微粉复合电刷镀工艺与镀层性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电刷镀技术从普通电刷镀、复合电刷镀到微纳米颗粒复合电刷镀的发展,是为了使装备零件满足在高速、重载等恶劣工况下的服役要求。采用微米颗粒复合
     电刷镀技术的目的是为了制备具有优良耐磨性能的微米颗粒复合电刷镀层。应用光学显微镜(OLYMPUSGX51)结合扫描电子显微镜(SEM)、能谱仪(EDS)等分析手段对微米颗粒复合电刷镀层进行了研究,确定了制备厚铜的基础镀液的工艺条件。在此基础上研究了电刷镀过程中微粒含量、刷镀电压和电流密度等对形成的复合镀层中微粒含量和复合镀层组织性能的影响。结果表明:阴极电流密度对微粒在复合镀层中共沉积影响最大,其次是微粒在镀液中的含量和温度等。并在大量实验基础上,确定了选用镀液中硫酸铜含量为200g/L、SiC微粒粒径为3.5μm,制备复合镀层的最佳工艺:镀液中微米SiC颗粒含量为25g/L时,刷镀电压为8V,电流密度为1.0A/dm2。在该工艺条件下可以得到SiC微粒体积含量为5.96%,表面形貌细腻平整、晶粒细小、厚度达到0.15mm的镀层。
     对电刷镀制备的SiC微粒强化铜基复合镀层进行了硬度测试和耐磨性能的研究。结果表明复合镀层中均匀弥散分布的SiC微粒强化了镀层组织,提高了复合镀层的硬度,改善了复合镀层的耐磨性能,在与二氧化锆陶瓷球相互接触摩擦时,复合镀层的摩擦系数为0.14,而纯铜镀层的摩擦系数高于0.20。复合镀层的磨损机理兼具粘着磨损和磨粒磨损,并且由于镀层中SiC微粒的存在,与纯铜镀层相比,粘着磨损得到了抑制。
To make the equipments meet the service requirement, the electro-brush plating technology has been developed from the single coating, to the composite coating and to the tiny particle composite coating. The tiny particle composite electro-brush plating technology is used for preparing the composite coating with distinctive anti-wear performance.
     The microstructure of the Cu-SiC particle composite electro-brush coating was studied through SEM, EDS and optical microscope. And the optimum technique parameters of preparing thick copper were confirmed in this paper. Base on the prophase experiment, we discussed the effect of particle concentration in solution, current density temperature on the SiC content and anti-wear properties of the composite coating. The results show that the current density strongly affects the particle content in composite coating and the following factors are particle concentration in solution and temperature subsequently. Based on the above conclusion, we established the superlative technological parameters of preparing Cu-SiC particle composite electro-brush coating. It is that the concentration of SiC particle in solution was 25g/L; current density was 1.0 A/dm2.under such conditions, the content of SiC in composite coating was 5.96vol%, together with fine, compact, smooth surface, its thickness was over 0.15mm.
     The studies on wearability and wear mechanism of Cu-SiC composite electro-brush plating were done. The results showed that SiC particles were dispersed in the coating which proved high hardness and excellent wearability. they also indicated that the process of the adhere wear and the particle wear mechanism. Compared with the general Cu-plating coating, high hardness of dispersed SiC particles in the composite coating reduced the materials adhesion.
引文
[1]徐滨士,朱绍华.表面工程与维修[M].北京:机械工业出版社,1996:12-19.
    [2]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社,1999:305-323.
    [3]宾胜武.刷镀技术[M].北京:化学工业出版社,2003:29-33.
    [4]徐滨士,马世宁,韩文政.刷镀技术在机械维修中的应用和进展[J].装甲兵工程学院学报,1987,2:1-8.
    [5]徐滨士,刘世参,马世宁.刷镀新技术的发展及应用[C].刷镀技术应用文集,1984,2:1-6.
    [6] K N Straford and C Subramanian.Surface engineering:an enabling technology for manufacturing industry[J].Journal of Materials Processing Technology, 1995, 53(8):393-403.
    [7] Derek Vanek. An update on brush plating[J]. Metal Finishing,2002, 100(7):18-20.
    [8] R D Clarke. Selective brush plating and anodizing[J].International Journal of Adhesion and Adhesives,1999, 19(4): 205-207.
    [9] J C Norris. Brush plating[J]. Metal Finishing, 1995, 93(1): 349-361.
    [10]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002:5-7.
    [11] P K Kerampran. Brush plating apparatus[J].Metal Finishing, 1997, 95(7): 70
    [12]马世宁.电刷镀技术的新进展[J].表面工程,1997,34(1):1-3.
    [13]梁志杰,谢凤宽.电刷镀技术的应用与发展[J].工程机械与维修,2000,11:73-74.
    [14] Jack W Dini. Brush plating:pecent property data[J].Metal Finishing, 1997, 95(6): 88-93.
    [15]张天顺,李耀红,张晶瑞.电刷镀镍及镍磷非晶态合金镀层性能研究[J].电镀与环保,1999,1:13-16.
    [16] I C Grigorescu, et al. Tribological behavior of electrochemically deposited coatings for shaft restoration [J]. Surface and Coatings Technology,1995(76-77): 604-608.
    [17] W H Hui, et al. Corrosion resistance of new chromium substituting Ni-Fe-W-P brush platinglayer[J].Surface Engineering,1994, 10(4): 275-278.
    [18] Hui Wen-Hua ,et al. A study on friction and wear characteristics of substitute chromium brushplating layers under lubrication[J]. Wear, 1993, 167:127-131.
    [19]蒋斌.纳米颗粒复合电刷镀镍基镀层的强化机理及其性能研究[D].重庆:重庆大学,2003.
    [20]王尚义.镀铁铜镍及合金修复技术[M].北京:化学工业出版社,2006,8:131-152.
    [21]张忠烨,孙扬善,刘桂君.电刷镀技术对Fe3Al基合金室温环境脆性的改善作用[J].金属学报,1996,32(9):955-958.
    [22]张继红.电刷镀技术在旧件修复中的应用分析[J].有色设备,1999,2:29-31.
    [23]袁庆龙,苑爱英.刷镀修复大尺寸内孔的新方法[J].新技术新工艺,1995,4:36-3.
    [24]王尚义.镀铁铜镍及合金修复技术[M].北京:化学工业出版社2006,8:131-152.
    [25]董大军.电刷镀在交通运输业中的应用研究[J].西安公路交通大学学报,1997,17(3):97-100.
    [26]祖立新,葛秀云.应用电刷镀技术修复单体支柱油缸内部腐蚀坑工艺[J].煤矿自动化,1996,2:62-64.
    [27]徐滨士,马世宁,黄燕滨.致密快镍镀层的微观组织结构及强化机制[J].表面工程,1989,2-3:30-36.
    [28]张天顺,李耀红,张晶瑞.复合镀层电刷镀工艺的研究[J].电镀与环保,2000,20(1):13-15.
    [29]于金库,赵玉成,高幸为.复合电刷镀Ni-金刚石的工艺研究[J].金刚石与磨料磨具工程,2001,122 (2):7-10.
    [30]顾卓明,黄婉娟.耐磨复合镀层工艺的研究[J].表面技术,2002,31(2):14-17.
    [31]徐江,揭晓华.Ni-W(D)刷镀层再强化机理的研究[J].电镀与精饰,1999,21(3):30-32.
    [32]刘晓方,牛士俊,王汉功.Ni-PTFE复合刷镀层的研究[J].中国表面工程,1995,1:23-25.
    [33]匡建新,江新衡.Ni-P-B4C复合电刷镀工艺研究[J].常德师范学院学报(自然科学版),2001,13(2):58-61.
    [34]史亦农,杨晶.电刷镀Ni-P-SiC复合镀层腐蚀磨损行为的研究[J].沈阳工业学院学报,1997,16(2):25-30.
    [35]董允,林晓娉.电沉积SiC颗粒增强抗磨复合材料研究[J].河北工业大学学报,1998,27(1):88-93.
    [36]张玉峰.Ni-W-P/PTFE电刷镀多元复合材料工艺及性能研究[J].机械工程材料,2001,26(5):15-17.
    [37]李屏,刘锦辉,付华萌.电刷镀Ni-Co-P-X复合镀层力学性能[J].辽宁工程技术大学学报(自然科学版),2001,20(3):355-357.
    [38]黄锦滨,朱宝亮,刘家浚.新型Ni-Cu-P/MoS2固体润滑镀层优化试验研究[J],清华大学学报(自然科学版),1996,36:93-98.
    [39] J Franser Roos. A mechanism of composite electroplating[J].Metal Finishing, 1993, 43(6):97-102.
    [40] A Hovestad, L J J Janssen. Electrochemical codeposition of inert particles in a metallic matrix[J]. Appl Electrochem,1995, 25(6):519-527.
    [41] J. Fransaer,J. P. Celis and J. R. Roos. A Mathematical Model for the Electrolytic Codeposition of Particles with a Metallic Matrix [J]. J Appl Electrochem., 1992, 139(2): 413-425.
    [42] S H Yeh and C C Wan. A study of SiC/Ni composite plating in the Watts Bath [J]. Plating and Surface Finishing, 1997,84(3):54-57.
    [43]刘学雷.复合电沉积技术研制Cu-SiC金属基复合材料[D].天津:天津大学,2001.
    [44]李建明.磨损金属学[M].北京:冶金工业出版社,1990:308.
    [45]高彩桥,摩擦金属学[M].哈尔滨:哈尔滨工业大学,1988:223
    [46] Bhalla, C Ramasamy. Friction and wear charateristics of copper composites[J]. Plating and Surface Finishing,1995,11:58.
    [47] P R Ebdon.Composite coating with lubricating properties. Trans IMF, 1987,65:80.
    [48] Y Z Wan,Y L Wang.Perparation and characterization of Cu-MoSi2 compositie coating. Trans IMF,1999,77(1):52.
    [49]曾华梁,吴仲达.电镀工艺手册[M].北京:机械工业出版社,2000:170-175.
    [50]覃奇贤,郭鹤桐,等.电镀原理与工艺[M].天津:天津科学出版社,1993:129-132.
    [51]邵性波译.实用电镀技术[M].北京:国防工业出版社,1985:235-245.
    [52]林西音.金属电镀工艺[M].香港:香港万里书店,1981:72-75.
    [53]川崎元雄.实用电镀[M].北京:机械工业出版社,1985:5.
    [54]方景礼,惠文华编.刷镀技术[M].北京:国防工业出版社,1987,1-3.
    [55]张念东.碳化硅磨料工艺学[M].北京:机械工业出版社,1982:3.
    [56]梁训裕,刘景林.碳化硅耐火材料[M].北京:冶金工业出版社,1981:6.
    [57]周绍民.金属电沉积—原理与研究方法[M].上海:上海科学出版社,1987:187.
    [58]郭鹤桐,张三元.复合镀层[M].天津:天津大学出版社,1991:74-153.
    [59]程森,王昆林,赵高敏.Ni-SiC复合镀层组织和性能的研究[J].表面技术,2002,31(4):1-3.
    [60]蒋斌.纳米颗粒复合电刷镀镍基镀层的强化机理及其性能研究[D].重庆:重庆大学,2003:64-65.
    [61]刘江南.金属表面工程学[M].北京:兵器工业出版社,1995,154-156.
    [62]高闰丰.Ti<,3>SiC<,2>弥散强化铜基复合材料的制备和性能研究[D].武汉:武汉理工大学,2006.
    [63]许艺,张旭东,涂伟毅.微纳米复合电沉积影响因素及在电刷镀中的应用[J].机械工程师,2004,8:50-51.
    [64]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992:9.
    [65]日本润滑协会编,霍庶辉译.磨损[M].北京:铁道出版社,1985:35.
    [66]董世运,杨华,杜令忠.纳米颗粒复合电刷镀的最新进展[J].机械工人、热加工,2004,09:17-19.
    [67]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2002:1-3.
    [68]黄婉娟,顾卓明.复合镀层的摩擦磨损特性和机理[J].上海海运学院学报,2002,23(I):66-69.
    [69]赵乃勤,李国俊.复合电沉积α-Al2O3/Cu复合材料磨损特性研究[J].机械工程材料,1995,19(5):34-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700