K, Yamaguchi SK. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol, 3:217-23.
    43. Stockinger EJ, Gilmour SJ, Thomashow MR 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A, 94:1035-40.
    44. Strepp R, Scholz S, Kruse S, Speth V, Reski R 1998.Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc Natl Acad Sci USA , 95:4368-4373.
    45. Thomashow MF. 2001. So what's new in the field of plant cold acclimation? Lots! Plant Physiol, 125:89-93.
    46. Uimari A and Strommer J.1997. Myb22: A MYB-like protein of pea flowers with affinity for promoters of phenylpropanoid genes. Plant Journal, 12:1273-1284.
    47. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. 1993. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 5(11):1529-39.
    48. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K. 1999. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor.. Plant Cell, 11 (9):1743-54.
    49. Washburn KB, Davis EA, Ackerman S, 1997. Coactivators and TAFs of transcription activation in wheat. Plant Mol Biol, 35(6): 1037-43.
    50. Wessler SR. 2005. Homing into the origin of the AP2 DNA binding domain.Trends Plant Sci, 10(2):54-6.
    51. West AH, Stock. 2001. AM.Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci. 26(6):369-76.
    52. Wilson K, Long D, Swinburne J, et al, 1996. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell, 8:659-71.
    53. Wilson NS, Krizek BA, 2000. A binding properties of the Arabidopsis floral development protein A INTEGUMENTA. Nucleic Acids Res, 28:4076-82.
    54. Xiong L, Lee H, Ishitani M, Zhu JK, 2002. Regulation of osmotic stress-responsive gene expression by the LOS6/ABAI locus in Arabidopsis. J Biol Chem, 277:8588-96.
    55. Yamamoto YY, Matsui M, Ang LH, Deng XW. 1998. Role of a COP1 interactive protein in mediating light-regulated gene expression in arabidopsis. Plant Cell,10(7):1083-94.
    56. Zhu J, Shi El, Lee BH. 2004. Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci U S A, 101:9873-8
    57.刘强,张贵友,陈受宜.2000年。植物转录因子的结构与调控作用。中国科学。45:1465-1474.
    58.刘新,孟繁霞,张蜀秋,娄成后。2001年。气孔保卫细胞信号转导中的第二信使。植物生理学通讯,556-561。
    59.刘子会,郭秀林,干刚,李广敏。2004年。干旱胁迫与ABA的信号转导。植物学通报,21(2):228~234。
    60.郝岗平,吴忠义,陈茂盛,曹鸣庆,Georges Pelletier,黄丛林.,杨清。2004年,ATHKl基因调节拟南芥渗透胁迫信号转导过程。305(30):553-560。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700