自动电刷镀Ni-PTFE复合镀层特性及共沉积机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用自动电刷镀技术制备了高复合量、平整致密、颗粒分布均匀的Ni-PTFE复合镀层,明显提高了复合镀层的制备效率,扩大了电刷镀技术的应用范围。通过系统的试验研究揭示了复合镀层自动电刷镀工艺参量、镀层组织与性能间的关系及作用规律,优化并确定了复合镀层制备的关键工艺参量。构建了包括液相传输、CTAB阳离子脱附和PTFE复合的复合镀层沉积模型,从理论上揭示了自动电刷镀Ni-PTFE复合镀层的共沉积机理,为今后将该技术应用于其它复合镀层提供了理论与工程应用基础。
     在复合镀层的制备与组织方面,探讨了复合镀层的质量,如镀层微观形貌,PTFE复合量、厚度、沉积速率和显微硬度等因素的分布规律,建立了镀层每一处阳极运动速率、沉积累计时间与被镀平面长度、阳极长度和阳极运动频率的关系式,给出了改善镀层质量分布均匀性的措施,优化并确定了自动电刷镀Ni-PTFE复合镀层的关键工艺参量。分析了复合镀层的相组成、基质金属晶粒尺寸、镀层的微观形貌和断面组织以及PTFE在镀层中的存在形式。结果表明,控制复合镀层PTFE复合量的关键参量包括温度、PTFE加入量、工作电压和阳极运动速率等,其中温度的作用最为明显。在PTFE颗粒与基质金属相结合的界面处,不存在孔隙等缺陷,PTFE颗粒与基质金属结合紧密。
     在复合镀层的沉积机制研究方面,提出了包括液相传输、CTAB阳离子脱附和PTFE复合的复合镀层沉积模型。首先,PTFE颗粒连同其表面吸附的Ni2+和CTAB阳离子在液流作用下,到达阴极表面附近;然后,CTAB阳离子从PTFE颗粒表面上脱附;最后,PTFE颗粒表面吸附的Ni2+发生电化学还原反应与阴极表面相结合,并被不断生长的Ni基包埋。PTFE颗粒沉积过程是力学机理与电化学机理共同作用的结果。
     最后,结合复合镀层的摩擦磨损性能研究,建立了复合镀层电刷镀工艺参量、镀层组织特性与复合镀层摩擦磨损性能间的关系,探讨了PTFE复合量等参数对摩擦磨损性能的作用规律。结果表明,随镀液温度的升高,PTFE颗粒在镀层中弥散分布,复合量显著增加,镀层组织越来越平整致密,摩擦系数明显减小,耐磨性增加。随PTFE加入量的增加,PTFE发生团聚,镀层组织越来越粗糙,摩擦系数明显减小,耐磨性下降。而阳极运动速率对PTFE复合量和镀层的粗糙度、致密性和摩擦磨损性能影响不大,但可细化镀层组织。工作电压对PTFE复合量影响不大,但随着工作电压的增加,镀层明显趋向粗糙疏松,减小摩擦系数,耐磨性下降。
A high polytetrafluoroethylene (PTFE) content, smooth, dense, Ni-PTFE composite coating with uniform PTFE particles distribution was developed by automatic brush electroplating (BEP), increasing the coating manufacturing efficiency and enlarging the application range of brush electroplating. The relationships among automatic BEP parameters, microstructure and properties were explored, and the key parameters were optimized. A three-step co-deposition model, including transmission of PTFE particles by bath, desorption of CTAB from PTFE particles and deposition of PTFE particles by reduction of Ni2+ was proposed, with which the co-deposition mechanism of automatic BEP Ni-PTFE composite coating was revealed. It provides a theoretic and engineering basis for future use.
     The distribution of composite coating quality, such as surface morphology, PTFE content in coating, coating thickness, deposition rate and micro-hardness was discussed. Two functions were established, revealing the variation of anode movement speed and accumulated deposition time at any site with coating length, anode length and anode movement frequency. The key parameters of automatic BEP Ni-PTFE composite coatings were optimized and determined. The phase, grain size of Ni matrix, surface morphology, cross-sectioned microstructure and PTFE existence in coating were analyzed. The results showed that, PTFE content in coating is controlled by bath temperature, PTFE concentration in plating bath, working voltage and anode movement speed commonly, in which the bath temperature is the most important parameter. PTFE particles are tightly bonded with Ni matrix and there is no porosity at the interface.
     A co-deposition model was proposed. First, PTFE particles with adsorbed Ni2+ and CTAB ions reach the vicinity of the cathode surface by plating bath. Second, CTAB ions are desorbed from PTFE particles surface and adsorbed on cathode surface. Last, PTFE particles attach on the cathode surface by reduction of Ni2+ adsorbed on the surface of PTFE particles and are embedded by growing Ni matrix. The co-deposition of PTFE particles with Ni matrix is controlled by mechanical and electrochemical mechanisms commonly.
     The relationships among automatic BEP parameters, microstructure and properties were explored. The effect of PTFE content in coating on friction and wear properties was discussed. The results show that, with the increase of the bath temperature and PTFE concentration in plating bath, the PTFE content in coating increases and the friction coefficient decreases. With a higher PTFE concentration in plating bath, PTFE particles agglomerate in coating, resulting in poor wear resistance. For higher bath temperature, PTFE particles distribute uniformly in coating, resulting in good wear resistance. The anode movement speed has little effect on PTFE content in coating, coating roughness and density, friction and wear properties. The microstructure of Ni-PTFE composite coatings is refined by increased anode movement speed. The rough and loose microstructure obtained with high working voltage, leads to low friction coefficient and high wear rate.
引文
[1]邓纶浩,郭忠诚, PTFE在复合镀层中应用及进展,电镀与环保, 1999, 19(2), 3-7
    [2]梁平,镍基自润滑复合镀层的研究进展,电镀与环保,2007,27(1),1-5
    [3]张玉碧,李照美,李长荣,李云东,脉冲电沉积纳米晶镍沉积层的力学性能研究,材料保护,2007,40(9),14-16
    [4] J.K. Denis, T.E. Saatchi,镀镍和镀铬新技术,北京,科学技术文献出版社, 1990, 1-14
    [5]姚素薇,非晶态电镀研究现状与将来,电镀与精饰, 1991, 13(1), 27-30
    [6]邹建平,贺子凯,黄鑫,自润滑复合镀层的研究现状及进展,电镀与涂饰, 2003, 22(4), 29-33
    [7] Changdong Gu, Jianshe Lian, Jinguo He, Zhonghao Jiang, Qing Jiang, High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy, Surface & Coatings Technology, 2006, 5413-5418
    [8]唐甜,脉冲喷射电沉积纳米晶镍镀层耐腐蚀性能研究, [硕士论文],湖南,湘潭大学, 2006
    [9] Kung-Hsu Houa, Ming-Chang Jeng, Ming-Der Ger, A study on the wear resistance characteristics of pulse electroforming Ni–P alloy coatings as plated, Wear, 2007, 262, 833-844
    [10]郭忠诚,杨显万,电沉积多功能复合材料的理论与实践,北京,冶金工业出版社, 2002, 3
    [11]仵亚婷,自润滑Ni-P化学复合镀层的制备及其摩擦磨损行为研究,[博士论文],上海,上海交通大学,2005
    [12]郭鹤桐,张三元,复合镀层,天津,天津大学出版社, 1991, 6
    [13] Xian-Hua Zhang, Jia-Jun Liu, Bao-Liang Zhu, Tribological performance of Ni/MoS2 composite brush plating layer in vacuum, Wear, 1992, 157(2), 381-387
    [14] R. Ramaswamy, A.K. Bhargava, T.V. Rajan, Occlusion plating of nickel-talc composites, Metal finishing, 1992, 90(9), 23-26
    [15] M. Nishira, K. Yamagishi, H. Matsuda, Uniform dispersibility of PTFE particles in electroless composite plating, Transactions of the institute for metal finishing, 1996, 74(2), 62-64
    [16]郭鹤桐,张三元,复合镀层,天津,天津大学出版社,1991,8-12
    [17]张九渊,表面工程与失效分析,浙江,浙江大学出版社, 2005, 70~107
    [18]刘静萍,葛圣松,孙宏飞,徐庆莘,化学镀的国内外研究现状及展望,山东机械, 2001, 2, 2-5
    [19]仵亚婷,沈彬,刘磊,胡文彬,化学复合镀的研究现状及镀层的应用,电镀与涂饰, 2005, 24(1), 58-64
    [20]李建跃,李穗冬,采用电刷镀技术提高零件表面防腐性能,金属材料与冶金工程, 2007, 35(2), 36-39
    [21]张福刚,霍兴良,电刷镀技术在设备维修中的应用,化学工业与工程, 1993, 2, 55-56
    [22]吕钊钦,聂成芳,王乃钊,李光提,电刷镀新技术研究与应用,机械工程材料, 1999, 23(3), 22-25
    [23]郭小燕,张津,张叶成,孙智富,表面技术在模具修复中的应用进展,表面技术, 2007, 36(6), 70-76
    [24]揭晓华,陈元迪,谢光荣, Ni-W(D)合金电刷镀层的滑动磨损特性研究,摩擦学学报, 2002, 22(3), 180-183
    [25]王敏,电刷镀技术在防腐蚀中的应用,石油化工腐蚀与防护, 2007, 24, 56
    [26]刘云丽,复合电镀Ni-P-PTFE工艺条件的研究,电镀与涂饰, 1999, 18(2), 17-19
    [27] G.N.K.Ramesh Bapu, S.Mohan, Electrodeposition of nickel-polytetrafluoroethylene (PTFE) polymer composites, Plating & surface finishing, 1995, 82(4), 86-88
    [28] P. Bercot, E. Pena-Munoz, J. Pagetti, Electrolytic composite Ni-PTFE coatings: An adaptation of Guglielmi’s model for the phenomena of incorporation, Surface and Coatings Technology, 2002, 157(2-3), 282-289
    [29]王立平,高燕,刘惠文,徐洮,憎水性Ni-PTFE复合镀层的制备及其摩擦磨损性能的研究,电镀与环保,2004,24(5),10-12
    [30]于升学,复合化学镀(Ni-P)-PTFE工艺研究,电镀与精饰, 2000, 22(1), 12-15
    [31]王艳芝,有机玻璃化学复合镀(Ni-P)-PTFE工艺,表面技术, 2001, 30(3), 3-4
    [32]马永平,刘贵昌,化学镀Ni-P-PTFE(聚四氟乙稀)的研究,辽宁师专学报, 2002,4(1),101-103
    [33]王宙,张旭昀,李国祥,赵福君,李宏喜,胡光远,夏立芳,郝文森,化学复合镀Ni-P/PTFE工艺研究,热加工工艺,2004,10,22-23
    [34]张淑艳,胡三媛,化学复合镀Ni-P-PTFE工艺的试验研究,中国农业大学学报, 2006,11(2),70-73
    [35]刘意春,仵亚婷,胡文彬, (Ni-P)-PTFE化学复合镀工艺的研究,电镀与环保,2005,25(4),27-29
    [36]仵亚婷,刘磊,高加强,沈彬,胡文彬,丁文江,自润滑Ni-P-PTFE化学复合镀工艺及镀层性能,上海交通大学学报, 2005,39(2),206-210
    [37]封雪松, Ni-P-PTFE复合化学沉积机理研究,四川轻化工学院学报, 2003,16(4),5-6
    [38] Q. Zhao,Y. Liu, Modification of stainless steel surfaces by electroless Ni-P and small amount of PTFE to minimize bacterial adhesion, Journal of Food Engineering, 2006, 72, 266–272
    [39] Ming-Der Ger, Bing Joe Hwang, Effect of surfactants on codeposition of PTFE particles with electroless Ni-P coating, Materials Chemistry and Physics, 2002,76,38–45
    [40]封雪松, Ni-P-PTFE复合化学沉积的研究,四川轻化工学院学报, 2002,15(2),14-17
    [41] Q. Zhao, Y. Liu, Muller-Steinhagen, G. Liu,Graded Ni-P-PTFE coatings and their potential application, Surface and Coatings Technology, 2002 ,155,279-284
    [42]吴玉程,叶敏,王文芳,程正翠,崔伟,化学镀镍(铜)磷-聚四氟乙烯复合涂层的沉积特性,电镀与环保,2000,20(2),16-20
    [43] Q. Zhao,Y. Liu, Electroless Ni–Cu–P–PTFE composite coatings and their anticorrosion properties, Surface & Coatings Technology, 2005, 200, 2510– 2514
    [44]高红霞,纪莲清,弓金霞,塑料模具(Ni-P)-SiC-PTFE化学复合镀工艺,新技术新工艺,2004,2,50-52
    [45] S.S.Tulsi, Electroless nickel-PTFE composite coatings, Trans IMF, 1983, 61(4), 142-149
    [46] G. Straffelini, D. Colombo, A. Molinari, Surface durability of electroless Ni-P composite deposits, Wear, 1999, 236(1-2), 179-188
    [47] P. R. Ebdon, The Performance of Electroless Nickel-PTFE Composite, Plating and Surface Finishing, 1988, 75(9), 65-72
    [48] Masayoshi Nishira, Osamu Takano, Friction and wear characteristics of elctroless Ni-P-PTFE composite coating, Plating and Surface Finishing, 1994, 81(1), 48-50
    [49] M. Pushpavanam, N. Arivalagan, N. Srinivasan, Electrodeposited Ni-PTFE dry lubricant coating, Plating and Surface Finishing, 1996, 83(1), 72-76
    [50] E. Pena-Munoz, P. Bercot, A. Grosjean, Electrolytic and Electroless Coatings of Ni-PTFE composites: study of some characteristics, Surface and coatings technology, 1998,107(2-3), 85-93
    [51]胡正兵,黄根良,化学复合镀Ni-P-PTFE提高冷却液循环泵耐腐蚀性能的研究,排灌机械, 2004, 22, 4, 42-44
    [52]李家诚,高精密气动元件化学镀Ni-Cu-P/PTFE,材料保护, 2003, 36(2), 59
    [53]程立新,杨杰辉,邱建伟, Ni-PTFE复合镀层的性能及其新的应用,表面技术, 1997, 26(4), 35-36
    [54]黄紫洋,赵崇涛,郑小安,朱则善,乳酸在Ni-PTFE复合电极上的电氧化,应用化学, 2004,21(9),910-913
    [55]杜克勤,寇瑾,严川伟,复合电沉积(Ni-W)-PTFE工艺的研究,电镀与精饰, 2004, 26(1), 9-12
    [56]朱一民,李纪宁,朱守信,王敬岩,金属镍和聚四氟乙烯微粒复合电沉积机理的研究(III),沈阳化工学院学报, 1998,12(4), 276-281
    [57] Q. Zhao, S. Wang, H. Muller-Steinhagen, Tailored surface free energy of membrane diffusers to minimize microbial adhesion, Applied Surface Science, 2004, 230, 371–378
    [58] Q. Zhao, Effect of surface free energy of graded Ni–P–PTFE coatings on bacterial adhesion, Surface & Coatings Technology, 2004,185,199–204
    [59]吴昊,叶斌,刘定福,橡胶密封硫化模复合电镀Ni-PTFE的研究,电镀与涂饰, 1998, 17(1), 31-34
    [60]张鹏,刘刚,田扬超, Ni和Ni-PTFE自润滑模具的脱模研究,微纳电子技术,2003,7/8,186-187
    [61]刘晓方,牛士俊,王汉功,赵文轸, Ni─PTFE复合刷镀层的研究,中国表面工程, 1995, 1, 23-25
    [62] Wei-hong Li, Xi-ying Zhou, Zhou Xu, Min-jie Yan,Microstructure of Ni–polytetrafluoroethylene composite coating prepared by brush electroplating,Surface & Coatings Technology, 2006, 201, 1276–1281
    [63]华希俊,电刷镀耐磨减摩复合镀层研究,江苏理工大学学报, 1999, 20(2),42-45
    [64]李屏,刘锦辉,付华萌,电刷镀Ni-Co-P-X复合镀层力学性能,辽宁工程技术大学学报(自然科学版), 2001, 20(3), 354~357
    [65]张玉峰, Ni-W-P/PTFE电刷镀多元复合材料工艺及性能研究,机械工程材料, 2002,26(5),15-17
    [66]张玉峰,铸铝表面电刷镀Ni-PTFE自润滑复合镀层性能研究,涂料涂装与电镀, 2004, 2(2), 22-25
    [67]林春华,葛祥荣,电刷镀技术便览,北京,机械工业出版社, 1991, 232
    [68]林文松,钱士强,徐曼曼, Nano-WC/PTFE-Ni复合电刷镀层的磨损性能研究,摩擦学学报, 2007, 27(5), 442-446
    [69] S. H. Yeh, C. C. Wan, A study of SiC/Ni composite plating in the watts bath, Plating and surface finishing, 1997, 84(3), 54-58
    [70] C. Buelens, J. P. Celis, J. R. Roos, Electrochemical aspects of the codeposition of gold and copper with inert particles, Journal of applied electrochemisty, 1983, 13(4), 541-548
    [71] J. Franser, J. P. Celis, J. R. Roos, Mechanism of composite electroplating, Metal finishing, 1993, 91(6), 97-102
    [72] N. Guglielmi, Kinetics of the deposition of inert particles from electrolytic baths, J. Electrochem. Soc. 1972,119(8), 1009-1012
    [73]唐宏科,赵文轸,苏勋家, Ni-Co-PTFE自润滑复合电镀层的制备及沉积机理,材料科学与工艺, 2007,15(3), 434-438
    [74] J. P. Celis, J. R. Roos, C. Buelens, Analysis of the electrolytic codeposition of non-Brownian particles with a metal matrix, J. Electrochem Soc., 1987, 134(6), 1402-1408
    [75] S. H. Yeh, C. C. Wan, Codeposition SiC powders with nickel in a Watts bath, J. Electrochem Soc., 1994, 24(10), 993-1000
    [76]朱一民,李纪宁,王敬岩,金属镍和聚四氟乙烯微粒复合电沉积机理初探(Ⅳ),沈阳化工学院学报, 1999,13(2), 90-95
    [77]徐龙堂,电刷镀镍基含纳米粉复合镀层性能、结构和共沉积机理, [博士论文],北京,北京工业大学,2000
    [78]蒋斌,纳米颗粒复合电刷镀镍基镀层的强化机理及其性能研究,[博士论文],重庆,重庆大学,2003
    [79]林春华,葛祥荣,电刷镀技术便览,北京,机械工业出版社, 1991, 252
    [80]林春华,葛祥荣,电刷镀技术便览,北京,机械工业出版社, 1991, 173
    [81]李卫红,周细应,徐洲,严敏杰,直线往复运动平面电刷镀Ni-PTFE复合镀层分布,表面技术, 2008, 37(1), 1- 4
    [82]覃奇贤,郭鹤桐,张宏祥,电镀原理与工艺,天津,天津科学技术出版社, 1993, 51~52
    [83]朱一民,李纪宁,王鸥,王敬岩,金属镍和聚四氟乙烯微粒复合电沉积机理的研究(I),沈阳化工学院学报, 1998,12(2), 99-107
    [84]程立新,杨杰辉,邱建伟,电镀Ni-PTFE复合镀层研究,电镀与环保, 1997, 17(5), 8-9
    [85]朱履冰,表面与界面物理,天津,天津大学出版社, 1992, 131
    [86]常立民,脉冲电沉积(Ni-Co)/Al2O3复合镀层及其性能研究, [博士论文],哈尔滨,哈尔滨工业大学, 2006
    [87]屠振密,胡会利,李宁,曹立新,安茂忠,电沉积纳米晶合金的最新进展,表面技术, 2008, 37(1),67-79
    [88] C.A. Schuh, T.G. Nieh, T. Yamasaki, Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel, Scripta Materialia, 2002, 46, 735-740
    [89] D.H. Jeong, F. Gonzalez, G. Palumbo, K.T. Aust, U. Erb, The effect of grain size on the wear properties of electrodeposited nanocrystalline nickel coatings, Scripta Materialia, 2001, 44, 493-499
    [90]孙伟,王贵富,宫秀敏,快速镍电刷镀工艺与镀层质量,材料保护, 1999, 32(4), 1-2
    [91]范去鹰,电沉积Zn-Fe-SiO2复合镀层工艺、机理及应用研究,[博士论文],昆明,昆明理工大学, 2005
    [92] J. L. Valdes, Electrodeposition of colloidal particles, J. Electrochem Soc., 1987, 134(4), 223C-225C
    [93] B. J. Hwang, C. S. Hwang, Mechanism of codeposition of silicon carbon with electrolytic cobalt, J. Electrochem Soc., 1993, 140(4), 979-984
    [94]陈永言,电化学基础,天津,天津科学出版社, 1999, 104
    [95]周绍民,金属电沉积原理与研究方法,上海,科学技术出版社, 1987, 197-208
    [96]王恩哥,薄膜生长中的表面动力学(Ⅰ),物理学进展, 2003, 23(1), 1-61
    [97]刘家浚,材料磨损原理及其耐磨性,北京,清华大学出版社, 1993, 51
    [98]何奖爱,王玉玮,材料磨损与耐磨材料,沈阳,东北大学出版社, 2001, 41
    [99]刘家浚,材料磨损原理及其耐磨性,北京,清华大学出版社, 1993, 124
    [100]刘家浚,材料磨损原理及其耐磨性,北京,清华大学出版社, 1993, 98-99
    [101] Yating Wu, Hezhou Liu, Bin Shen, Lei Liu, Wenbin Hu, The friction and wear of electroless Ni–P matrix with PTFE and-or SiC particles composite, Tribology International, 2006,39, 553–559
    [102] S.S. Tulsi, Composite PTFE-nickel coatings for low friction applications, Finishing, 1983, 7(11), 14-18
    [103] Ramalho, J.C. Miranda, Friction and wear of electroless NiP and NiP + PTFE coatings, Wear, 2005, 259, 828–834
    [104] Bin Wu, Xu-hua Yu, Bin Zhang, Bin-shi Xu, Preparation and characterization of graphite-nickel composite coatings by automatic brush plating, Surafce & Coatings Technology, 2008, 202, 1975-1979
    [105]张斌,徐滨士,吴斌,荆学东,董世运,自动化纳米电刷镀复合镀层的组织和性能,金属热处理, 2007, 32(1), 43-45
    [106] S. G. Dixit, A. K. Vanjara, J. Nagarkar, Co-adsorption of quaternary ammonium compounds—nonionic surfactants on solid–liquid interface, Colloids Surf, A. 2002, 205, 39~46
    [107] Bin Wu, Bin-shi Xu, Bin Zhan, Shi-yun Dong, The effects of parameters on the mechanical properties of Ni-based coatings prepared by automatic brush plating technology, Surface & Coatings Technology, 2007, 201, 5758–5765
    [108]马亚军,朱张校,丁莲珍,镍基纳米Al2O3粉末复合电刷镀镀层的耐磨性,清华大学学报(自然科学版), 2002, 42(4), 498-500
    [109]张允诚,胡如南,向荣,电镀手册(上),第二版,北京,国防工业出版社, 1997, 140-146
    [110]汤皎宁,谢友柏.,热处理对Ni-P-PTFE复合镀层性能的影响,材料保护, 1992, 21(7), 10-11
    [111] M. Alkan, M. Karadas, M. Dogan, Adsorption of CTAB onto perlite samples from aqueous solutions, J Colloid Interf Sci, 2005, 291(2), 309-318
    [112] Bin Wu, Bin-shi Xu, Bin Zhang, Yao-hui Lü, Preparation and properties of Ni/nano-Al2O3 composite coatings by automatic brush plating, Surface & Coatings Technology, 2007, 201, 6933–6939
    [113] B.D. Cullity, Elements of X-ray Diffraction, 2nd edn, California, Addison-Wesley, 1978, 102
    [114]张树生,镍磷复合镀层换热元件制备工艺研究及凝结试验分析, [博士论文],山东,山东大学, 2006
    [115]金原粲著,王力衡译,薄膜,北京,电子工业出版社, 1988, 40
    [116]郭忠诚,陈凌,杨显万,翟大成,电沉积RE-Ni-W-P-B4C-PTF,电镀与涂饰, 2000,19(3),1-4
    [117]董家梅,万德立,宋亚东,尹仲松,孙绪新,抽油杆表面化学复合镀Ni-P-PTFE技术研究,石油机械, 2002, 30(6), 1-3
    [118] Zhongcheng Guo, Ruidong Xu, Xiaoyun Zhu, Studies on the wear resistance and the structure of electrodeposited RE-Ni-W-P-SiC-PTFE composite materials, Surface & Coatings Technology, 2004, 187, 141– 145
    [119] Ling Chen, Zhong-cheng Guo, Xian-wan Yang, Structure and characteristics of electrodeposited RE-Ni-W-P-B4C-PTFE composite coatings, Trans. Nonferrous Met.Soc.China, 2001, 11(6), 887-890
    [120]贾均红,高生强,陈建敏,周惠娣,杨华勇,聚四氟乙烯/碳纤维增强聚酰亚胺复合体系的摩擦学性能,材料科学与工程学报, 2003, 21(2), 183-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700