基于LCL滤波器的单相并联有源滤波器控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业现代化进程的发展,电力系统中非线性负载不断增加,电网谐波污染日益严重,谐波成为影响电能质量的主要因素之一。并联有源滤波器(SAPF)作为治理电流源型谐波污染的有效手段,成为研究的热点。早期的SAPF一般采用电感作为输出滤波器。L型滤波器结构简单、可靠性高、易于控制,但是对开关纹波的衰减能力不足,将向电网注入较大的纹波电流。而三阶LCL滤波器可以以较小的电感量获得更好的开关纹波衰减能力,逐渐成为SAPF输出滤波器的发展趋势。本文以基于LCL滤波器的单相SAPF为研究对象,主要针对LCL滤波器的参数设计、滤波器有源阻尼技术以及如何提高谐振电流控制器的响应速度进行了深入的研究。
     LCL滤波器的参数设计是在滤波器各项性能指标间折衷的过程,工程上通常采用step-by-step的凑试设计方法。虽然凑试方法过程简单直接,但是设计过程需要进行反复的凑试,并且在凑试过程中由于不能明确性能指标之间的相互影响,设计结果往往顾此失彼,对滤波器的优化帮助不大。针对上述问题,本文提出了一种滤波器参数的图解设计方法。利用图解方法的直观性可以根据性能指标的限制条件直接获得满足设计要求的滤波器参数。而在近一步优化滤波器性能的过程中,也可以明确性能指标之间的相互影响,为优化滤波器性能提供了较为直观的参考。
     SAPF要跟踪大量的谐波电流,电流控制器设计难度较大。谐振控制由于良好得稳态跟踪精度和分频控制的灵活性,在SAPF中得到广泛的应用。对于谐波补偿次数较高的场合,应用谐振控制时需要进行相位补偿。本文详细比较了不同形式的谐振控制器及其相位不惭对控制性能的影响。分析表明:PR控制不能应用于谐波补偿次数较高的场合,并且闭环系统对频率略大于谐振频率的指令分量有很大的放大作用;采用相位补偿的方法,PR控制可以用于补偿高次谐波电流,指令放大现象也可以得到有效的抑制,但是,控制系统闭环频率特性不如VPI控制和P+VPI控制平滑,对电网频率变化较为敏感。
     采用谐振控制时通常利用比例环节来提高系统动态响应速度,但是比例系数受稳定裕度的限制取值有限,对提高较高次谐波电流的跟踪速度并没有太大帮助。只有合理的设计谐振控制器参数才能有效提高SAPF电流控制的动态响应速度。本文针对上述问题,以提高电流控制跟踪速度为目标,提出了采用迭代算法配置系统主导极点实部的控制器参数设计方法。对于VPI控制,系统主导极点配置到离虚轴的可能的最远距离时,系统相角裕度只有轻微的减小。因此,以此最远距离设计谐振控制器参数可以获得最快的电流跟踪速度。对于P+VPI控制,受比例环节影响,系统主导极点不能远离虚轴太远,否则系统相角裕度会迅速减小。设计控制器参数时应该首先确定系统相角裕度,然后折衷考虑对低频电流指令的跟踪速度和总体的响应时间分别确定谐振控制器比例系数和广义积分系数
     采用LCL滤波器作为输出滤波器时必须阻尼滤波器谐振。对于单状态反馈的有源阻尼方法,在理想情况下只有电容电流比例反馈可以有效阻尼滤波器谐振,因此现有研究大多采用电容电流比例反馈或等效的电容电压微分反馈的阻尼方法。但是实际系统中,受数字控制的一拍滞后和零阶保持效应的影响,上述方法的阻尼特性将发生变化。针对上述问题,本文在考虑一拍控制滞后和零阶保持效应的基础上详细分析了电容电流、电容电压和输出电流比例反馈阻尼滤波器谐振极点的能力。根据滤波器谐振频率与控制频率比值γ的不同,确定了上述三种有源阻尼方法的适用范围。电容电流反馈法的适用范围为0.05<γ<0.1和0.35<γ<0.4;电容电压反馈法的适用范围为0.1<γ<0.225;而输出电流反馈法的适用范围为0.225<γ<0.35。由于在SAPF中γ取值通常在0.225-0.35的区间内,采用输出电流反馈法不仅阻尼效果最好、而且不需要额外的状态变量采样,可以降低系统硬件成本,因此本文选择输出电流反馈法阻尼滤波器谐振。样机实验证明了该方法的有效性。
     输出电流反馈法在有效阻尼滤波器谐振的同时,可以降低电网电压扰动传递函数的低频增益,有利于抑制电网谐波对输出电流的影响。而电网谐波电压是影响并网逆变器输出电流波形质量的重要因素之一,因此将输出电流反馈法推广到并网逆变器中将具有特别的意义。本文采用滞后控制+输出电流反馈的方式,可以将输出电流反馈法用于γ大于0.14的并网变换器。样机实验证明了上述方法的有效性。对于γ更小的情况,增加的一拍控制滞后不能有效的阻尼滤波器谐振,而增加滞后拍数将进一步减小电流控制带宽。因此,该方法不适合用于γ很小的情况。
As the development of modern industry, more and more non-linear loads are used in power system, resulting in increasingly severe harmonic pollution. Shunt active power filter (SAPF), as the most effective method to eliminate harmonic, has been paid more and more attention recently. Traditional SAPFs usually adopt simple L filters to filter out the switch ripples. It is simple, reliable and easy to be controlled, but lack of high frequency attenuation capability. While the third order LCL filter could obtain better high frequency attenuation capability with small inductance, it gradually becomes the mainstream of output filter of SAPFs. This paper chose the single-phase SAPF with LCL filter as the research object. Works have been focused on the parameters design of LCL filter, active damping strategy and rapid output current control.
     In the LCL filter parameter design process, tradeoff between various performance indicators needed to be made. The step by step design method usually been adopted in this process. Although step by step design method is simple and direct, the influence of performance indicators is not clear in the design process, which usually causes some performance indicators unoptimum. This design method is helpless for parameter optimization. To overcome the defect of step by step design method, this paper proposed a graphic design method. Although the graphic design method still need to try-in in design process, however, with the help of the graphic, the tradeoff between various performance indicators can be easy to maded.
     Designing the current control for SAPF is a hard work for the ability to traking for harmonic current. Due to the perfect control precision and the flexible of resonant control, it is widely used in SAPFs. To apply the resonant control for high order harmonics, phase-lag compensation must be included in the current controller. The performance of different resonant control and their phase-lag compensation methods was discussed in this paper. The PR control cannot be used for high order harmonic compensation, and closed-loop system would amplify the current command which frequency is slightly bigger than the resonance frequency. With delay compensation, the PR control can be used for high order harmonic compensation, and the amplify phenomenon can be also mitigated. However, the frequency characteristics of closed-loop system are not as smooth as that of the VPI or P+VPI control, which sensitivity to grid frequency variation.
     In the resonant control, proportional controller is usually used to improve the responding speed. However, to achieve an adequate phase magin, the value of proportional parameter is usually low. Proportional control is insufficient for tracking high order harmonics. Excellent responding speed can only be achieved by carefully design the resanont controller parameters. In this paper, a novel parameter design method to achieve rapid current tracking is proposed. The design method is besed on an iterative algorithm to arrange the real part of dominant poles of closed-loop system. For the VPI control, system phase margin only slightly minish when dominant poles reach the possible furthest distance away from imaginery axis. So that position should be used to tune controller parameters, to ensure fastest responding speed. For the P+VPI control, the dominant poles cannot far away from the imaginary axis, otherwise system phase margin would reduce rapidly. To design the controller parameters, phase margin must be ensured. Then, the proportion and generalized integral coefficients can be obtained by tradoff the tracking speed of low and high frequency current command.
     To using the LCL filter, filter resonance must be damped. Current researchs of active damping method are focused on the capacitor current, since in the ideal condition only the proportional feedback of capacitor current can damping LCL resonance. However, in the practical system, the performance of this method would be changed. In this paper, the analysis of active damping effects of the capacitor current, capacitor voltage and grid-side current feedback method was discussed, by considering the one-step delay and the affect of zero-order holder. According to the ratio beteen resonant frequency of LCL filter and control frequency, the suitable range for the three active damping methods is discused. Capacitor current feedback method is suitable for 0.05<γ<0.1 and 0.35<γ< 0.4. Capacitor voltage feedback method is suitable for 0.1<γ< 0.225. Grid-side current feedback method is suitable for 0.225<γ<0.35. Since the grid-side current feedback method is especially suitable to SAPF, there is no need of extra sensors for additional states measurements and grid voltage disturbance rejection could be enhanced while offer a good resonance damping, the grid-side current feedback method is applied in a sigle-phase SAPF. The experimental results demonstrate the effect this damping method.
     Since the influence of grid harmonic on grid-side current is one of the main problems for grid-connected inverter, extending the grid-side current feedback method into the application of grid-connected inverter would be rewarding. This paper combined the lag control and grid-side current feedback to make it possible to be used in converters which yis, greater than 0.14. Experimental results on a single-phase grid-connected inverter prove the effectiveness of the proposed methods. For the y smaller than 0.14, additional one-step delay cannot damp LCL resonace effectively, and increase the delay time would further reduce the current control bandwidth. Therefore, this method is not suitable for the condition whereγis too small.
引文
[1]IEEE Std.519-1992. IEEE recomended practices and requirements for harmonic control in eletric power systems.1993
    [2]中华人民共和国水利电力部.电力系统谐波管理暂行规定SD126-84.北京:水利电力出版社,1985
    [3]中国国家标准GB/T 14549-93.电能质量 公用电网谐波.北京:中国标准出版社,1994
    [4]W. S. Carter. The future of programmable logic and its impact on digital system design. IEEE International Conference on Computer Design:VLSI in Computers and Processors,1994:10-16
    [5]Jiann-Fuh Chen, Ching-Lung Chu, Yow-Chyi Lieu. Modular parallel three-phase inverter system. Proceedings of the IEEE International Symposium on Industrial Electronics,1995:237-242
    [6]Jee-Ho Park, Dong-Ryul Shin, and Dong-Wan Kim, Internal model control of active power filter using resonance model. IEEE International Symposium,2001,3: 1912-1918
    [7]H. Akagi, F. Z. Peng, A. Nabae. A new approach to harmonic compensation in power systems. IEEE/IAS Ann. Meeting Conf. Rec.1988,874-880
    [8]Torrey D A, Zamel A M. Single-phase active power filters for multiple nonlinear loads. IEEE Trans Power Electronics,1995,10(3):263-272
    [9]Peng F Z. Application issues of active power filters. IEEE Trans Industry Applications,1998,4(5):21-30
    [10]魏学良.三相三线并联型APF电流环数字化控制研究:[博士学位论文].武汉:华中科技大学图书馆,2007
    [11]Fujita H, Akagi H. An approach to harmonic current-free AC/DC power conversion for large industrial loads:the integration of a series active filter with a double-series diode rectifier. IEEE Trans Ind Appl,1997,33(5):1233-124
    [12]Lee C K, Ron Hui S Y, Henry Shu-Hung Chung. A 31-level cascade inverter for power applications. IEEE Trans. On Industrial Electronics,2002,49:613-617
    [13]Huann-Keng Chiang, bor-Ren Lin, Kai-Tsang Yang, Kuan-Wei Wu. Hybrid active power filter for power quality compensation. Power Electronics and Drives Systems, 2005,2:949-954
    [14]戴珂.双三相电压源PWM变换器串并联补偿型UPS控制技术研究:[博士学位论文],华中科技大学图书馆,2003
    [15]郑诗程.光伏发电系统及其控制的研究:[博士学位论文].合肥:合肥工业大学.2005
    [16]Su, Y.X., Zheng, C.H., Duan, B.Y.. Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Trans, on Industrial Electronics,2005,52(3):814-823
    [17]戴朝波,林海雪.电压源型逆变器三角载波电流控制新方法.中国电机工程学报,2002,22(2):99-102
    [18]Li Qiao,Wu Jie. Application of auto-disturbance rejection control for a shunt hybrid active power filter. ISIE 2005.Proceedings of the IEEE International Symposium on Industrial Electronics. June 2005, Volume 2:627-632
    [19]Yongqiang Liu, Zheng Yan, Zubing Zhou, et al. An auto-disturbance rejection control scheme for hybrid power compensators. Power Engineering Society General Meeting, 2003, IEEE, July 2003, Volume 3:1633-1637
    [20]彭力.基于状态空间理论的PWM逆变电源控制技术研究:[博士学位论文].武汉:华中科技大学图书馆,2004
    [21]孔雪娟.数字控制PWM逆变电源关键技术研究:[博士学位论文].武汉:华中科技大学图书馆,2005
    [22]朱炜锋,窦伟,徐正国等,基于PI控制的三相光伏并网逆变器电流控制器设计,可再生能源,2009,27(2):55-58
    [23]J. H. Hwang, K. S. Ahn, H. C. Lim. Design, development and performance of a 50 kW grid-conllected PV system with three phase current-controlled inverter. Photovoltaic Specialists Conference.2000.1664-1667.
    [24]熊健.三相电压型高频PWM整流器研究:[博士学位论文].武汉:华中科技大学图书馆,1999
    [25]Milan, Prodanovic, Timothy C Green. Control and filter design of three phase inverter for high power quality grid connection. IEEE Trans, on Industrial Electronics,2003,10(5):373-380
    [26]Salo M, Tuusa H. A new control system with a control delay compensation for a current-source active power filter. IEEE Trans. on Industrial Electronics,2005,52: 1616-1624
    [27]Kuo H H, Yeh S N, Hwang J C. Novel analytical model for design and implementation of three-phase active power filter controller. IEE Proceedings Electric Power Applications,2001,148:369-383
    [28]Bhavaraju V B, Enjeti P N. Analysis and design of an active power filter for balancing unbalanced loads. IEEE Trans, on Power Electronics,1993,8:640-647
    [29]W. M. Wonham, Linear Multivariable Control:A Geometric Approach. Lecture Notes in Economics and Mathematical Systems, vol.101. New York: Springer-Verlag,1974
    [30]B. A. Francis and W. M. Wonham. The internal model principle for linear multivariable regulators, Appl. Maths, and Optimization,2(2):170-194,1975
    [31]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究:[博士学位论文],华中科技大学图书馆,2000
    [32]S. Fukuda and T. Yoda. A novel current-tracking method for active filters based on a sinusoidal internal model, IEEE Trans, on Ind. Appl., May/Jun.200,37(3): 888-8941
    [33]S. Fukuda and R. Imamura. Application of a sinusoidal internal model to current control of three-phase utility-interface converters, IEEE Trans. Ind. Electron., Apr. 2005,52(2):420-426
    [34]K. Zhou, D. Wang, and G. Xu. Repetitive controlled three-phase reversible PWM rectifier, in Proc. Amer. Control Conf.,2000,1:125-129
    [35]Hamasaki S., Fujii K., Tsuji M., Chen S.. A novel method of active filter control using repetitive control, Electrical Machines and Systems Conf.,2005,Vol.2: 1252-1256
    [36]S. Fukuda and T. Yoda. Investigation of current controller for single phase PWM converters based on the internal model principle, in Proc. EPE Conf., Lausanne, Switzerland,1999:1-8.
    [37]马兆彪,惠晶,潘建.基于重复PI控制的光伏并网逆变器的研究,电力电子技术,2008,42(3):25-27
    [38]C. Cosner, G. Anwar, and M. Tomizuka. Plug-in repetitive control for industrial robotic manipulators, in Proc. IEEE Int. Conf. Robot. Autom.,1990:1970-1975
    [39]P. Mattavelli. Synchronous-frame harmonic control for high performance AC power supplies, IEEE Trans. Ind. Appl., May/Jun.2001,37(3):864-872
    [40]Aurelio Garcia-Cerrada, Omar Pinzon-Ardila. Application of a repetitive controller for a three-phase active power filter, IEEE Trans, on Power Electronic, Jan.2007, 22(1):237-246
    [41]K. Nishida, M. Rukonuzzman, and M. Nakaoka. Advanced current control implementation with robust deadbeat algorithm for shunt single-phase voltage-source type active power filter, Proc. Inst. Elect. Eng.-Elect. Power Appl., May 2004,151(3): 283-288
    [42]Wei, XueLiang; Dai, Ke; Fang, Xin; Geng, Pan; Kang, Yong. Performance analysis and improvement of output current controller for three-phase shunt active power filter. Proc. of IEEE IECON'06, Paris, France,2006:1757-1762
    [43]R. Costa-Castello, R. G. No, and E. Fossas. Odd-harmonic digital repetitive control of a single-phase current active filter. IEEE Trans, on Power Electron., Jul.2004, 19(4):1060-1068
    [44]R. Grino and R. Costa-Castello. Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances. Automatica, Jan.2004,41(1): 153-157
    [45]G Escobar, J. Leyva-Ramos, P. R. Martinez, and P. Mattavelli. A negative feedback repetitive control scheme for harmonic compensation. IEEE Trans. Ind. Electron., Jun.2006,53(4):1383-1386
    [46]R. Costa-Castello and R. Grino. A repetitive controller for discrete-time passive systems. Automatica,,2006,42(9):1605-1610
    [47]Gerardo Escobar, Perla G. Hernandez-Briones, Panfilo R. Martinez. A repetitive-based controller for the compensationof 6k±1 harmonic components. IEEE Trans, on Ind. Electron., Aug.2008,55(8):3150-3158
    [48]Shin-ichi Hamasaki, Atsuo Kawamura. Improvement of current regulation of line current detection type active filter based on deadbeat control. IEEE Trans, on Industry Application, March,2003,39(2):589-600
    [49]H. Abu-Rub, J. Guzinski, Z. Krzeminski, and H. A. Toliyat. Predictive current control of voltage-source inverters. IEEE Trans, on Ind. Electron., Jun.2004,51(3): 585-593
    [50]D. G Holmes and D. A. Martin. Implementation of a direct digital predictive current controller for single and three phase voltage source inverters, in Conf. Rec. IEEE IAS Annu. Meeting,1996:906-913.
    [51]G. H. Bode, P. C. Loh, M. J. Newman, and D. G. Holmes. An improved robust predictive current regulation algorithm. IEEE Trans, on Ind. Appl., Nov./Dec.2005, 41(6):1720-1733
    [52]L. Malesani, P. Mattavelli, and S. Buso. Robust dead-beat current control for PWM rectifiers and active filters. IEEE Trans. Ind. Appl., May/Jun.1999,35(3):613-620
    [53]K. H. Kim and M. J. Yoon. A simple and robust digital current control technique of a PM synchronous motor using time delay control approach. IEEE Trans. Power Electron., Jan.2001,16(1):72-82
    [54]张加胜,郝荣泰.滞环控制变流器的开关频率研究.电工电能新技术,1998(1):54-57
    [55]A. I. Maswood and F. Liu. A unity power factor front-end rectifier with hysteresis current control. IEEE Transactions on Energy Conversion, March 2006,21(1):69-76
    [56]Ingram D M E, Round S D. A novel digital hysteresis current controller for an active power filter. Power Electronics and Drive Systems,1997,2:744-749
    [57]S. Buso, S. Fasolo, L. Malesani, and P. Mattavelli. A dead-beat adaptive hysteresis current control. IEEE Trans. Ind. Appl., Jul./Aug.2000,36(4):1174-1180
    [58]G. H. Bode and D. G. Holmes. Implementation of three level hysteresis current control for a single phase voltage source inverter, in Proc. IEEE PESC, Jun.2000: 33-38
    [59]L. Sonaglioni. Predictive digital hysteresis current control, in Proc. IEEE-IAS Annu. Meeting, Orlando, FL, Oct.1995:1879-1886
    [60]L. Malesani, L. Rossetto, P. Tomasin, and A. Zuccato. Digital adaptive hysteresis current control with clocked commutations and wide operating range. IEEE Trans. Ind. Appl., Mar./Apr.1996,32(2):316-325
    [61]李承,邹云屏.串联型有源电力滤波器的单周控制方法.电力系统自动化,2005,29(15):49-52
    [62]K. M. Smedley, L. Zhou, and C. Qiao. Unified constant-frequency integration control of active power filters-steady-state and dynamics. IEEE Trans. Power Electron., May 2001,16(2):428-136
    [63]L. Zhou and K. M. Smedley. Unified constant-frequency integration control of active power. APEC, Feb.2001, (1):406-412
    [64]T. Jin and K. Smedley. Operation of unified constant-frequency integration controlled three-phase active power filter with unbalanced load, in Proc. IEEE APEC'03, Feb.2003:145-153.
    [65]Wang Yong, Shen Songhua, Guan Mial. Three-phase active power filter based on space vector and one-cycle control. IEEE Trans. On Power Electronics and Motion Control Conference,2006,2:1-4
    [66]X. Yuan, W. Merk, H. Stemmler, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions. IEEE Trans, on Ind.,2002,38(2):523-532
    [67]范瑞祥,罗安,涂春鸣.并联混合型有源滤波器的分频控制方法研究.中国电机工程学报,2007,27(25):108-113
    [68]P. Mattavelli. A closed-loop selective harmonic compensation for active filters. IEEE Trans. Ind. Appl., Jan./Feb.2001,37(1):81-89
    [69]M. J. Newman, D. N. Zmood, D. G. Holmes. Stationary frame harmonic reference generation for active filter systems. IEEE Trans. Ind.,2002,38(6):1591-1599
    [70]C. Lascu, L. Asiminoaei, I. Boldea, et al. High performance current controller for selective harmonic compensation in active power filters. IEEE Trans, on power electronics,2007,22(5):1826-1835.
    [71]C. Lascu, L. Asiminoaei, I. Boldea, et al. Frequency response analysis of current controllers for selective harmonic compensation in active power filters. IEEE Trans. Ind.,2009,56(2):337-347
    [72]王永骥,涂健.神经元网络控制.北京:机械工业出版社,1998
    [73]Li Shiyong. Fuzzy Control.Neuro Control and Intelligent Control. Harbin:Harbin Institute of Technology Press,1996.
    [74]李剑,康勇,陈坚.带模糊调节的重复控制器在逆变器中的应用.电气传动,2001,6:30-34,40
    [75]S. K. Jain, P. Agrawal, etal. Fuzzy logic controlled shunt active power filter for power quality improvement. IEE Proc.-Eletrc. Power Apply,2002,149(5):317-328
    [76]Marco Liserre and Frede Blaabjerg. Design and control of an LCL-filterbased three-phase active rectifier. IEEE Trans. Industry Applications, Sep./Oct.,2005, 41(5):1281-1291
    [77]M. Lindgren, and J. Svensson. Control of a voltage-source converter connected to the grid through an LCL-filter-application to active filtering, in Proc.29th Annu. Power Electron. Spec. Conf. (PESC'98), May 17-22,1998,1:229-235
    [78]E. Twining, and D. G. Holmes. Grid current regulation of a three-phase voltage source inverter with an LCL input filter. IEEE Trans. Power Electron., May 2003, 18(3):888-895
    [79]M. Routimo and H. Tuusa. LCL type supply filter for active power filter—Comparison of an active and a passive method for resonance damping, in Proc. IEEE PESC,2007:2939-2945
    [80]V. Blasko and V. Kaura. A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter. IEEE Trans. Ind. Appl., Mar./Apr.1997, 33(2):542-550
    [81]M. Liserre, A. Dell'Aquila, and F. Blaabjerg. Stability improvement of an LCL-filter based three-phase active rectifier, in Proc. Power Electron. Spec. Conf.,2002: 1195-1201
    [82]B. Bolsens, K. De Brabandere, J. Van den Keybus, J. Driesen, and R. Belmans. Three-phase observer-based low distortion grid current controller using an LCL output filter, in Proc. IEEE Power Electron. Spec. Conf.,2005:1705-1711
    [83]S. Nuilers and B. Neammanee. Control performance of active damp LCL filter of three phase PWM boost rectifier, in Proc. Electron. Info. Conf.,2010:259-263
    [84]S. Y. Yang, X. Zhang, C. W. Zhang, and Z. Xie. Study on active damping methods for voltage source converter with LCL input filter, in Proc. Power Electron. Motion Contr. Conf.,2009:975-979
    [85]E. Twining and D. G. Holmes. Grid current regulation of a three-phase voltage source inverter with an LCL input filter. IEEE Trans. Power Electron., May.2003,18(3): 888-895
    [86]L. Mihalache. A high performance DSP controller for three-phase PWM rectifiers with ultra low input current THD under unbalanced and distorted input voltage, in Conf. Rec. IEEE IAS Annu. Meeting,2005:138-144
    [87]G. Zeng, R. Tonny, L. Ma, and T. Remus. Design and control of LCL-filter with active damping for active power filter, in Proc. Ind. Electron. Conf.,2010: 2557-2562
    [88]J. Dannehl, F. Fuchs, S. Hansen, and P. Thegersen. Investigation of active damping approaches for PI-based current control of grid-connected pulse width modulation converters with LCL filters. IEEE Trans. Ind. Appl., Jul./Aug.2010,46(4): 1509-1517
    [89]J. Dannehl, C. Wessels, and F. W. Fuchs. Voltage-oriented PI current control of grid-connected PWM rectifiers with LCL-filter. IEEE Trans, on Ind. Electron., Feb. 2009,56(2):380-388
    [90]Y. Tang, P. C. Loh, P. Wang, F. H. Choo, and F. Gao. Exploring inherent damping characteristic of LCL-filters for three-phase grid-connected voltage source inverters. in Proc. Energ. Conver. Congress Conf.,2010:312-319
    [91]P. A. Dahono. A control method to damp oscillation in the input LC filter, in Proc. IEEE Power Electron. Spec. Conf.,2002,4:1630-1635
    [92]C. Wessels, J. Dannehl, and F. Fuchs. Active damping of LCL-filter resonance based on virtual resistor for PWM rectifiers-Stability analysis with different filter parameters, in Proc. IEEE PESC, Jun.2008:3532-3538
    [93]E. Wu and P. W. Lehn. Digital current control of a voltage source converter with active damping of LCL resonance. IEEE Trans. Power Electron., Sep.2006,21(5): 1364-1373
    [94]F. A. Magueed and J. Svensson. Control of VSC connected to the grid through LCL-filter to achieve balanced currents, in Conf. Rec. IEEE IAS Annu. Meeting, 2005:572-578
    [95]B. Bolsens, K. De Brabandere, J. Van den Keybus, J. Driesen, and R. Belmans. Three-phase observer-based low distortion grid current controller using an LCL output filter, in Proc. IEEE Power Electron. Spec. Conf.,2005:1705-1711
    [96]M. Malinowski and S. Bernet. A simple voltage sensorless active damping scheme for three-phase PWM converters with an LCL filter. IEEE Trans. Ind. Electron., Apr. 2008,55(4):1876-1880
    [97]陈坚.电力电子学一电力电子变换和控制技术.北京:高等教育出版社,2002
    [98]胡寿松.自动控制原理.北京:国防工业出版社,1994
    [99]E. Wu and P. W. Lehn. Digital current control of a voltage source converter with active damping of LCL resonance. IEEE Trans. Power Electron., Sep.2006,21(5): 1364-1373
    [100]Hamid R. Karshenas, Hadi Saghafi. Basic criteria in designing LCL filters for grid connected converters. IEEE ISIE 2006, July 9-12,2006:1996-2000
    [101]刘飞,查晓明,段善旭.三相并网逆变器LCL滤波器的参数设计与研究.电工技术学报,2010,25(3):110-116.
    [102]Marco Liserre, Frede Blaabjerg, Steffan Hansen. Design and control of an LCL-filter-based three phase active rectifier. IEEE Transactions on Industry Applications,2005,41(5):1281-1290
    [103]张宪平,李亚西,潘磊,等.三相电压型整流器的LCL型滤波器分析与设计.电气应用,2007,26(5):65-67
    [104]武健,何娜,徐殿国.三相并联有源滤波器输出滤波器设计方法研究.电力电子技术,2004,38(6):16-19
    [105]唐欣,罗安,涂春明.有源滤波器中输出滤波器的参数设计及优化.电力电子技术,2005,39(5):91-94
    [106]万心平,张厥盛,郑继禹.锁相技术.西安:西安电子科技大学出版社,1989
    [107]罗伟雄,韩力,丁志杰.锁相技术及其应用.北京:北京理工大学出版社,1990
    [108]庄卉,黄苏华,袁国春.锁相与频率合成技术.北京:气象出版社,1996
    [109]D. Jovcic. Phase locked loop system for FACTS. IEEE Transactions on Power Systems, Aug.2003,18(3):1116-1124
    [110](美)奥本海姆等著.刘树棠黄建国译.离散时间信号处理.西安:西安交通大学出版,2001
    [111]Se-Kyo Chung. A phase tracking system for three phase utility interface inverters. Power Electronics, IEEE Transactions,2000,15(3):431-438
    [112]Changjiang Zhan, Fitzer, C., Ramachandaramurthy, V.K et al. Software phase-locked loop applied to dynamic voltage restorer (DVR). IEEE-PESWiM,2001,3(28): 1033-1038
    [113]Jovcic, D., Pahalawaththa, N., Zavahir, M. et al. SVC dynamic analytical model. Power Delivery, IEEE Transactions,2003,18(4):1455-1461
    [114]H. Akagi. Control strategy and site selection of a shunt active filter for damping of harmonic propagation in power distribution systems. IEEE Trans. Power Delivery, Feb.1997,12:354-363
    [115]T. T. Chang and H. C. Chang. An efficient approach for reducing harmonic voltage distortion in distribution systems with active power line conditioners. IEEE Trans. Power Delivery, Aug.2000,15:990-995
    [116]Y. Susaki, T. Matsumura, T. Genji, J. Inoue, K.Yoshioka, and M.Kohata. Development and proof examination result of active filter for power distribution systems. IEEE Trans. Inst. Elect. Eng. Jpn.,2000,120(5):746-752
    [117]陈仲.并联有源电力滤波器实用关键技术的研究:[博士学位论文],浙江大学,2005
    [118]M. H. Byung, Y. B. Byung, S. J. Ovaska. Reference signal generator for active power filters using improved adaptive predictive filter. IEEE Transactions on Industrial Electronics,2005,52(2):738-746
    [119]Mu Longhua, Jiang Zi. Application of adaptive filtering in harmonic analysis and detection. Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES, Dalian,2005
    [120]M. Karimi-Ghartemani, H. Mokhtari, and M. R. Iravani. A signal processing system for extraction of harmonics and reactive current of single phase systems. IEEE Trans. Power Delivery, Jul.2004,19(3):979-986
    [121]M. T. Haque. Single phase PQ theory for active filters, in Proc IEEE TENCON'02, 2002:1941-1944
    [122]S. A. Gonzalez, R. Garcia-Retegui, M. Benedetti. Harmonic Computation Technique Suitable for Active Power Filters. IEEE Transactions on Industrial Electronics, Oct. 2007,54(5):2791-2796
    [123]V. Khadkikar, A. Chandra, B.N. Singh. Generalised single-phase p-q theory for active power filtering:simulation and DSP-based experimental investigation. IET Power Electronics, Jan.2009,2(1):67-78
    [124]B. Sing, K. Al-Haddad, and A. Chandra. A review of active filters for power quality improvement. IEEE Trans. Ind. Electron., Oct.1999,46(5):960-971
    [125]M. El-Habrouk, M. K. Darwish, and P. Mehta. Active power filters:A review. Proc. Inst. Electr. Eng.-Electr. Power Appl., Sep.2000,147(5):403-410
    [126]罗安.电网谐波治理和无功补偿技术及装备.中国电力出版社,2006
    [127]D. N. Zmood and D. G. Holmes. Stationary frame current regulation of PWM inverters with zero steady state error, in Proc. IEEE PESC,1999:1185-1190
    [128]L. Limongi, R. Bojoi, G. Griva, and A. Tenconi. Digital current-control schemes. IEEE Ind. Electron. Mag., Mar.2009,3(1):20-31
    [129]Blaabjerg F, Teodorescu R, Chen Z, Liserre M. Power converters and control of renewable energy systems. Proc. ICPE 2004
    [130]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究.中国电机工程学报,2009,27(16):60-64
    [131]Liserre M, Teodorescu R, Blaabjerg F. Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans, on Power Electron.,2006,21(1):888-895
    [132]Xuehua Wang, Xinbo Ruan, Shangwei Liu, and Chi K. Tse, Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonics. IEEE Trans, on Power Electronic, Dec.2010,25(12): 3119-3127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700