用户名: 密码: 验证码:
面向异构无线接入网的联合资源管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信技术与无线业务的快速发展共同驱动着无线接入技术和移动终端技术的演进,在无线接入异构化、移动终端多模化的推动下,异构、协同与融合将是未来无线通信系统的重要发展趋势,未来的无线通信系统将集成和管理多种异构无线接入网络,为多模终端提供泛在的异构无线接入环境,充分满足用户在不同应用场景下日益增长的业务需求。联合无线资源管理技术对各无线接入技术进行资源的统一调配和调度,通过联合利用多个无线接入技术,实现网络和终端的互联互通和协同配合,提升通信系统的整体性能。
     面向异构无线接入网的联合资源管理技术是本文的研究内容,本文重点围绕多模终端对各无线接入技术的联合利用模式,即终端接入多个异构无线接入网中进行并行式数据传输,利用多个网络获取分集增益——多无线传输分集。本文分别研究针对该模式的多模终端网络接入选择机制、多模终端数据流量分配机制及多模终端无线资源分配机制,根据网络与终端的实际需求,合理利用异构无线接入网与多模终端的可操作资源,在不同层面展开研究工作,目的是为了形成一套面向异构无线接入网的联合资源管理体系。本文的主要研究内容包括:
     1)针对多模终端利用多无线传输分集时的网络接入选择问题,论文提出了一种异构无线接入环境下的多模终端多网络接入选择机制,该机制由终端控制运行,旨在保障多模终端的数据传输速率需求和功耗限制的同时,提高多模终端的数据传输能效。论文设计了网络接入选择框架,为多模终端中各无线接入技术的网络接口卡设计了独立的参数采集模块,并搭建了统一的网络接入选择管理模块,以根据所采集的参数信息进行网络接入选择决策。其中,参数采集模块使用指数平滑方法处理已测量参数以降低“乒乓效应”;网络接入选择管理模块使用状态转移模型管理终端多个网络接口卡的接入选择策略,并采用效用函数法动态平衡终端功耗与数据传输速率,以针对多模终端能量受限的实际情况,根据业务速率需求灵活优化网络接入选择,提高多模终端数据传输能效。仿真结果证明与传统切换式接入选择相比,所提出的方法显著减少了不必要的接入重选次数,并在保证终端功耗与数据传输速率的前提下增强了数据传输能效。
     2)针对多模终端利用多无线传输分集时对各个无线接入技术连接的数据流量分配问题,论文提出了一种针对多模终端资源受限情况下的数据流量分配机制,包括传输时延受限下的能量有效数据流量分配机制与通信功耗受限下的传输有效数据流量分配机制。论文设计了一种针对多无线传输分集的多模终端并行式数据传输模型,建立了数学优化模型,并采用队列长度控制方法来避免数据缓冲区溢出。论文针对保证多模终端数据传输时延限制条件下最小化通信功耗的问题,设计了基于原-对偶内点方法的数据流量分配算法;针对保证多模终端通信功耗限制条件下最小化数据传输时延的问题,设计了基于修改的粒子群优化的数据流量分配算法。仿真结果证明,所提出的数据流量分配机制能够在多种不同参数条件下最优地分配数据流量,同传统基于比例的分配算法相比,在时延受限下的能量有效数据流量分配机制中,多模终端的通信功耗得到显著降低;在功耗受限下的传输有效数据流量分配机制中,多模终端的数据传输时延得到显著降低。
     3)针对在软件无线电技术引入背景下多模终端利用多无线传输分集时的无线资源分配问题,论文提出了一种异构无线接入网系统容量最大化的多模终端发射功率与无线接入技术带宽资源分配机制。论文首先从网络侧角度简要概述了异构无线接入网中的多无线传输分集技术。为了在多无线传输分集模式下,进一步提升异构无线接入网的系统容量,论文基于最大化网络效用模型,提出了一种通过优化分配多模终端发射功率与其所关联的无线接入技术带宽的数值优化模型,该模型充分考虑多模终端由于自身配置与终端用户需求,在无线接入技术支持性和接入选择方面表现出的差异,以有效反映出在更为真实的应用环境下终端的差异化特性。论文设计了一种改进的协同进化遗传算法,通过并行进化搜索来灵活和高效地对优化问题进行求解,以此,论文设计了一种集中式的无线资源分配算法,在异构无线接入网的联合无线资源管理实体中,通过与多模终端进行信息交互,进行周期性的资源优化分配。仿真结果显示,论文所提出的算法与其它算法相比,具备较高的效率,以及相对稳定和精确的无线资源分配结果;相较于传统的切换式数据传输,通过论文所提出的算法,利用多无线传输分集的并行式数据传输模式能够有效提升系统容量。
The rapid developments of both telecommunication technologies and wireless services drive the evolutions of radio access technologies and mobile terminal technologies continuously. Promoted by radio access heterogeneity and mobile terminal mode diversity, heterogeneity, cooperation and convergence are the most promising trends of the future wireless communication system, which will integrate and manage multiple heterogeneous radio access networks. It aims at fully meeting the users'growing demands under different application scenarios by providing multi-mode terminals a universal heterogeneous radio access environment. Joint radio resource management technologies uniformly configure and schedule the resources of each radio access technologies. By jointly utilizing multiple radio access technologies, it can achieve the interconnection and coordination of network and terminal, so as to enhance the overall performance of communication system.
     The research of this dissertation focuses on heterogeneous radio access network oriented joint resource management technologies. The dissertation put emphasises on the joint utilization of multi-mode terminal to each radio access technologies, namely, the terminal accesses multiple heterogeneous radio access networks and carries out data transmission in parallel, obtains the diversity gain from multiple networks, which is defined as Multi-Radio Transmission Diversity. The disstertation studies the mechanisms of network access selection, data traffic allocation and radio resource allocation for multi-mode terminals. Base on the actual demands of network and terminal, the dissertation employs the operable resources of heterogeneous radio access networks and multi-mode terminals, and it puts our research work at different levels. The purpose of the dissertation is to form a set of joint resource management system for heterogeneous wireless access networks. The content of this dissertation can be summarized as follows:
     1) For the issues on network access selection when multi-mode terminal utilizing Multi-Radio Transmission Diversity, the dissertation proposes a multi-access selection mechanism for multi-mode terminals in heterogeneous radio access environment. Controlled by terminal, the mechanism aims at increasing the energy efficiency of multi-mode terminal's data transmission, while guaranteeing multi-mode terminal's demand on data transmission rate and restriction on power consumption. The framework of network access selection is designed, which includes independent parameter collection modules for the network interface cards of radio access technologies, and a unified network access selection management module for the decision of network access selection according to the collected parameters. The parameter collection module handles the measured parameters via the exponential smoothing method, which can reduce the "ping-pong effect"; network access selection management module uses state transition model to manage the network access selection strategies of multiple network interface cards, and adopts utility function method to dynamically balance the terminal's power consumption and data transmission rate. The mechanism can flexibly optimize the network access selection according to the application's data rate demand and the terminal's actual situation of energy constraint, thus can enhance the energy efficiency of multi-mode terminal's data transmission. The simulation results demonstrate that the proposed mechanism can significantly reduce the unnecessary network access re-selection. Compared with the traditional switched network access selection, the proposed mechanism can increase the energy efficiency of data transmission while guaranteeing the terminal's power consumption and data throughput.
     2) For the issues on the traffic allocation for the connections between the terminal and each participating radio access technologies when multi-mode terminal utilizing Multi-Radio Transmission Diversity, the dissertation proposes a traffic allocation mechanism with consideration of the resource constraints of multi-mode terminals. The mechanism includes an energy efficient traffic allocation mechanism constrained by transmission delay, and a transmission efficient traffic allocation mechanism constrained by communication power consumption. The dissertation designs a data transmission model for multi-mode terminal carrying out parallel data transmission via Multi-Radio Transmission Diversity, builds numerical optimization models, and adopts the queue size control to avoid buffer overflow. A traffic allocation algorithm is designed based on the prime-dual interior point method for minimizing the multi-mode terminal's communication power consumption under data transmission delay constraint, and also a traffic allocation algorithm is designed based on modified particle swarm optimization for minimizing the multi-mode terminal's data transmission delay under communication power constraint. The simulation results prove that the proposed traffic allocation mechanism can optimally allocate the traffic under different parameters. Compared with the traditional proportion based allocation algorithm, in the energy efficient traffic allocation mechanism, the multi-mode terminal's communication power consumption is significantly reduced, and in the transmission efficient traffic allocation mechanism, the multi-mode terminal's data transmission delay is obviously decreased.
     3) For the issues on the radio resource allocation when multi-mode terminal utilizing Multi-Radio Transmission Diversity with the software defined radio technologies introduced, the dissertation proposes a radio resource allocation mechanism for maximizing the capacity of heterogeneous radio access networks. It dynamically allocates the transmission powers of multi-mode terminals and bandwidths of multiple radio access technologies. The dissertation firstly gives an overview of the Multi-Radio Transmission Diversity in heterogeneous radio access networks from the perspective of network. Aiming at further enhancing the capacity of heterogeneous radio access network under the Multi-Radio Transmission Diversity, the dissertation proposes a network utility maximization based numerical optimization model, which optimally allocates the transmission power of multi-mode terminal and the bandwidth of the terminal's associated radio access technologies. According to the multi-mode terminals'configurations and users' demands, the model fully considers the difference of multi-mode terminals on radio access technology support and network access selection, so as to effectively reflect the diversity characteristics of multi-mode terminals in actual application environment. The dissertation designs an improved cevolutionary genetic algorithm, which can flexibly and efficiently solve the optimization problem through parallel evolutionary searching. Base on this algorithm, a central resource allocation algorithm is raised. In the joint radio resource management entity of heterogeneous radio access networks, the algorithm optimally allocates the resource periodically via the intercommunication between network and terminal. The simulation results show that, compared with other algorithms, the proposed algorithm has high efficiency, and can generate relatively stable and precise resource allocation results; compared with the traditional switched data transmission, using Multi-Radio Transmission Diversity, the parallel data transmission can effectively promote the system capacity via the proposed algorithm.
引文
[1-1]江泽民,新时期我国信息技术产业的发展,上海交通大学学报,42(10),2008,PP.1589-1607.
    [1-2]GSM, http://en.wikipedia.org/wiki/GSM
    [1-3]Code Division Multiple Access, http://en.wikipedia.org/wiki/CDMA
    [1-4]W-CDMA (UMTS), http://en.wikipedia.org/wiki/WCDMA
    [1-5]CDMA2000, http://en.wikipedia.org/wiki/CDMA2000
    [1-6]TD-SCDMA, http://en.wikipedia.org/wiki/TD-SCDMA
    [1-7]LTE, http://en.wikipedia.org/wiki/LTE_%28telecommunication%29
    [1-8]Time-Division Long-Term Evolution, http://en.wikipedia.org/wiki/TD-LTE
    [1-9]WiMAX, http://en.wikipedia.org/wiki/Wimax
    [1-10]WiFi, http://en.wikipedia.org/wiki/WiFi
    [1-11]Bluetooth, http://en.wikipedia.org/wiki/Bluetooth
    [1-12]Zigbee, http://en.wikipedia.org/wiki/Zigbee
    [1-13]Satellite Internet Access, http://en.wikipedia.org/wiki/Satellite_Internet_access
    [1-14]DAB, http://en.wikipedia.org/wiki/Digital_Audio_Broadcasting
    [1-15]DVB, http://en.wikipedia.org/wiki/Digital_Video_Broadcasting
    [1-16]Kappler, C., Dynamic network composition for beyond 3G networks:a 3GPP viewpoint, IEEE Network,21(1),2007, pp.47-52.
    [1-17]Prasad, R., An overview of CDMA evolution toward wideband CDMA, IEEE Communications Surveys & Tutorials,1(1),1998, pp.2-29.
    [1-18]Astely, D. et al., LTE:the evolution of mobile broadband, IEEE Communications Magazine,47(4),2009, pp.44-51.
    [1-19]Fan Wang, Mobile WiMAX systems:performance and evolution, IEEE Communications Magazine,46(10),2008, pp.41-49.
    [1-20]Hiertz, G. R., The IEEE 802.11 Universe, IEEE Communications Magazine, 48(1),pp.62-70.
    [1-21]Bisdikian, C, An overview of the Bluetooth wireless technology, IEEE Communications Magazine,39(12),2001, pp.86-94.
    [1-22]Gutierrez, J.A. et al., IEEE 802.15.4:a developing standard for low-power low-cost wireless personal area networks, IEEE Network,15(5),2001, pp.12-19.
    [1-23]Ushan Li, Towards multi-mode terminals, IEEE Vehicular Technology Magazine,1(4),2006, pp.17-24.
    [1-24]张俊,李笑郁,旷炜,WCDMA双卡双待智能终端的研究,信息通信技术,4,2012,pp.25-29
    [1-25]Gustafsson, E., Jonsson, A., Always Best Connected, IEEE Wireless Communications,10(1),2003, pp.49-55.
    [1-26]Ferrus, R., Salient, O., Agusti, R., Interworking in heterogeneous wireless networks:Comprehensive framework and future trends, IEEE Wireless Communications,17(2),2010, pp.22-31.
    [1-27]ITU-R M.2038, Technology Trends,2004, http://www.itu.int/pub/R-REP-M. 2038/en
    [1-28]3GPP TS 23.234 V9.0.0,3GPP system to Wireless Local Area Network(WLAN) interworking:System description(Release 9),2009, http://www.3gpp.org/ftp/Specs/html-info/23234.htm
    [1-29]DRiVE Project, http://www.ist-drive.org
    [1-30]EU BRAIN Project, http://www.brain-project.org
    [1-31]IST-BRAIN Deliverable D2.2:BRAIN architecture specifications and models, BRAIN functionality and protocol specification,2001, http://web. dit.upm.es/-ist-brain/deliverables/BRAIN%20Del%202.2.pdf
    [1-32]Dell Uomo. L, Scarrone. E, The path toward the 4G network and services: the WINE GLASS vision, The 5th Personal Mobile Communications Conference, European (Conf. Publ. No.492),2003, pp.169-175.
    [1-33]MOBY DICK Project, http://www.ist-world.org
    [1-34]EVEREST Project, http://www.ist-world, org
    [1-35]AROMA Project, http://www.ist-world.org
    [1-36]Ambient Networks, http://www.ambient-networks.org
    [1-37]Dimou, K., et al., Generic link layer:a solution for multi-radio transmission diversity in communication networks beyond 3G,2005 IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall),3,2005, pp.1672-1676.
    [1-38]SCOUT Project, http://www.ist-scout.org
    [1-39]MOBIVAS Project, http://mobivas.cnl.di.uoa.gr
    [1-40]CREDO Project, http://www.credo.nal.motlabs.com
    [1-41]E2R Project, http://www.e2r.motlabs.com
    [1-42]E3 Project, https://ict-e3.eu
    [1-43]ITU-T Recommendation Y. NGN Overview, General overview of NGN function and characteristics,2004.
    [1-44]ITU-T Y.2011, General principles and general reference model for Next Generation Networks,2004.
    [1-45]3GPP TS 22.228 v10.2.0, Service requirements for the Internet Protocol (IP) multimedia core network subsystem,2009.
    [1-46]3GPPTS 23.228 v10.1.0, IP Multimedia Subsystem (IMS),2010
    [1-47]Agrawal, P., IP multimedia subsystems in 3GPP and 3GPP2:overview and scalability issues, IEEE Communications Magazine,46(1),2008, pp.138-145.
    [1-48]韦乐平,三网融合的发展与挑战,现代电信科技,z1,2010,pp.1-5。
    [1-49]关勇,物联网行业发展分析,北京邮电大学硕士学位论文,2010。
    [1-50]Norbert Niebert, et al., Ambient Networks:Co-Operative Mobile Networking for the Wireless World, John Wiley & Sons Ltd.,2007.
    [1-51]Yaver, A., Koudouridis, G. P., Utilization of Multi-Radio Access Networks for Video Streaming Services, IEEE Wireless Communications and Networking Conference 2009 (WCNC 2009),2009, pp.1-6.
    [1-52]Drew, N. J., Dillinger M. M., Evolution toward reconfigurable user equipment, IEEE Communications Magazine,39(2),2001, pp.158-164.
    [1-53]Buracchini, E., The Software Radio Concept, IEEE Communications Magazine,38(9),2000,138-143.
    [1-54]Newman, P., In search of the all-IP mobile network, IEEE Communications Magazine,42(12),2004, pp.S3-S8.
    [1-55]Perkins, C. E., Mobile networking through Mobile IP, IEEE Internet Computing,2(1),1998, pp.58-69.
    [1-56]Perkins C. E., IP Mobility Support for IPv4, IETF RFC3220,2002.
    [1-57]Johnson D., Perkins C. E., Arkko, J., Mobility Support in IPv6, IETF RFC3775,2004.
    [1-58]Stewart, R., et al, Stream Control Transmission Protocol, IETF RFC2960, 2000.
    [1-59]Koh, S. J., Xie, Q. B., Park, S. D., Mobile SCTP (mSCTP) for IP Handover Support, IETF draft-sjkoh-msctp-01,2005.
    [1-60]Jorguseski, L., Prasad, R., Overview of radio resource management (RRM) issues in multi-radio access systems,2004 7th European Conference on Wireless Technology,2004, pp.97-100.
    [1-61]Wu, L., Sandrasegaran, K., A survey on common radio resource management, the 2nd International Conference on Wireless Broadband and Ultra Wideband Communications,2007, pp.66
    [1-62]李军,异构无线网络融合理论与技术实现,电子工业出版社,2009。
    [1-63]Niyato, D., Hossain, E., Dynamics of Network Selection in Heterogeneous Wireless Networks:An Evolutionary Game Approach,58(4),2009, pp.2008-2017.
    [1-64]Shen, W., Zeng, Q. A., Cost-Function-Based Network Selection Strategy in Integrated Wireless and Mobile Networks,57(6),2008, pp.3778-3788.
    [1-65]Song, Q. Y., Jamalipour, A., Network selection in an integrated wireless LAN and UMTS environment using mathematical modeling and computing techniques,12(3),2005, pp.42-48.
    [1-66]Yilmaz, O., et al., Access selection in WCDMA and WLAN multi-access networks,4,2005, pp.2220-2224.
    [1-67]Zhong, X., Xu, C. Z., Online Energy Efficient Packet Scheduling with Delay Constraints in Wireless Networks, IEEE 27th Conference on Computer Communications (INFOCOM 2008),2008, pp.421-429.
    [1-68]Louha, K., Jun, J. H., Agrawal, D. P., Exploring Load Balancing in Heterogeneous Networks by Rate Distribution, IEEE International Performance, Computing and Communications Conference 2008 (IPCCC 2008),2008, pp.427-432.
    [1-69]Pahalawatta, P., et al., Content-aware resource allocation and packet scheduling for video transmission over wireless networks, IEEE Journal on Selected Areas in Communications,25(4),2007, pp.749-759.
    [1-70]Choi, Y. H., et al., Joint Resource Allocation for Parallel Multi-Radio Access in Heterogeneous Wireless Networks, IEEE Transactions on Wireless Communications,9(11),2010, pp.3324-3329.
    [1-71]Xue, P., Radio Resource Management with Proportional Rate Constraint in the Heterogeneous Networks, IEEE Transactions on Wireless Communications,11(3),2012, pp.1066-1075.
    [1-72]Xie, R. C., Yu, F. R., Ji H., Dynamic Resource Allocation for Heterogeneous Services in Cognitive Radio Networks With Imperfect Channel Sensing, IEEE Transactions on Vehicular Technology,61(2),2012, pp.770-780.
    [2-1]Gustafsson, E., Jonsson, A., Always Best Connected, IEEE Wireless Communications,10(1),2003, pp.49-55.
    [2-2]Ferrus, R., Sallent, O., Agusti, R., Interworking in heterogeneous wireless networks:Comprehensive framework and future trends, IEEE Wireless Communications,17(2),2010, pp.22-31.
    [2-3]Ushan Li, Towards multi-mode terminals, IEEE Vehicular Technology Magazine,1(4),2006, pp.17-24.
    [2-4]Dimou, K., et al., Generic link layer:a solution for multi-radio transmission diversity in communication networks beyond 3G,2005 IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall),3,2005, pp.1672-1676.
    [2-5]Yaver, A., Koudouridis, G. P., Utilization of Multi-Radio Access Networks for Video Streaming Services, IEEE Wireless Communications and Networking Conference 2009 (WCNC 2009),2009, pp.1-6.
    [2-6]Kassar, M., Kervella, B., Pujolle, G, An overview of vertical handover decision strategies in heterogeneous wireless networks, Computer Communications,31(10),2008, pp.2607-2620.
    [2-7]McNair, J., Zhu, F., Vertical Handoffs in Fourth-generation Multinetwork Environments, IEEE Wireless Communications,11(3),2004, pp.8-15.
    [2-8]Yan, X. H., Sekercioglu, Y. A., Narayanan S., A Survey of Vertical Handover Decision Algorithms in Fourth Generation Heterogeneous Wireless Networks, Computer Networks,54(11),2010, pp.1848-1863.
    [2-9]Marquez-barja, J., et al., An Overview of Vertical Handover Techniques: Algorithms, Protocols and Tools, Computer Communications,34(8),2011, pp.985-997.
    [2-10]Hysteresis, http://en.wikipedia.org/wiki/Hysteresis
    [2-11]Smoothing, http://en.wikipedia.org/wiki/Smoothing
    [2-12]Anas, M., et al., Performance Evaluation of Received Signal Strength Based Hard Handover for UTRAN LTE,2007 IEEE 65th Vehicular Technology Conference (VTC-2007-Spring),2007, pp.1046-1050.
    [2-13]Dimou K. D., Furuskar, A., On the Use of Uplink Received Signal Strength Measurements for Handover,2008 IEEE 66th Vehicular Technology Conference (VTC-2008-Spring),2008, pp.2567-2571.
    [2-14]Lee, H. J., et al., Adaptive Hysteresis Using Mobility Correlation for Fast Handover, IEEE Communications Letters,12(2),2008, pp.152-154.
    [2-15]Haider, A., Gondal, I, Kamruzzaman, J., Dynamic Dwell Timer for Hybrid Vertical Handover in 4G Coupled Networks,2011 IEEE 73rd Vehicular Technology Conference (VTC-2011-Spring),2011, pp.1-5.
    [2-16]徐玖平,吴巍著,多属性决策的理论与方法,清华大学出版社,2007。
    [2-17]Stevens-Navarro, E., Wong, V. W. S., Comparison between Vertical Handoff Decision Algorithms for Heterogeneous Wireless Networks,2006 IEEE 63rd Vehicular Technology Conference (VTC-2006-Spring),2006, pp.947-951.
    [2-18]Zhu, F., McNair, J., Optimizations for vertical handoff decision algorithms, 2004 IEEE Wireless Communications and Networking Conference (WCNC 2004),2,2004, pp.867-872.
    [2-19]Zhang, W. H., Handover decision using fuzzy MADM in heterogeneous networks,2004 IEEE Wireless Communications and Networking Conference (WCNC 2004),2,2004, pp.653-658.
    [2-20]Song, Q. Y., Jamalipour, A., A network selection mechanism for next generation networks,2005 IEEE International Conference on Communications (ICC 2005),2,2005, pp.1418-1422.
    [2-21]Yang, K. M., Gondal, I., Qiu, B., Context Aware Vertical Soft Handoff Algorithm For Heterogeneous Wireless Networks,2008 IEEE 68th Vehicular Technology Conference (VTC-2008-Fall),2008, pp.1-5.
    [2-22]Bazzi, A., A softer vertical handover algorithm for heterogeneous wireless access networks,2010 IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC 2010),2010, pp.2156-2161.
    [2-23]Dimou, K., et al., Generic link layer:a solution for multi-radio transmission diversity in communication networks beyond 3G,2005 IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall),3,2005, pp.1672-1676.
    [2-24]Sachs, J., et al., Migration of Existing Access Networks Towards Multi-Radio Access,2006 IEEE 64th Vehicular Technology Conference (VTC-2006-Fall), 2006, pp.1-5.
    [2-25]Ferrus, R., et al., Interworking in Heterogeneous Wireless Networks: Comprehensive Framework and Future Trends, IEEE Wireless Communications,17(2),2010, pp.22-31.
    [2-26]Sarkar, T. K., et al., A Survey of Various Propagation Models for Mobile Communication, IEEE Antennas Propagation Magazine,45,2003, pp.51-82.
    [3-1]Kappler, C., Dynamic network composition for beyond 3G networks:a 3GPP viewpoint, IEEE Network,21(1),2007, pp.47-52.
    [3-2]Ushan Li, Towards multi-mode terminals, IEEE Vehicular Technology Magazine,1(4),2006, pp.17-24.
    [3-3]刘东明,移动互联网发展分析,信息通信技术,4,2010,pp.59-62。
    [3-4]Hartung, F., et al., Advances in network-supported media delivery in next-generation mobile systems, IEEE Communications Magazine,44(8), 2006, pp.82-89
    [3-5]Chen, R., et al., Modeling the Ambient Intelligence Application System: Concept, Software, Data, and Network, IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,39(3),2009, pp.299-314.
    [3-6]Dimou, K., et al., Generic link layer:a solution for multi-radio transmission diversity in communication networks beyond 3G,2005 IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall),3,2005, pp.1672-1676.
    [3-7]Koh, S. J., Xie, Q. B., Park, S. D., Mobile SCTP (mSCTP) for IP Handover Support, IETF draft-sjkoh-msctp-01,2005.
    [3-8]Luo, J., et al., Investigation of radio resource scheduling in WLANs coupled with 3G cellular network, IEEE Communications Magazine,41(6),2003, pp.108-115.
    [3-9]Yaver, A., Koudouridis, G. P., Utilization of Multi-Radio Access Networks for Video Streaming Services, IEEE Wireless Communications and Networking Conference 2009 (WCNC 2009),2009, pp.1-6.
    [3-10]de la Oliva, A., et al., IP flow mobility:smart traffic offload for future wireless networks, IEEE Communications Magazine,49(10),2011, pp.124-132.
    [3-11]UI Hassan, N., Assaad, M., Energy Efficient Causal Packet Scheduling in Wireless Fading Channels with Hard Delay Constraints,2010 IEEE Wireless Communications and Networking Conference (WCNC 2010), 2010, pp.1-5.
    [3-12]Lee, J., Jindal, N., Energy-efficient scheduling of delay constrained traffic over fading channels, IEEE Transactions on Wireless Communications,8(4), 2009, pp.1866-1875.
    [3-13]Zhong, X., Xu, C. Z., Online Energy Efficient Packet Scheduling with Delay Constraints in Wireless Networks, The 27th Conference on Computer Communications (INFOCOM 2008),2008, pp.421-429.
    [3-14]Zhu, X. Q., et al., Distributed Rate Allocation Policies for Multihomed Video Streaming Over Heterogeneous Access Networks, IEEE Transactions on Multimedia,11(4),2009, pp.752-764.
    [3-15]Louha, K., Jun, J. H., Agrawal, D. P., Exploring Load Balancing in Heterogeneous Networks by Rate Distribution, IEEE International Performance, Computing and Communications Conference 2008 (IPCCC 2008),2008, pp.427-432.
    [3-16]Sun, L., Traffic allocation scheme with cooperation of WWAN and WPAN, IEEE Communications Letters,14(6),2010, pp.551-553.
    [3-17]Chung, A. Y. T., Hassan, M., Traffic distribution schemes for multi-homed mobile hotspots,2005 IEEE 61st Vehicular Technology Conference (VTC 2005-Spring),4,2005, pp.2127-2131.
    [3-18]Ross, S. M., Introduction to Probability Models, Academic Press, Inc., 2006.
    [3-19]Karagiannis, T., et al., A nonstationary Poisson view of Internet traffic, The 23th AnnualJoint Conference of the IEEE Computer and Communications Societies (INFOCOM 2004),2004, pp.1558-1569.
    [3-20]Cho, K. H., Samueli, H., A 8.75-mbaud single-chip digital qam modulator with frequency-agility and beamforming diversity, Proceedings of the IEEE 2000 Custon Integrated Circuits Conference 2000 (CICC 2000),2000, pp. 27-30.
    [3-21]Boyd, S., Vandenberghe, L., Convex Optimization, Cambridge University Press,2004.
    [3-22]Sarkar, T. K., et al., A Survey of Various Propagation Models for Mobile Communication, IEEE Antennas Propagation Magazine,45,2003, pp.51-82.
    [3-23]Kennedy, J., Eberhart, R., Particle swarm optimization, IEEE International Conference on Neural Networks 1995,4,1995, pp.1942-1948.
    [4-1]Kappler, C., Dynamic network composition for beyond 3G networks:a 3GPP viewpoint, IEEE Network,21(1),2007, pp.47-52.
    [4-2]刘东明,移动互联网发展分析,信息通信技术,4,2010,pp.59-62。
    [4-3]Zhuang, W. H., Ismail, M., Cooperation in wireless communication networks, IEEE Wireless Communications,19(2),2012, pp.10-20.
    [4-4]Bashar, S., Ding, Z., Admission control and resource allocation in a heterogeneous OFDMA wireless network, IEEE Transactions on Wireless Communications,8(8),2009, pp.4200-4210.
    [4-5]Xie, R. C., Y, F. R., Ji, H., Dynamic Resource Allocation for Heterogeneous Services in Cognitive Radio Networks With Imperfect Channel Sensing,61(2),2012, pp.770-780.
    [4-6]Xue, P., et al., Radio Resource Management with Proportional Rate Constraint in the Heterogeneous Networks, IEEE Transactions on Wireless Communications,11(3),2012, pp.1066-1075.
    [4-7]Drew, N. J., Dillinger M. M., Evolution toward reconfigurable user equipment, IEEE Communications Magazine,39(2),2001, pp.158-164.
    [4-8]Ushan Li, Towards multi-mode terminals, IEEE Vehicular Technology Magazine,1(4),2006, pp.17-24.
    [4-9]Lim, H., K., Choi, J. G., Bahk, S., Utility-based downlink power allocation in multicell wireless packet networks, IEEE Global Telecommunications Conference 2004 (GLOBECOM'04),5,2004, pp.3321-3325.
    [4-10]Kim, S. Y., Lee, J. W., Joint Resource Allocation for Uplink and Downlink in Wireless Networks:A Case Study with User-Level Utility Functions, 2009 IEEE 69th Vehicular Technology Conference,2009, pp.1-5.
    [4-11]Rodrigues, E. B., Casadevall, F., Control of the trade-off between resource efficiency and user fairness in wireless networks using utility-based adaptive resource allocation, IEEE Communications Magazine,49(9),2011, pp.90-98.
    [4-12]Calabuig, D., Monserrat, J. F., Cardona, N., Fairness-Driven Fast Resource Allocation for Interference-Free Heterogeneous Networks, IEEE Communications Letters,16(7),2012, pp.1092-1095.
    [4-13]Buracchini, E., The Software Radio Concept, IEEE Communications Magazine,38(9),2000,138-143.
    [4-14]Mokari, N., Cross-Layer Resource Allocation in OFDMA Systems for Heterogeneous Traffic With Imperfect CSI, IEEE Transactions on Vehicular Technology,59(2),2010, pp.1011-1017.
    [4-15]Dimou, K., et al., Generic link layer:a solution for multi-radio transmission diversity in communication networks beyond 3G,2005 IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall),3,2005, pp.1672-1676.
    [4-16]Kassar, M., Kervella, B., Pujolle, G, An overview of vertical handover decision strategies in heterogeneous wireless networks, Computer Communications,31(10),2008, pp.2607-2620.
    [4-17]Wang, W, et al., Resource allocation for heterogeneous services in multiuser OFDM systems, IEEE Global Telecommunications Conference 2004 (GLOBECOM'04),6,2004, pp.3478-3481.
    [4-18]Chen, Y. Y., Feng, Z. Y., Chen, X., Cross-layer Resource Allocation with heterogeneous QoS requirements in cognitive radio networks,2011 IEEE Wireless Communications and Networking Conference (WCNC 2011), 2011, pp.96-101.
    [4-19]Luo, C. Q., Ji, H., Li, Y, Utility-Based Multi-Service Bandwidth Allocation in the 4G Heterogeneous Wireless Access Networks,2009 IEEE Wireless Communications and Networking Conference (WCNC 2009),2009, pp.1-5.
    [4-20]Choi, Y. H., et al., Joint Resource Allocation for Parallel Multi-Radio Access in Heterogeneous Wireless Networks, IEEE Transactions on Wireless Communications,9(11),2010, pp.3324-3329.
    [4-21]Boyd, S., Vandenberghe, L., Convex Optimization, Cambridge University Press,2004.
    [4-22]Choi, Y. H., Lee, Y. Y, Cioffi, J. M., Optimization of Cooperative Inter-Operability in Heterogeneous Networks with Cognitive Ability, IEEE Communications Letters,15(11),2011, pp.1178-1180.
    [4-23]Ferrus, R., Sallent, O., Agusti, R., Interworking in heterogeneous wireless networks:Comprehensive framework and future trends, IEEE Wireless Communications,17(2),2010, pp.22-31.
    [4-24]Jorguseski, L., Prasad, R., Overview of radio resource management (RRM) issues in multi-radio access systems,2004 7th European Conference on Wireless Technology,2004, pp.97-100.
    [4-25]Wu, L., Sandrasegaran, K., A survey on common radio resource management, the 2nd International Conference on Wireless Broadband and Ultra Wideband Communications,2007, pp.66
    [4-26]Tahk, M. J., Sun, B. C., Coevolutionary Augmented Lagrangian Methods for Constrained Optimization, IEEE Transactions on Evolutionary Computation,4(2),2000, pp.114-124.
    [4-27]Koh, S. J., Xie, Q. B., Park, S. D., Mobile SCTP (mSCTP) for IP Handover Support, IETF draft-sjkoh-msctp-01,2005.
    [4-28]Sarkar, T. K., et al., A Survey of Various Propagation Models for Mobile Communication, IEEE Antennas Propagation Magazine,45,2003, pp.51-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700