石墨烯的功能化改性及其典型聚合物复合材料的热解与阻燃性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯因其特殊的二维结构和优异的性质,在聚合物基复合材料领域应用十分广泛,仅需极少的添加量,就能显著提升复合材料的电学、力学和热学等性能。但是聚合物/石墨烯复合材料领域仍然面临着许多科学和技术问题。本文针对石墨烯的制备产率低和成本高、与基体中的相容性差以及对基体增强阻燃效率低等问题,开发了石墨烯的新型制备方法,结合纳米复合、分子设计以及催化成炭等理念,制备了阻燃剂接枝改性石墨烯、几种基于石墨烯负载纳米粒子杂化物,考察功能化修饰对改善石墨烯与基体相容性的作用,研究聚合物/功能化石墨烯纳米复合材料的力学性能、热稳定性和阻燃性能,从气相和凝聚相角度研究可能的阻燃机理。取得的研究进展如下:
     1.针对现有石墨烯的制备方法存在的成本高、产率低等问题,开发了一种催化裂解聚合物制备石墨烯的新方法,即以聚甲基丙烯酸甲酯(PMMA)为碳源,以镍粉(Ni)为催化剂,在有机改性蒙脱土(OMMT)形成的局限空间内,控制裂解制备石墨烯。所得石墨烯片层尺寸在几微米以上,具有均一的厚度(1-4nm),与传统热还原和化学还原氧化石墨法制备的石墨烯相比,产物具有较少的结构缺陷和较高的石墨化程度。研究发现:石墨烯的产量随着OMMT含量增加而增加;温度越高越有利于形成结构完整的石墨烯;微米级的金属Ni粉对形成石墨烯结构起决定作用。根据实验结果,提出可能的石墨烯形成机理。
     2.采用溶液共混法制备聚苯乙烯(PS)/石墨烯复合材料,由于石墨烯和PS之间存在较强的π-π作用,石墨烯在基体中主要以插层或插层-剥离状态存在。石墨烯的加入能够提高PS/石墨烯复合材料的玻璃化转变温度、热稳定性和阻燃性能,且随着石墨烯含量的增加而逐渐提高。大尺寸石墨烯(GNS-EG)比同含量的小尺寸石墨烯(GNS-NG)的改善效果更为明显,可能是前者对裂解气体有着更好的阻隔作用。进一步将石墨烯与膨胀型阻燃剂(IFR)结合,研究石墨烯对PS/IFR复合材料的热降解行为和阻燃性能的影响。随着石墨烯添加量的增加,PS/IFR复合材料的最大热分解温度(Tmax)不断提高。石墨烯与IFR在阻燃PS上存在拮抗效应,因为石墨烯的加入降低了PS/IFR复合材料的熔体黏度,造成体系不能有效发泡形成膨胀的多孔炭层。
     3.合成了一种膨胀型阻燃剂PPPB,并将其接枝到石墨烯(GNS)的表面得到GNS-PPPB,妾着通过与马来酸酐接枝聚乙烯(MAPE)反应得到GNS-MAPE,采用熔融共混法制备出线性低密度聚乙烯(LLDPE)/GNS-PPPB复合材料。研究发现,由于接枝阻燃剂与基体存在化学键作用,GNS-PPPB在基体中呈现均匀分散。与GNS相比,GNS-PPPB能明显提升复合材料的拉伸强度和断裂仲长率,这得益于GNS自身优异的机械性能以及与基体之间存在较强界面作用力。GNS-PPPB能够提高复合材料的热稳定性和阻燃性能,因为一方面均匀分散的GNS可以很好地阻隔易燃性气体逃逸和氧气扩散,另一方面GNS-PPPB能够促进LLDPE在燃烧时成炭。GNS-PPPB的加入能够显著提升材料的氧化诱导温度和氧化诱导时间,因为GNS-PPPB具有捕捉自由基的作用。研究结果表明,GNS-PPPB在LLDPE中形成网络结构,而导致体系熔融黏度增加,燃烧时通过促进基体形成炭层而起到保护内部基体,降低火灾危险性的作用。
     4.通过原位水热反应法制备石墨烯/镍铁双氢氧化物(GNS-LDH)纳米结构,采用溶液共混法制备丙烯腈-丁二烯-苯乙烯共聚物(ABS)/GNS-LDH复合材料,研究GNS-LDH对ABS复合材料的力学性能、热稳定性和阻燃性能的影响。NiFe-LDH纳米片均匀且致密地分布在GNS片层的表面,有效地抑制了GNS的团聚和重新堆积,因而制备的复合物中GNS-LDH呈现高度剥离的状态。同含量的GNS-LDH比GNS更能提高材料的力学性能,且随着添加量的增加,材料的拉伸强度、弯曲强度和储能模量均逐渐增加。GNS-LDH的添加能够明显改善ABS复合材料的热稳定性和阻燃性能。ABS基体的主要热裂解产物为碳氢化合物、烯烃、芳香族化合物,ABS/GNS-LDH的裂解产物成分基本类似,但其产物的浓度要远低于ABS。GNS-LDH通过促进基体形成致密结实的炭层,阻碍易燃性气体挥发和氧气扩散,从而达到阻燃的目的。
     5.通过化学共沉淀法制备Gs-NiCexOy杂化物,采用母粒-熔融共混法制备聚丙烯(PP)/Gs-NiCexOy复合材料,研究杂化物对PP复合材料的热稳定性、阻燃性能和有毒烟气释放的影响,探究可能的火灾安全性增强机制。Gs-NiCexOy均匀的分散在PP中,无团聚现象。与纯PP相比,PP/Gs-NiCexOy复合材料的Tmax升高了28℃,最大热分解速率降低近40%,最终残炭达到4.2wt%. Gs-NiCexOy对于提高PP复合材料的火灾安全性有积极作用,在添加2.5wt%的情况下,复合材料的热释放速率峰值(PHRR).总热释放量(THR)、总烟释放量(TSR)和CO产生速率(COP)分别下降了37%、17%、36%和49%。利用稳态管式炉(SSTF)模拟材料在氧气供应不足条件下烟密度随时间变化关系,发现Gs-NiCexOy能够降低PP复合材料燃烧过程中烟颗粒的产生。利用Py-GC/MS和TG/FTIR分析PP和PP/Gs-NiCexOy裂解产物,发现后者的可燃性气体的释放量要低于前者。炭渣表征结果表明,Gs-NiCexOy催化PP燃烧过程中气相产物成炭,形成保护炭层,起到阻碍气体挥发和氧气扩散的作用。
Since graphene was first discovered in2004, extensive research has been earried out on the applications in various fields, due to its unique electronic, thermal, and mechanical properties arising from the strictly two-dimensional (2D) atomic carbon sheet structure. One of the most promising applications of graphene was polymer/graphene composites, in which graphene caused significant improvements in various properties. However, there were still challenges remained in the academic research and practical application of polymer/graphene composites:preparation of graphene, poor compatibility between polymer matrix and graphene, and low efficiency of flame retardancy. In order to solve those problems, this work developed a novel method to prepare graphene. Based on the ideas of nanocomposites, molecular design and catalytic charring, flame retardant grafted graphene and graphene supported nanoparticle hybirds were prepared. The dispersion, mechanical properties, thermal stability and flammability behaviors of polymer/functionalized graphene nanocomposites were investigated, and also the flame retardant mechanism was clarified. The main progress of this work was illustrated as follows:
     1. A simple method was developed for the production of multi-layer graphene by pyrolyzing poly (methyl methacrylate)(PMMA) on Ni particles in the presence of orgar.ophilic montmorillonite (OMMT). Compared to the graphene prepared by chemical reduction or thermal reduction of graphite oxide, the crumpled graphene with the size of1mm and the thickness of1-4nm had fewer defects and higher degree of graphitization. The yield of graphene was increased with the increased OMMT content; high temperature favored the formation of perfect graphene structure; the size of Ni played a critical role on the formation of graphene. Based on the experimental observations, a possible formation process was proposed.
     2. Polystyrene (PS)/graphene composites were prepared by solution blending method, where the graphene nanosheets were intercalated and intercalated-exfoliated in the matrix due to the strong π-π interaction between PS and graphene nanosheets. The incorporation of graphene improved the glass transition temperature, thermal stability and flame retardancy of PS matrices, and the reinforcement was enhanced by increasing graphene contents. Graphene with larger diameter (GNS-EG) was superior than that with small diameter (GNS-NG) on the flame retardancy of the nanocomposites, which can be explained by the fact that GNS-EG had better barrier effect on the pyrolysis gases. Then graphene was combined with intumescent flame retardant (IFR) to investigate the effect on the thermal degradation and flame retardant behaviors of PS composites. The maximum decomposition temperature (Tmax) of PS/IFR was increased with the increased content of graphene. It was found that graphene had antagonistic effect with IFR on the flame retardancy because low melt viscosity of PS/IFR caused by graphene made the system not effectively foam to form porous char.
     3. Intumescent flame retardant PPPB was synthesized and grafted onto the surface of graphene to obtain GNS-PPPB. GNS-PPPB was then covalently reacted with maleic anhydride grafted polyethylene (MAPE) and series of LLDPE/functionalized graphene nanocomposiies were prepared by melt blending method. TEM results demonstrated that GNS-PPPB was well dispersed in the matrix due to the chemical bonding effect between GNS-PPPB and LLDPE matrix. Compared with GNS, GNS-PPPB can obviously improve both tensile strength and elongation at break of the composites, owing to the excellent mechanical properties of GNS as well as strong interfacial interaction between matrix and GNS-PPPB. GNS-PPPB can visibly improve the thermal stability and flame retardant properties of the composites. On one hand, the well dispersed GNS formed good physical barriers to prevent the escape of volatile gases and the spread of oxygen; on the other hand, GNS-PPPB promoted the formation of graphitized and compact char layers. The incorporation of GNS-PPPB can significantly improve the oxidation induction temperature and oxidation induction time, dueto the role of GNS-PPPB that captured free radicals during combustion. The research results indicated that GNS-PPPB formed a network structure in LLDPE, causing an increase in melt viscosity of the system. GNS-PPPB promoted the formation of char layers with high thermal oxidative resistance and compact structure, which could effectively inhibit the energy and mass transfer between the flame and matrix, delay the degradation of inner polymer, and thus reduce the fire hazards.
     4. Graphene/NiFe-layered double hydroxide (GNS-LDH) nanostructures were synthesized through in situ hydrothermal reaction. Due to the inherent agglomeration tendency of graphene, the Acrylonitrile-Butadiene-Styrene copolymer (ABS) nanocomposites were prepared by solution blending. The effect of GNS-LDH on the mechanical properties, thermal stability and flame retardant properties of ABS has been investigated. The uniform distribution of NiFe-LDH on the GNS could effeciently avoid the aggregation of graphene, which was beneficial for the molecular-level dispersion in ABS. Compared with GNS, incorporated GNS-LDH could improve the mechanical properties of the compositess more obviously. With the increase of GNS-LDH content, the tensile strength, bending strength and storage modulus of ABS/GNS-LDH increased gradually. The introduction of GNS-LDH can obviously improve the thermal stability and flame retardancy of ABS nanocomposites. TG/FTIR results showed that the main decomposition products of ABS/GNS-LDH were hydrocarbons, alkene and aromatic compounds, which were similar to those of pure ABS; however, the release amount of the flammable and toxic products from ABS/GNS-LDH was much lower than those from ABS. This dramatical reduction in fire hazards was mainly attributed to the synergestic effect of GNS-LDH nanostructure:graphene promoted the formation of graphitized and compact char layer, while NiFe-LDH improved the thermal oxidative resistance of the char layer.
     5. A hybrid graphene/Ni-Ce mixed oxide (Gs-NiCexOy) was fabricated using a co-precipitation method, and then incorporated into PP matrix through masterbatch-melt blending method to prepare PP/Gs-NiCexOy composites. Compared to pure PP, the obtained composites exhibited significantly enhanced thermal stability, flame retardancy and smoke suppression, including decreased maximum mass loss rate by40%, peak heat release rate (PHRR) by37%, total heat release (THR) by17%, total smoke release (TSR) by36%and CO production rate (COP) by49%, and increased Tmax by28℃. Thus, it was concluded that Gs-NiCexOy was beneficial for the fire safety of F?. The steady state tube furnace (SSTF), which was used to study the relationship between smoke density and time under anaerobic atmosphere, revealed that the addition of Gs-NiCexOy reduced the evolution of smoke particle during the combustion of composites. The analysis of Py-GC/MS and TG/FTIR indicated that the amount of flammable gase from PP/Gs-NiCexOy composites was lower than that of PP. Furthermore, based on the char analysis, it was found that Gs-NiCexOy can catalyze the char formation of PP, which inhibited the escape of flammable gases and the transfer of oxygen.
引文
[1]Kroto HW, Heath JR, O'Brien, et al.1985. C60:Buckminsterfullerene[J]. Nature,318: 162-163.
    [2]Iijima S.1991. Helical microtubules of graphitic carbon[J]. Nature,354:56-58.
    [3]Novoselov KS, Geim AK, Morozov SV, et al.2004. Electric field effect in atomically thin carbon films[J]. Science,306:666-669.
    [4]Singh V, Joung D, Zhai L, et al.2011. Graphene based materials:past, present and future[J]. Prog Mater Sci,56:1178-1271.
    [5]Taghioskoui M.2009. Trends in graphene research [J]. Mater Today,12:34-37.
    [6]Geim AK, Novoselov KS.2007. The rise of graphene[J]. Nat Mater,6:183-191.
    [7]Novoselov KS, Geim AK, Morozov SV, et al.2005. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,438:197-200.
    [8]Novoselov KS, Jiang Z, Zhang Y, et al.2007. Room-temperature quantum hall effect in graphene[J]. Science,315:1379-1379.
    [9]Yoo E, Kim J, Hosono E, et al.2008. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Lett,8:2277-2282.
    [10]Liu CG, Yu ZN, Neffet D, et al.2010. Graphene-Based Supercapacitor with an Ultrahigh Energy Density[J]. Nano Lett,10:4863-4868.
    [11]Xu CH, Xu BH, Gu Y, et al.2013. Graphene-based electrodes for electrochemical energy storage[J]. Energ Environ Sci,6:1388-1414.
    [12]Lee C, Wei XD, Kysar JW, et al.2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,321:385-388.
    [13]Berber S, Kwon YK, Tomanek D.2000. Unusually high thermal conductivity of carbon nanotubes[J]. Phys Rev Lett,84:4613-4616.
    [14]Nair RR, Blake P, Grigorenko AN, et al.2008. Fine structure constant defines visual transparency of graphene[J]. Science,320:1308-1308.
    [15]Schedin F, Geim AK, Morozov SV, et al.2007. Detection of individual gas molecules adsorbed on graphene[J]. Nat Mater,6:652-655.
    [16]Liu Z, Robinson JT, Sun XM, et al.2008. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J Am Chem Soc,130:10876-10877.
    [17]Hummers WS, Offeman RE.1958. Preparation of graphitic oxide[J]. J Am Chem Soc,80: 1339-1339.
    [18]Paredes.11, Villar-Rodil S. Marti'nez-Alonso A, et al.2008. Graphene oxide dispersions in organic solvents[J]. Langmuir,24:10560-10564.
    [19]Jin M, Jeong HK, Kim TH, et al.2010. Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature. J Phys D: Appl Phys,43:275402.
    [20]Akhavan O.2010. The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets. Carbon,48:509-519.
    [21]Chua CK, Pumera M.2012. Renewal of sp2 bonds in graphene oxides via dehydrobromination[J]. J Mater Chem,22:23227-23231.
    [22]Tung VC, Allen MJ, Yang Y, et al.2009. High-throughput solution processing of large-scale graphene[J].Nat Nanotechnolog,4:25-29.
    [23]Liao KH, Mittal A, Bose S, et al.2011. Aqueous only route toward graphene from graphite oxide[J].ACS Nano,5:1253-1258.
    [24]Zhang K, Mao L, Zhang LL, et al.2011. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. J Mater Chem,21: 7302-7307.
    [25]Shin HJ, Kim KK, Benayad A, et al.2009. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Adv Funct Mater,19:1987-1992.
    [26]Chua CK, Pumera M.2013. Selective removal of hydroxyl groups from graphene oxide[J]. Chem-Eur J,19:2005-2011.
    [27]Dey RS, Hajra S, Sahu RK, et al.2012. A rapid room temperature chemical route for the synthesis of graphene:metal-mediated reduction of graphene oxide[J]. Chem Commun,48: 1787-1789.
    [28]Chen WF, Yan LF, Bangal PR.2010. Chemical reduction of graphene oxide to graphene by sulfur-containing compounds [J]. J Phys Chem C,114:19885-19890.
    [29]Chua CK, Ambrosi A, Pumera M.2012. Graphene oxide reduction by standard industrial reducing agent:thiourea dioxide[J]. J Mater Chem,22:11054-11061.
    [30]Amarnath CA., Hong CE, Kim NH, et al.2011. Efficient synthesis of graphene sheets using pyrrole as a reducing agent[J]. Carbon,49:3497-3502.
    [31]Kaminska I, Das MR, Coffinier Y, et al.2012. Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step[J]. ACS Appl Mater Inter,4: 1016-1020.
    [32]Park OK, Hahm MG, Lee S, et al.2012. In situ synthesis of thermochemically reduced graphene oxide conducting nanocomposites[J]. Nano Lett,12:1789-1793.
    [33]Dubin S, Gilje S, Wang K, et al.2010. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents[J]. ACS Nano,4: 3845-3852.
    [34]Wang HL, Robinson JT, Li XL, et al.2009. Solvothermal reduction of chemically exfoliated graphene sheets[J]. J Am Chem Soc,131:9910-9911.
    [35]Fan XB, Peng WC, Li Y, et al.2008. Deoxygenation of exfoliated graphite oxide under alkaline conditions:a green route to graphene preparation[J]. Adv Mater,20:4490-4493.
    [36]Ding YH, Zhang P, Zhuo Q, et al.2011. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation[J]. Nanotechnology,22:215601.
    [37]Zhang YW, Ma HL, Zhang QL, et al.2012. Facile synthesis of well-dispersed graphene by gamma-ray induced reduction of graphene oxide[J]. J Mater Chem,22:13064-13069.
    [38]Shivaraman S, Barton RA, Yu X, et al.2009. Free-standing epitaxial graphene[J]. Nano Lett, 9:3100-3105.
    [39]Gao T, Gao YB, Chang CZ, et al.2012. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001)[J]. ACS Nano,6: 6562-6568.
    [40]Zhang HX, Feng PX.2010. Fabrication and characterization of few-layer graphene[J]. Carbon,48:359-364.
    [41]Lin YC, Jin CH, Lee JC, et al.2011. Clean transfer of graphene for isolation and suspension[J]. ACS Nano,5:2362-2368.
    [42]Yan, Z., Sun ZZ, Wei Lu, et al.2011. Controlled modulation of electronic properties of graphene by self-assembled monolayers on SiO2 substrates[J]. ACS Nano,5:1535-1540.
    [43]Yao YG, Li Z, Lin ZY, et al.2011. Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates[J]. J Phys Chem C,115:5232-5238.
    [44]Zhang Y, Gomez L, Ishikawa FN, et al.2010. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition [J]. J Phys Chem Lett, 1:3101-3107.
    [45]Kim Y, Song W, Lee SY, et al.2011. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition[J]. Appl Phys Lett,98:263106.
    [46]Ago H, Ito Y, Mizuta N, et al.2010. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire[J]. ACS Nano,4:7407-7414.
    [47]Li XS, Magnuson CW, Venugopal A, et al.2010. Graphene films with large domain size by a two-step chemical vapor deposition process[J]. Nano Lett,10:4328-4334.
    [48]Reddy KM, Gledhill AD, Chen CH, et al.2011. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire[J]. Appl Phys Lett,11:113117.
    [49]Gunther S, Danhardt S, Wang B, et al.2011. Single terrace growth of graphene on a metal surface[J].Nano Lett,11:1895-1900.
    [50]Nie S, Walter AL, Bartelt NC, et al.2011. Growth from below:graphene bilayers on Ir(111)[J]. ACS Nano,5:2298-2306.
    [51]Rummeli MH, Bachmatiuk A, Scott A, et al.2010. Direct low-temperature nanographene CVD synthesis over a dielectric insulator[J]. ACS Nano,4:4206-4210.
    [52]Gong C, Colombo L, Cho K.2012. Photon-assisted CVD growth of graphene using metal adatoms as catalysts[J]. J Phys Chem C,116:18263-18269.
    [53]Wang JZ, Manga KK, Bao QL, et al.2011. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. J Am Chem Soc,133:8888-8891.
    [54]Ishii Y, Song HY, Kato H, et al.2012. Facile bottom-up synthesis of graphene nanofragments and nanoribbons by thermal polymerization of pentacenes[J]. Nanoscale,4:6553-6561.
    [55]Wang ZY, Li N, Shi ZJ, et al.2010. Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air [J]. Nanotechnology,21:175602.
    [56]Zhang WX, Cui JC, Tao CA, et al.2009. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach[J]. Angew Chem Int Ed,48:5864-5868.
    [57]Guo SJ, Dong SJ.2011. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications [J]. Chem Soc Rev,40:2644-2672.
    [58]Loh KP, Bao QL, Ang PK, er al.2010. The chemistry of graphene[J]. J Mater Chem,20: 2277-2289.
    [59]Shen JF, Hu YZ, Li C, et al.2009. Synthesis of Amphiphilic Graphene Nanoplatelets[J]. Small,5:82-85.
    [60]Economopoulos SP, Rotas G, Miyata Y, et al.2010. Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene[J]. ACS Nano,4: 7499-7507.
    [61]Quintana M, Spyrou K, Grzelczak M, et al.2010. Functionalization of graphene via 1,3-dipolar cycloaddition[J]. ACS Nano,4:3527-3533.
    [62]Sarkar S, Bekyarova E, Niyogi S, et al.2011. Diels-alder chemistry of graphite and graphene: graphene as diene and dienophile[J]. J Am Chem Soc,133:3324-3327.
    [63]Liu LH, Lerner MM, Yan MD.2010. Derivitization of pristine graphene with well-defined chemical functionalities[J]. Nano Lett,10:3754-3756.
    [64]Sharma R. Baik JH, Perera CJ, et al.2010. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries[J]. Nano Lett.10:398-405.
    [65]Che JF, Shen LY, Xiao YH.2010. A new approach to fabricate graphene nanosheets in organic medium:combination of reduction and dispersion[J]. J Mater Chem,20:1722-1727.
    [66]Salavagione HJ, Gomez MA, Martinez G.2009. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol)[J]. Macromolecules,42:6331-6334.
    [67]Wassei JK, Cha KC, Tung VC, et al.2011. The effects of thionyl chloride on the properties of graphene and graphene-carbon nanotube composites [J]. J Mater Chem,21:3391-3396.
    [68]Zhou H, Wang X, Yu P, et al.2012. Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine[J]. Analyst, 137:305-308.
    [69]Yang HF, Shan CS, Li FH, et al.2009. Covalent functionalization of pclydisperse chemically-converted graphene sheets with amine-terminated ionic liquid[J]. Chem Commun, 26:3880-3882.
    [70]Zhang DD, Zu SZ, Han BH.2009. Inorganic-organic hybrid porous materials based on graphite oxide sheets[J]. Carbon,47:2993-3000.
    [71]Yang HF, Li FH, Shan CS, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. J Mater Chem,19:4632-4638.
    [72]Elias DC, Nair RR, Mohiuddin TMG, et al.2009. Control of graphene's properties by reversible hydrogenation:evidence for graphane[J]. Science,323:610-613.
    [73]Bon SB, Valentini L, Verdejo R, et al.2009. Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine[J]. Chem Mater,21: 3433-3438.
    [74]Geng J, Jung H.2010. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films[J]. J Phys Chem C,114:8227-8234.
    [75]Tang LH, Wang Y, Liu Y, et al.2011. DNA-directed self-assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay[J]. ACS Nano,5:3817-3822.
    [76]Pang DWP, Yuan FW, Chang YC, et al.2012. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents[J]. Nanoscale,4:4562-4569.
    [77]Hu Y, Lu LH, Liu JH, et al.2012. Direct growth of size-controlled gold nanoparticles on reduced graphene oxide film from bulk gold by tuning electric field:effective methodology and substrate for surface enhanced Raman scattering study[J]. J Mater Chem,22: 11994-12000.
    [78]Kim YK, Han SW, Min DH.2012. Graphene oxide sheath on Ag nanoparticle/graphene hybrid films as an antioxidative coating and enhancer of surface-enhanced Raman scattering[J]. ACS Appl Mater Inter,4:6545-6551.
    [79]Li YJ, Gao W, Ci LJ, et al.2010. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation[J]. Carbon,48:1124-1130.
    [80]Liang YY., Li YG, Wang HL, et al.2011. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat Mater,10:780-786.
    [81]Zhou XS, Wan LJ, Guo YG.2013. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Adv Mater,25:2152-2157.
    [82]Shen QM, Zhou SW, Zhao XM, et al.2012. Anatase TiO2 nanoparticle-graphene nanocomposites:one-step preparation and their enhanced direct electrochemistry of hemoglobin[J]. Anal Methods,4:619-622.
    [83]Zhang N, Zhang YH, Pan XY, et al.2011. Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions[J]. J Phys Chem C,115:23501-23511.
    [84]Yang XY, Zhang XY, Liu ZF, et al.2008. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J]. J Phys Chem C,112:17554-17558.
    [85]Zhao X, Zhang QH, Chen DJ, et al.2010. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules,43:2357-2363.
    [86]Yang LP, Gaier JR, et al.2012. Highly conductive graphene by low-temperature thermal reduction and in situ preparation of conductive polymer nanocomposites[J]. Nanoscale,4: 4968-4971.
    [87]Cao YW, Lai ZL, Feng JC, et al.2011. Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers [J]. J Mater Chem,21: 19419-19419.
    [88]Zeng XP, Yang JJ, Yuan WX, et al.2012. Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method[J]. Eur Poly J,48:1674-1682.
    [89]Chen ZX, Lu HB.2012. Constructing sacrificial bonds and hidden lengths for ductile graphene/polyurethane elastomers with improved strength and toughness [J]. J Mater Chem, 22:12479-12490.
    [90]Song PA, Yu YM, Zhang T, et al.2012. Permeability, viscoelasticity, and flammability performances and their relationship to polymer nanocomposites [J]. Ind Eng Chem Res,51: 7255-7263.
    [91]Zhang HB, Zheng WG, Yan Q, et al.2010. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J]. Polymer,51: 1191-1196.
    [92]Gedler G, Antunes M, Realinho V, et al.2012. Thermal stability of polycarbonate-graphene nanocomposite foams[J]. Poly Degrad Stabil,97:1297-1304.
    [93]Potts JR, Murali S, Zhu YW, et al.2011. Microwave-exfoliated graphite oxide/polycarbonate composites[J]. Macromolecules,44:6488-6495.
    [94]Kim H,. Miura Y, Macosko CW.2010. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity [J]. Chem Mater,22:3441-3450.
    [95]Cai DY, Yusoh K, Song M.2009. The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite[J]. Nanotechnology,20:085712.
    [96]Cui L, Liu JQ, Wang R, et al.2012. A facile "graft from" method to prepare molecular-level dispersed graphene-polymer composites[J]. J Poly Sci Poly Chem,50:4423-4432.
    [97]Fang M, Wang KQ, Lu HB, et al.2009. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites [J]. J Mater Chem,19:7098-7105.
    [98]Goncalves G, Marques PAAP, Barros-Timmons A, et al.2010. Graphene oxide modified with PMMA via ATRP as a reinforcement filler[J]. J Mater Chem,20:9927-9934.
    [99]Fang M, Zhang Z, Li JF, et al.2010. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces[J]. J Mater Chem, 20:9635-9643.
    [100]Zaman I, Kuan HC, Dai JF, et al.2012. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites [J]. Nanoscale,4:4578-4586.
    [101]Shen XJ, Liu Y, Xiao HM, et al.2012. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins [J]. Compos Sci Technol,72:1581-1587.
    [102]Du JH, Zhao L, Zeng Y, et al.2011. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure[J]. Carbon,49:1094-1100.
    [103]Stankovich S, Dikin DA, Dommett GNB, et al.2006. Graphene-based composite materials. Nature,442:282-286.
    [104]Yousefi N, Gudarzi MM, Zheng QB, et al.2012. Self-alignment and high electrical conductivity of ultralarge graphene oxide-polyurethane nanocomposites[J]. J Mater Chem,22: 12709-12717.
    [105]Yoonessi M, Gaier JR.2010. Highly conductive multifunctional graphene polycarbonate nanocomposites[J]. ACS Nano,4:7211-7220.
    [106]Liu Y, Deng RJ, Wang Z, et al.2012. Carboxyl-functionalized graphene oxide-polyaniline composite as a promising supercapacitor material[J]. J Mater Chem.22:13619-13624.
    [107]Mahmoud WE.2011. Morphology and physical properties of poly(ethylene oxide) loaded graphene nanocomposites prepared by two different techniques [J]. Eur Polym J,47: 1534-1540.
    [108]Xu Z, Gao C.2010. In situ polymerization approach to graphene-reinforced nylon-6 composites[J]. Macromolecules,43:6716-6723.
    [109]Shahil KMF, Balandin AA.2012. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Lett,12:861-867.
    [110]Wang SR, Tambraparni M, Qiu JJ, et al.2009. Thermal Expansion of Graphene Composites[J]. Macromolecule,42:5251-5255.
    [111]Chen WF, Yan LF.2010. Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure[J]. Nanoscale,2:559-563.
    [112]Fang M, Wang KG, Lu HB, et al.2010. Single-layer graphene nanosheets with controlled grafting of polymer chains[J]. J Mater Chem,20:1982-1992.
    [113]Yang JH, Lin SH, Lee YD.2012. Preparation and characterization of poly(L-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator[J]. J Mater Chem,22:10805-10815.
    [114]Compton OC, Kim S, Pierre C, et al.2010. Crumpled graphene nanosheets as highly effective barrier property enhancers[J]. Adv Mater,22:4759-4763.
    [115]Cao YW, Feng JC, Wu PY.2012. Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends[J]. J Mater Chem,22: 14997-15005.
    [116]Starkova OS, Chandrasekaran S, Pradoet LASA, et al.2013. Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites[J]. Polym Degrad Stabil,98:519-526.
    [117]梁嘉杰.2011.基于石墨烯的高性能复合材料和智能形变材料的制备及应用研究:[博士].天津:南开大学.
    [118]黄青松,张军,杨蕾等.2006.阻燃LDPE的研究[J].现代塑料加工应用,18:5-8.
    [119]卞小闯.2013.新型磷氮系膨胀型阻燃剂的合成及其阻燃性能研究:[硕士].南京:南京理工大学.
    [120]欧育湘,房晓敏.2007.金属氢氧化物阻燃剂的现状与发展前景[J].精细与专用化学品,15:1-4.
    [121]Paul DR, Robeson LM.2008. Polymer nanotechnology:nanocomposites [J]. Polymer,49: 3187-3204.
    [122]Gilman JW, Jackson GL, Morgan AB, et al.2000. Flammability properties of polymer-layered-silicate nanocomposites. polypropylene and polystyrene nanocomposites[J]. Chem Mater,12:1866-1873.
    [123]Jang BN, Wilkie CA.2005. The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites[J]. Polymer,46:3264-3274.
    [124]Chen W, Feng L, Qu BJ.2004. Preparation of nanocomposites by exfoliation of ZnAl layered double hydroxides in nonpolar LLDPE solution[J]. Chem Mater,.16:368-370.
    [125]Nyambo C, Songtipya P, Maniaset E, et al.2008. Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS[J]. J Mater Chem,18:4827-4838.
    [126]Kashiwagi T, Du F, Douglas JF. et al.2005. Nanoparticle networks reduce the flammability of polymer nanocomposites[J]. Nat Mater,4:928-933.
    [127]Song PA, Zhu Y, Tong LF, et al.2012. C6o reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network[J]. Nanotechnology,19:225707.
    [128]Huang GB, Gao JR, Wang X, et al.2012. How can graphene reduce the flammability of polymer nanocomposites[J]? Mater Lett,66:187-189.
    [129]Huang GB, Liang HD, Wang Y, et al.2012. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol)[J]. Mater Chem Phys 132: 520-528.
    [130]Han YQ, Wu Y, Shen MX, et al.2013. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants[J]. J Mater Sci,48: 4214-4222.
    [131]Liao SH, Liu PL, Hsiao MC, et al.2012. One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite[J]. Ind Eng Chem Res,51:4573-4581.
    [132]Wang X, Hu Y, Song L, et al.2011. In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties[J]. J Mater Chem,21: 4222-4227.
    [133]Bao CL, Song L, Xing WY, et al.2012. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J]. J Mater Chem,22:6088-6096.
    [1]Rao CNR, Subrahmanyam KS, Matte HSSR, et al.2010. A study of the synthetic methods and properties of graphenes[J]. Sci Technol Adv Mater,11:054502.
    [2]Novoselov KS, Geim AK, Morozov SV, et al.2004. Electric field effect in atomically thin carbon films[J]. Science,306:666-669.
    [3]Moreau E, Ferrer FJ, Vignaud D, et al.2010. Graphene growth by molecular beam epitaxy using a solid carbon sourceJ]. Phys Status Solidi A,207:300-303.
    [4]Niyogi S, Bekyarova E, Itkis ME, et al.2006. Solution properties of graphite and graphene[J]. J Am Chem Soc,128:7720-7721.
    [5]Jin M, Jeong HK, Kim TH, et al.2010. Synthesis and systematic characterization of functionalized graphene sheets generated by thermal exfoliation at low temperature [J]. J Phys D Appl Phys,43: 275402.
    [6]Tung VC, Allen MJ, Yang Y, et al.2009. High-throughput solution processing of large-scale graphene[J]. Nat Nanotechnol,4:25-29.
    [7]Reina A, Jia XT, Ho J, et al.2009. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,9:30-35.
    [8]Zhang WX, Cui JC, Tao CA, et al.2009. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach[J]. Ang Chem Intl Ed,48:5864-5868.
    [9]Sun J, Liu HM, Chen X, et al.2012. Synthesis of graphene nanosheets with good control over the number of layers within the two-dimensional galleries of layered double hydroxides[J]. Chem Commun,48:8126-8128.
    [10]Sun ZZ, Yan Z, Yao J, et al.2010. Growth of graphene from solid carbon sources[J]. Nature,468: 549-552.
    [11]Byun SJ, Lim H, Shin GY, et al.2011. Graphenes converted from polymers[J]. J Phys Chem Lett, 2:493-497.
    [12]Chen ZP, Ren WC, Liu BL, et al.2010. Bulk growth of mono-to few-layer graphene on nickel particles by chemical vapor deposition from methane[J]. Carbon,48:3543-3550.
    [13]Jana P, O'Shea VADLP, Coronado JM et al.2011. Co-production of graphene sheets and hydrogen by decomposition of methane using cobalt based catalysts[J]. Energ Environ Sci,4:778-783.
    [14]Tang T, Chen XC, Meng XY, et al.2005. Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene[J]. Ang Chem Int Ed,44:1517-1520.
    [15]Hummers WS, Offeman RE.1958. Preparation of graphitic oxide[J]. J Am Chem Soc,80: 1339-1339.
    [16]Choucair M, Thordarson P, Stride JA.2009. Gram-scale production of graphene based on solvothermal synthesis and sonication[J]. Nat Nanotechnol,4:30-33.
    [17]Meyer JC, Geim AK, Katsnelson MI, et al.2007. The structure of suspended graphene sheets[J]. Nature,446:60-63.
    [18]Wu YP, Wang B, Ma YF, et al.2010. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films [J]. Nano Res,3: 661-669.
    [19]Dimovski S, Nikitin A, Ye H, et al.2004. Synthesis of graphite by chlorination of iron carbide at moderate temperatures[J]. J Mater Chem,14:238-243.
    [20]Qian WZ, Liu T, Wang ZW, et al.2003. Effect of adding nickel to iron-alumina catalysts on the morphology of as-grown carbon nanotubes[J]. Carbon,41:2487-2493.
    [21]Kim NS, Lee YT, Park L, et al.2003. Vertically aligned carbon nanotubes grown by pyrolysis of iron, cobalt, and nickel phthalocyanines[J]. J Phys Chem B,2003.107:9249-9255.
    [22]Koh ATT, Foong YM, Chua DHC.2010. Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature[J]. Appl Phys Lett,97:114102.
    [23]Xu ZW, Li HJ, Li W, et al.2011. Large-scale production of graphene by microwave synthesis and rapid cooling[J]. Chem Commun,47:1166-1168.
    [24]Melucci M, Treossi E, Ortolani L, et al.2010. Facile covalent functionalization of graphene oxide using microwaves:bottom-up development of functional graphitic materials[J]. J Mater Chem,20: 9052-9060.
    [25]Park SH, Bak SM, Kim KH, et al.2011. Solid-state microwave irradiation synthesis of high quality graphene nanosheets under hydrogen containing atmc sphere [J]. J Mater Chem,21: 680-686.
    [26]Wang L, Tian CG, Wang H, et al.2010. Mass production of graphene via an in situ self-Generating template route and its promoted activity as electrocatalytic support for methanol electroxidization[J]. J Phys Chem C,114:8727-8733.
    [27]Chen C, Zhai WT, Lu DD, et al.2011. A facile method to prepare stable noncovalent functionalized graphene solution with thionine[J]. Mater Res Bull,46:583-587.
    [28]Lambert TN, Luhrs CC, Chavez CA, et al.2010. Graphite oxide as a precursor for the synthesis of disordered graphenes using the aerosol-through-plasma method[J]. Carbon,48:4081-4089.
    [29]Hong JY, Shin KY, Kwon OS, et al.2011. A strategy for fabricating single layer graphene sheets based on a layer-by-layer self-assembly[J]. Chem Commun.47:7182-7184.
    [30]Hu HT, Wang XB, Wang JC, et al.2011. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics[J]. Appl Surf Sci.257: 2637-2642.
    [31]Li N, Wang ZY, Zhao KK, et al.2010. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon,48:255-259.
    [32]Economopoulos SP, Rotas G, Miyata Y, et al.2010. Exfoliation and chemical modification using microwave irradiation affording highly functionalized graphene[J]. ACS Nano,4:7499-7507.
    [33]Li Z, Yao YG, Lin ZY, et al.2010. Ultrafast, dry microwave synthesis of graphene sheets. J Mater Chem,20:4781-4783.
    [34]Wang JJ, Zhu MY,. Outlaw RA, et al.2004. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon,42:2867-2872.
    [35]He CN, Zhao NQ, Shi CS, et al.2008. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes[J]. Mater Res Bull,43:2260-2265.
    [36]Gong QM, Li Z, Wang Y, et al.2007. The effect of high-temperature annealing on the structure and electrical properties of well-aligned carbon nanotubes[J]. Mater Res Bull,42:474-481.
    [37]Takagi D, Homma Y, Hibino H, et al.2006. Single-walled carbon nanotube growth from highly activated metal nanoparticles [J]. Nano Lett,6:2642-2645.
    [38]Chen XC, He JH, Yan CX, et al.2006. Novel in situ fabrication of chestnut-like carbon nanotube spheres from polypropylene and nickel formate[J]. J Phys Chem B,110:21684-21689.
    [39]Wintterlin J, Bocquet ML.2009. Graphene on metal surfaces[J]. Surf Sci,603:1841-1852.
    [40]Fernandez Y, Menendez JA, Phillips J, et al.2009. Graphitic encapsulation of micron-and nano-sized Ni particles using ethylene as precursor[J]. Appl Surf Sci,256:194-201.
    [1]Kiliaris P, Papaspyrides CD.2010. Polymer/layered silicate (clay) nanocomposites:an overview of flame retardancy[J]. Prog Polym Sci,35:902-958.
    [2]Matusinovic Z, Wilkie CA.2012. Fire retardancy and morphology of layered double hydroxide nanocomposites:a review[J]. J Mater Chem,22:18701-18704.
    [3]Rakhimkulov AD, Lomakin SM, Dubnikova IL, et al.2010. The effect of multi-walled carbon nanotubes addition on the thermo-oxidative decomposition and flammability of PP/MWCNT nanocomposites[J]. J Mater Sci,45:633-640.
    [4]Shi YM, Li LJ.2011. Chemically modified graphene:flame retardant or fuel for combustion[J]? J Mater Chem,21:3277-3279.
    [5]Huang GB, Gao JR, Wang X, et al.2012. How can graphene reduce the flammability of polymer nanocomposites[J]? Mater Lett,66:187-189.
    [6]Huang GB, Liang HD, Wang Y, et al.2012. Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol)[J]. Mater Chem Phys,132: 520-528.
    [7]Bao CL, Song L, Xing WY, et al.2012. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J]. J Materi Chem,22:6088-6096.
    [8]Han YQ, Wu Y, Shen MX, et al.2013. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants[J]. J Mater Sci,48:4214-4222.
    [9]Gudarzi MM, Sharif F.2012. Molecular level dispersion of graphene in polymer matrices using colloidal polymer and graphene[J]. J Colloid Interf Science,366:44-50.
    [10]Verdejo R, Bernal MM, Romasanta LJ, et al.2011. Graphene filled polymer nanocomposites[J]. J Mater Chem,21:3301-3310.
    [11]Horrocks AR.1996. Developments in flame retardants for heat and fire resistant textiles-the role of char formation and intumescence[J]. Polym Degrad Stabil,54:143-154.
    [12]Tang Y, Hu Y, Wang SF, et al.2003. Intumescent flame retardant-montmorillonite synergism in polypropylene-layered silicate nanocomposites[J]. Polym Int,.52:1396-1400.
    [13]Zhang M, Ding P, Qu BJ.2009. Flammable, thermal, and mechanical properties of intumescent flame retardant PP/LDH nanocomposites with different divalent cations[J]. Polym Compos,30: 1000-1006.
    [14]Wang, L.J. Su SP, Chen D, et al.2009. Variation of anions in layered double hydroxides:effects on dispersion and fire properties[J]. Polym Degrad Stabil,94:770-781.
    [15]Pham VH, Cuong TV, Dang TT, et al.2011. Superior conductive polystyrene-chemically converted graphene nanocomposite[J]. J Mater Chem,21:.11312-11316.
    [16]Shen B, Zhai WT, Chenet C, et al.2011. Melt blending in situ enhances the interaction between polystyrene and graphene through pi-pi stacking[J]. ACS Appl Mater Interf,3:3103-3109.
    [17]Yang JT, Wu MJ, Chen F, et al.2011. Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites[J]. J Supercrit Fluid,56:201-207.
    [18]Ma HL, Zhang HB, Hu QH, et al.2012. Functionalization and reduction of graphene oxide with p-phenylene diamine for electrically conductive and thermally stable polystyrene composites[J]. ACS Appl Mater Interf,4:1948-1953.
    [19]Compton OC, Kim S, Pierre C, et al.2010. Crumpled graphene nanosheets as highly effective barrier property enhancers[J]. Adv Mater,22:4759-4763.
    [20]Isitman NA, Kaynak C.2010. Tailored flame retardancy via nanofiller dispersion state:synergistic action between a conventional flame-retardant and nanoclay in high-impact polystyrene[J]. Polym Degrad Stabil,95:1759-1768.
    [21]Du BX, Guo ZH, Fang ZP.2009. Effects of organo-clay and sodium dodecyl sulfonate intercalated layered double hydroxide on thermal and flame behaviour of intumescent flame retarded polypropylene[J]. Polym Degrad Stabil,94:1979-1985.
    [22]Camino G, Costa L, Martinasso G.1989. Intumescent fire-retardant systems[J]. Polym Degrad and Stabil,23:359-376.
    [23]Bourbigot S, Le Bras M, Duquesne S, et al.2004. Recent advances for intumescent polymers[J]. Macromol Mater Eng,289:499-511.
    [24]Wang X, Song L, Yang HY, et al.2011. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites[J]. Ind Eng Chem Res,50:5376-5383.
    [25]Du BX, Fang ZP.2011. Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene[J]. Polym Degrad Stabil.96:1725-1731.
    [26]武晶,韩文霞.2005.用红外光谱法鉴别聚合物[J].橡胶参考资料,35:38-44.
    [27]Camino G, Costa L, Trossarelli L, et al.1984. Study of the mechanism of intumescence in fire retardant polymers.4. evidence of ester formation in ammonium polyphosphate pentaerythritol mixtures[J]. Polym Degrad Stabil,8:13-22.
    [28]Levchik SV, Balabanovich AI, Levchik GF.1997. Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6 [J]. Fire Mater,21:75-83.
    [1]Zhao X, Zhang QH, Chen DJ.2010. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules,43:2357-2363.
    [2]Rafiee MA, Rafiee J, Wang Z, et al.2009. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano,3:3884-3890.
    [3]Cai DY, Yusoh K. Song M.2009. The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite[J]. Nanotechnology,20:085712.
    [4]Cao YW, Lai ZL. Feng JC, et al.2011. Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers[J]. J Mater Chem,21:19419-19419.
    [5]Salavagione HJ, Gomez MA, Martinez G.2009. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol)[J]. Macromolecules,42:6331-6334.
    [6]Stankovich S. Dikin DA, DommettlGNB, et al.2006. Graphene-based composite materials[J], Nature,442:282-286.
    [7]Liu JQ, Tang JG, Gooding JJ.2012. Strategies for chemical modification of graphene and applications of chemically modified grapheme[J]. J Mater Chem,22:12435-12452.
    [8]Nie SB, Hu Y, Song L, et al.2008. Synergistic effect between a char forming agent (CFA) and micro encapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene[J].Polym Adv Technol,19:1077-1083.
    [9]Huang GB, Chen SQ, Tang SW, et al.2012. A novel intumescent flame retardant-functionalized graphene:nanocomposite synthesis, characterization, and flammability properties [J]. Mater Chem Phvs,135:938-947.
    [10]Ma HY, Tong LF, Xu ZB, et al.2008. Functionalizing carbon nanotubes by grafting on intumescent flame retardant:nanocomposite synthesis, morphology, rheology. and flammability[J]. Adv Funct Mater,18:414-421.
    [11]Zhang WN, He W, Jing XL.2010. Preparation of a stable graphene dispersion with high concentration by ultrasound[J]. J Phys Chem B,114:10368-10373.
    [12]Tai, QL, Hu Y, Yuen KKY, et al.2011. Synthesis, structure-property relationships of polyphosphoramides with high char residues[J]. J Mater Chem,21:6621-6627.
    [13]Fang M, Wang KG, Lu HB, et al.2010. Single-layer graphene nanosheets with controlled grafting of polymer chains[J]. J Mater Chem,20:1982-1992.
    [14]Wang X, Xing WY, Feng XM, et al.2014. Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites:synthesis, flammability and mechanism[J]. Polym Chem,5:1145-1154.
    [15]Cao YW, Feng JC, Wu PY.2012. Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends[J]. J Mater Chem,22:14997-15005.
    [16]Lin Y, Jin J, Song M.2011. Preparation and characterisation of covalent polymer functionalized graphene oxide[J]. J Mater Chem,21:3455-3461.
    [17]Hsiao MC, Liao SH, Lin YF, et al.2011. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite[J]. Nanoscale,3:1516-1522.
    [18]Song PA, Xu LH, Guo ZH, et al.2008. Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene[J]. J Mater Chem,18:5083-5091.
    [19]Hu WZ, Zhan J, Wang X, et al.2014. Effect of functionalized graphene oxide with hyper-branched flame retardant on flammability and thermal stability of cross-linked polyethylene[J]. Ind Eng Chem Res,53:5622-5622.
    [1]Wang Q, O'Hare D.2012. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chem Rev,112:4124-4155.
    [2]Matusinovic Z, Wilkie CA.2012. Fire retardancy and morphology of layered double hydroxide nanocomposites:a review[J]. J Mater Chem,22:18701-18704.
    [3]Manzi-Nshuti C, Wang DY, Jeanne M, et al.2009. The role of the trivalent metal in an LDH: synthesis, characterization and fire properties of thermally stable PMMA/LDH systems[J]. Polym Degrad Stabil,94:705-711.
    [4]Manzi-Nshuti C, Wang DY. Hossenloppet JM, et al.2008. Aluminum-containing layered double hydroxides:the thermal, mechanical, and fire properties of (nano)composites of poly(methyl methacrylate)[J]. J Mater Chem,18:3091-3102.
    [5]Gao Z, Wang J, Li ZS, et al.2011. Graphene nanosheet/Ni2+Al3- layered double-hydroxide composite as a novel electrode for a supercapacitor[J]. Chem Mater,23:3509-3516.
    [6]Zhang LJ, Zhang XG, Shan LF, et al.2012. Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors[J]. J Power Sources,199:395-401.
    [7]Li HJ, Zhu G, Liu ZH,et al.2010. Fabrication of a hybrid graphene/layered double hydroxide material[J]. Carbon,48:4391-4396.
    [8]Bai S, Shen XP.2012. Graphene-inorganic nanocomposites[J]. RSC Advances,2:64-98.
    [9]Chua CK, Pumera M.2013. Selective Removal of Hydroxyl Groups from Graphene Oxide[J]. Chem-Eur J,19:2005-2011.
    [10]Chen QH, Shi SH, Liu XL, et al.2009. Studies on the oxidation reaction of L-cysteine in a confined matrix of layered double hydroxides[J]. Chem Eng J,153:175-182.
    [11]Li MX, Zhu JE, Zhang LL, et al.2011. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine[J]. Nanoscale,3:4240-4246.
    [12]Saiah FBD, Su BL, Bettahar N.2009. Nickel-iron layered double hydroxide (LDH):textural properties upon hydrothermal treatments and application on dye sorption[J]. J Hazard Mater,165: 206-217.
    [13]Zhang K, Mao L, Zhang LL, et al.2011. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J].J Mater Chem,21:7302-7307.
    [14]Wang H, Xiang X, Li F.2010. Facile synthesis and novel electrocatalytic performance of nanostructured Ni-Al layered double hydroxide carbon nanotube composites[J].J Mater Chem.20: 3944-3952.
    [15]Zhao X, Zhang QH, Chen DJ.2010. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J]. Macromolecules,43:2357-2363.
    [16]Goncalves G, Marques PAAP, Barros-Timmons A, et al.2010. Graphene oxide modified with PMMA via ATRP as a reinforcement filler[J]. J Mater Chem,20:9927-9934.
    [17]Cao YW, Lai ZL, Feng JC, et al.2011. Graphene oxide sheets covalently functionalized with block copolymers via click chemistry as reinforcing fillers[J]. J Mater Chem,21:19419-19419.
    [18]Park SH, Bandaru PR.2010. Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages[J]. Polymer,51: 5071-5077.
    [19]Song PA, Xu LH, Guo ZH, et al.2008. Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene[J]. J Mater Chem,18:5083-5091.
    [20]Yadav SK, Cho JW.2013. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites[J]. Appl Surf Sci,266:360-367.
    [21]Huang GB, Gao JR, Wang X, et al.2012. How can graphene reduce the flammability of polymer nanocomposites[J]? Mater Lett,66:187-189.
    [22]Cao YW, Feng JC, Wu PY.2012. Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends[J]. J Mater Chem,22:14997-15005.
    [23]Chen XL, Huo LL, Jiao CM, et al.2013. TG-FTIR characterization of volatile compounds from flame retardant polyurethane foams materials[J]. J Anal Appl Pyroly,100:186-191.
    [24]Kashiwagi T, Du FM, Douglas JF, et al.2005. Nanoparticle networks reduce the flammability of polymer nanocomposites[J]. Nat Mater,4:928-933.
    [25]Bikiaris D.2011. Can nanoparticles really enhance thermal stability of polymers? Part II:An overview on thermal decomposition of polycondensation polymers[J]. Thermochim Acta,523: 25-45.
    [1]刘军,李风,兰彬等.2005.火灾烟气毒性研究的进展[J].消防科学与技术,24:674-678.
    [2]Gann RG, Babrauskas V, Grayson SJ, et al.2011. Hazards of combustion products:toxicity, opacity, corrosivity, and heat release:The experts' views on capability and issues[J]. Fire Mater,35: 115-127.
    [3]赵斌.2010.镍系钙钛矿同时去除氮氧化物和碳烟颗粒的催化性能:[博士].天津:天津大学.
    [4]Tang T, Chen XC, Chen H, et al.2005. Catalyzing carbonization of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy[J]. Chem Mater,17:2799-2802.
    [5]Lewin M, Endo M.2003. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds[J]. Polym Adv Technol,14:3-11.
    [6]Liang YY, Li YG, Wang HL, et al.2011. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat Mater,10:780-786.
    [7]Hoa LT, Tien HN, Luan VH, et al.2013. Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors[J]. Sensor Actuat B-Chem,185:701-705.
    [8]Zhang LL, Xiong ZG. Zhao XS.2010. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation[J]. ACS Nano,4: 7030-7036.
    [9]Liao MM, et al.2011. Development of a Ni-Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming[J]. J Power Sources.19:6177-6185.
    [10]Sukonket T, Khan A,Sahaet B et al.2011. Influence of the catalyst preparation method, surfactant amount, and steam on CO2 reforming of CH4 over SNi/Ce0.6Zr0.4O2 catalysts[J]. Energ Fuel,25: 864-877.
    [11]Solsona B, Concepcion P, Hernandez S, et al.2012. Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts[J]. Catal Today,180:51-58.
    [12]Barrio L, Kubacka A, Zhou G, et al.2010. Unusual physical and chemical properties of Ni in Ce1-xNixO2-y oxides:structural characterization and catalytic activity for the water gas shift reaction[J]. J Phys Chem C,114:12689-12697.
    [13]2007. Controlled equivalence ratio method for the determination of hazardous components of fire effluents. ISO/TS 19700.
    [14]Li BJ, Cao HQ, Shao J, et al.2011. Improved performances of beta-Ni(OH)2(?) reduced-graphene-oxide in Ni-MH and Li-ion batteries[J]. Chem Commun.47:3159-3161.
    [15]Zhao B, Song JS, Liu P, et al.2011. Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors[J]. J Mater Chem,21:18792-18798.
    [16]Chen CF, Chen TT, Wang HL, et al. A rapid, one-step, variable-valence metal ion assisted reduction method for graphene oxide[J]. Nanotechnology,22:405602.
    [17]Zhang Y, Xu FG, Sun YJ, et al.2011. Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing[J]. J Mater Chem,21: 16949-16954.
    [18]Jalowiecki-Duhamel L, Zarrou H, D' Huysser A.2008. Low temperature hydrogen production from methane on cerium nickel- and zirconium-based oxyhydrides[J]. Catal Today,138:124-129.
    [19]Kottegoda IRM, Idris NH, Lu L, et al.2011. Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge-discharge application[J]. Electrochim Acta,56:5815-5822.
    [20]Li MX, Zhu JE, Zhang LL, et al.2011. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine[J]. Nanoscale,3:4240-4246.
    [21]Kuila T, Bose S, Mishra AK, et al.2012. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites[J]. Polym Test,31:31-38.
    [22]Hsiao MC, Liao SH, Linet YF, et al.2011. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite[J]. Nanoscale,3:1516-1522.
    [23]Zou YQ, Wang Y.2011. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries[J]. Nanoscale,3:2615-2620.
    [24]Huang GB, Chen SQ, Tang SW, et al.2012. A novel intumescent flame retardant-functionalized graphene:nanocomposite synthesis, characterization, and flammability properties [J]. Mater Chem Phys,135:938-947.
    [25]Ma HY, Tong LF, Xu ZB, et al.2008. Functionalizing carbon nanotubes by grafting on intumescent flame retardant:nanocomposite synthesis, morphology, rheology, and flammability[J]. Adv Funct Mater,18:414-421.
    [26]Wang X, Song L, Yang HY, et al.2012. Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters[J]. J Mater Chem, 22:3426-3431.
    [27]Blomqvist P, Hertzberg T, Tuovinen H, et al.2007. Detailed determination of smoke gas contents using a small-scale controlled equivalence ratio tube furnace method[J]. Fire Mater,31: 495-521.
    [28]Watanabe C, Tsuge S, Ohtani H.2009. Development of new pyrolysis-GC/MS system incorporated with on-line micro-ultraviolet irradiation for rapid evaluation of photo, thermal, and oxidative degradation of polymers [J]. Polym Degrad Stabil,94:1467-1472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700