高血压合并房颤患者抗M2胆碱能受体抗体和抗肌球蛋白重链抗体的检测及其对人心房肌细胞电生理特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分高血压合并房颤患者抗M2胆碱能受体抗体和抗肌球蛋白重链抗体的检测及其临床意义
     目的:自身抗体在心血管疾病中逐渐被发现,越来越多的证据表明自身免疫机制参与其中并发挥着重要作用,在心律失常中也是如此。本实验的目的是观察高血压合并房颤患者自身抗体抗M2胆碱能受体抗体(AAM2R)和抗肌球蛋白重链抗体(AAMHC)的变化以及二者与房颤的关系。
     方法:研究选取高血压患者共295例,分为高血压合并房颤组(145例)和高血压非房颤组(150例)。采集血样,通过ELISA方法检测血清中四种自身抗体(AAM2R/AAMHC/AAβ1R/AAANT)的阳性率,并进一步通过单变量和多变量logistic回归分析自身抗体与房颤的关系。研究还选取了健康体检者80例作为正常对照组,与上述两组高血压患者比较自身抗体阳性率的差异。
     结果:与高血压非房颤组患者相比,高血压合并房颤组患者自身抗体AAM2R和AAMHC的阳性率显著升高(AAM2R:44.8%vs13.3%:AAMHC:27.6%vs14.7%:P<0.01),并且自身体阳性组患者房颤的发病率较抗体阴性组也显著增加(AAM2R:76.5%vs38.1%,P<0.001;AAMHC:64.5%vs45.1%,P<0.01);多变量分析显示自身抗体是高血压患者发生房颤的危险因素和强预测因子(AAM2R:OR=5.251; AAMHC:OR=2.696)。正常对照组抗体阳性率显著低于上述两组高血压患者(P<0.05)。
     结论:自身抗体AAM2R和AAMHC与高血压患者房颤的发生密切相关,是其重要危险因素和强预测因子,这可能提示自身免疫参与并促进了房颤的发生与维持,在其中发挥了重要作用。
     第二部分抗M2胆碱能受体抗体和抗肌球蛋白重链抗体的提取、纯化和鉴定
     目的:在高血压合并房颤患者体内自身抗体AAM2R和AAMHC有较高检出率,本部分实验主要目的是验证两种自身抗体与相应抗原结合的特异性。
     方法:利用心外科开胸手术患者(窦性心律)右心耳组织标本,提取组织蛋白和酶解分离单个心房肌细胞。采用盐析法和亲和层析法提纯血清中的抗体,利用免疫印迹和细胞免疫荧光技术验证自身抗体与相应抗原的特异性结合。
     结果:自身抗体AAM2R能够与人心房组织蛋白M2受体和表达于CHO细胞的重组人M2受体特异性结合,免疫荧光共聚焦显微镜下可见AAM2R能与人心房肌细胞膜表面相结合,抗体阴性患者血清提取物和用抗原中和后的抗体未能结合;自身抗体AAMHC可与猪心肌肌球蛋白重链和人心房肌球蛋白重链特异性结合,并且免疫荧光共聚焦显微镜下可见AAMHC能与经破膜处理的人心房肌细胞结合,抗体阴性患者血清提取物和用抗原中和后的抗体未能结合;自身抗体AAMHC与人β1受体可发生交叉反应。
     结论:高血压合并房颤患者血清中存在特异性的自身抗体AAM2R和AAMHC,能够分别与人心房肌M2受体和肌球蛋白重链结合,且自身抗体AAMHC与β1受体具有交叉反应。
     第三部分抗M2胆碱能受体抗体和抗肌球蛋白重链抗体对人心房肌细胞复极电流及动作电位的影响
     目的:自身抗体AAM2R和AAMHC与高血压患者房颤发生密切相关,是其重要危险因素和强预测因子。本部分实验探讨两种自身抗体对人心房肌细胞复极化电流和动作电位的影响,以阐明这两种自身抗体致心律失常的电生理作用机制。
     方法:采集窦性心律心脏外科手术患者右心耳组织,酶解分离单个心房肌细胞;利用全细胞膜片钳技术和穿孔膜片钳技术分别记录两种自身抗体对心房肌细胞各种复极化电流(Ikach、ICa-L、Itol、Ikur)的影响;利用全细胞穿孔膜片钳电流钳模式观察两种自身抗体对心房肌细胞动作电位的影响。
     结果:与自身抗体阴性血清提取物相比,自身抗体AAM2R产生了受体激动样作用,可使心房肌细胞Ikach通道开放,使ICa-L电流减少,并缩短动作电位时程,但对Itol、Ikur电流无明显影响,用相应M2受体抗原肽段中和抗体后,此作用消失;自身抗体AAMHC对ICa-L、Itol、Ikur电流及心房肌细胞动作电位均无影响。
     结论:自身抗体AAM2R改变了心房肌细胞离子通道的电生理特性,使之发生重构,从而有利于房颤的发生与维持,而自身抗体AAMHC未能产生这种作用,可能是通过其他机制促发房颤。因此,研究结果表明自身免疫机制与房颤密切相关,在其中发挥着重要作用,可能为将来房颤的治疗提供了新的靶点。
Part I The detection and clinical significance of anti-M2R autoantibody and anti-cardiac mysosin heavy chain autoantibody in hypertensive patients with atrial fibrillation
     Objective:To investigate the change of anti-M2R autoantibody and anti-cardiac mysosin heavy chain autoantibody in hypertensive patients with atrial fibrillation and elucidate the relationship between both autoantibodies and atrial fibrillation.
     Methods:The selected295hypertensive patients were divided into two groups:group one consisting of145cases with atrial fibrillation, and group two consisting of150cases without atrial fibrillation used as control group. Peripheral blood samples were collected, and then tested for the detection of four autoantibodies (AAM2R, AAMHC, AAβ1R and AAANT) by using enzyme-linked immunoabsorption assays (ELISA). At last, the relationships between autoantibodies and atrial fibrillation were analyzed through univariate and multivariate logistic regression analysis. We also selected80subjects for health examination as normal control group, in order to observe the differences of autoantibodies detection with the above groups.
     Results:Compared with group two (control group), the positive rate of both autoantibodies (AAM2R and AAMHC) significantly increased in hypertensive patients with atrial fibrillation (AAM2R:44.8%vs13.3%; AAMHC:27.6%vs14.7%; P<0.01). The incidence of atrial fibrillation in autoantibody-positive hypertension patients remarkable increased in contrast with autoantibody-negative patients(AAM2R:76.5%vs38.1%, P<0.001; AAMHC:64.5%vs45.1%, P<0.01). Autoantibodies both AAM2R and AAMHC were significant risk factors and strong predictors (AAM2R:OR=5.251; AAMHC:OR=2.696). The positive rate of normal control group was significantly lower than that of the two groups of hypertensive patients.
     Conclusion:The present study indicated that autoantibodies both AAM2R and AAMHC were closely associated with atrial fibrillation in hypertensive patients, suggesting that autoimmune mechanism might play a crucial role in the initiation and development of atrial fibrillation.
     Part Ⅱ The extraction, purification and identification of anti-M2receptor and anti-cardiac mysosin heavy chain autoantibodies from hypertensive patients with atrial fibrillation
     Objective:There were highly detection of autoantibodies both AAM2R and AAMHC in the sera from hypertensive patients with atrial fibrillation. The goal of this study was to determine the binding specificity of both autoantibodies with corresponding antigen respectively.
     Methods:The right atrial appendages from patients underwent cardiac open-chest surgery were extracted for whole proteins and enzymatically isolated for single atrial myocytes. By using salt precipitation in (NH4)2SO4and affinity chromatography, the autoantibodies were purified from the sera of hypertensive patients.The binding specificities of both autoantibodies with corresponding antigen were confirmed through immunoblotting and cellular immunofluorescence techniques
     Results:AAM2R specially reacted with M2receptors of human atrial tissue and recombinant human M2receptor expressed in CHO cells. By using laser confocal immunofluorescence, AAM2R specially reacted with human atrial myocytes. The negative sera and autoantibody absorbed by corresponding antigen failed to do so. There were similar results of AAMHC by immunoblotting and immunofluorescence. Furthermore, AAMHC could cross-reacted with human β1receptor.
     Conclusion:There were special autoantibodies of both AAM2R and AAMHC in the sera from hypertensive patients with atrial fibrillation. They could specially be bound with human atrial M2receptor and myosin heavy chain respectively. AAMHC could cross-reacted with human β1receptor.
     Part III The effects of anti-M2receptor and anti-cardiac mysosin heavy chain autoantibodies on repolarization currents and action potential of human atrial myocytes
     Objective:Autoantibodies both AAM2R and AAMHC were closely associated with atrial fibrillation in hypertensive patients, which were important risk factors and strong predictors of atrial fibrillation. the aim of the present study is to explore the influence of autoantibodies on the repolarization current and action potential of huaman atrial myocytes, through which the electrophysiological mechanism of arrhythmogenesis of autoantibodies could be elucidated.
     Methods:Right atrial appendages were obtained from cardiac surgical patients with sinus rhythm, which were enzymatically isolated for single atrial myocytes. The effects of autoantibodies on a variety of repolarization currents of human atrial myocytes were recorded by using whole-cell and perforated patch clamp techniques. The effects of autoantibodies on action potential of atrial myocytes were observed by current-clamp mode with perforated patch clamp technique.
     Results:In contrast with the autoantibody-negative sera, AAM2R produced muscarinic agonist-like actions, such as the open of Ikach channel, the reduction of ICa-L current, the shortening of action potential duration, which were abolished upon autoantibody absorption using corresponding antigenic peptide. However, AAM2R failed to change Itol and Ikur currents. The effects of AAMHC on the above currents and action potential of atrial myocyte were not observed.
     Conclusion:the alteration of electrophysiological properties of human atrial myocyte ion channels by AAM2R could occurred, which was contributed to atrial electrical remodeling, leading to the initiation and perpetuation of atrial fibrillation. However, AAMHC failed to do so and perhaps influence atrial fibrillation via other mechanism such as inflammation. Our study suggested autoimmune might took part in the initiation and development of atrial fibrillation.
引文
1. Nattel,S,Opie,LH. Controversies in atrial fibrillation. Lancet,2006,367:262-272.
    2. Lloyd-Jones,DM,Wang,TJ,Leip,et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart study. Circulation,2004,110:1042-1046.
    3. Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation,2006,114:e257-354.
    4.周自强,胡大一,陈捷,等.中国心房颤动现状的流行病学研究.中华内科杂志,2004,43(7):491-494.
    5. Wolf PA,Abbott RD,Kannel WB.Atrial fibrillation as an independent risk factor for stroke:the Framingham Study. Stroke,1991,22(8):983-988.
    6. Maurits Allessie,Jannie Ausma,Ulrich Schotten.Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovascular Research,2002,54:230-246.
    7. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J,1964,67:200-220.
    8. Wit AL,Boyden PA. Triggered activity and atrial fibrillation. Heart Rhythm,2007,4(3 Suppl):S17-S23.
    9. Gtiienver DE,Groot AC,Blom NM,et al.The role of neural crest and epicardium-derived cells in conduction system formation. Novartis Found Symp,2003,250:125-134.
    10. Tan AY,Li H,Wachsmann-hogiu S,et al.Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction:implications for catheter ablation of atrial-pulmonary vein junction. J Am Coll Cardiol,2006,48:132-143.
    11. Libert F,Ruel J,Ludgate M,et al.Thyroperoxidasc, an autoantigen with a mosaic structure made of nuclear and mitochondrial gene modules.EMBO J,1987,6:4193-4196.
    12. Coppel RL,McNeilage LJ,Surh CD,et al. Primary structure of the human M2 mitochondrial autoantigen in primary biliary cirrhosis:Dihydrolipoamide acetyltransferase. Proc Natl Acad Sci,1988,85:7317-7321.
    13. Karlsson FA, Burman P, Loof L,et al.Major parietal cell antigen in autoimmune gastritis with pernicious anemia is the acid-producing enzyme H+-K+-adenosine triphosphatase of the stomach. J Clin Invest,1988,81:475-479.
    14. Baekkskov S,Aanstoot HJ,Christgau S,et al.Identification of the 64k autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxilase. Nature,1990,347:151-156.
    15. Baba A, Yoshikawa T, Fukuda Y, et al. Autoantibodies against M2-muscarinic acetylcholine receptors:New upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J,2004,25(13):1108-1115.
    16. Limas CJ, Goldenberg IF, Limas C. Autoantibodies against β-adrenoceptors in human idiopathic dilated cardiomyopathy. Circ Res,1989,64:97-103.
    17. Magnusson Y, Marullo S, Hoyer S, et al. Mapping of a functional autoimmune epitope on the β1 adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest,1990,86:1658-1663.
    18. Schulteiss HP, Bolte HD.Immunological analysis of autoantibodies against the adenine nucleotide translocator in dilated cardiomyopathy.J Mol Cell Cardiol,1985,17:603-617.
    19. Neu N, Beisel KW, Traysman MD, et al. Autoantibodies specific for the cardiac myosin isoform are found in mice suspectible to Coxsackievirus B3-induced myocarditis. J Immunol,1987,138:2488-92.
    20. Caforio AL, Goldman JH, Haven AJ, et al. Evidence for autoimmunity to myosin and other heart-specific autoantigens in patients with dilated cardiomyopathy and their relatives. Int J Cardiol,1996,54(2):157-163.
    21. Klein R, Maisch B, Kochsiek K, Berg PA. Demonstration of organ-specific antibodies against heart mitochondria (anti-M7) in sera from patients with some forms of heart diseases. Clin Exp Immunol,1984,58:283-292.
    22. Caforio AL, Goldman JH, Haven AJ, et al. Evidence for autoimmunity to myosin and other heart-specific autoantigens in patients with dilated cardiomyopathy and their relatives. Int J Cardiol,1996,54(2):157-163.
    23. Maixent JM, Paganelli F, Scaglione J, Levy S. Antibodies against myosin in sera of patients with idiopathic paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol, 1998,9:612-617.
    24. Schwimmbeck PL, Bland NK, Schultheiss HP. The possible value of synthetic peptides in the diagnosis and therapy of myocarditis and dilated cardiomyopathy. Eur Heart J,1991,12:76-80.
    25. Ediecio Cunha,Marcia Duranti,Arthur Gruber,et al. Autoimmunity in Chagas disease cardiopathy:Biological relevance of a cardiac myosin-specific epitope crossreactive to an immunodominant Trypanosoma cruzi antigen. Proc Natl Acad Sci,1995,92:3541-3545.
    26. Neu N, Rose NR, Beisel KW, et al. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol,1987,138:3630-6.
    27. Maixent JM, Paganelli F, Scaglione J, Levy S. Antibodies against myosin in sera of patients with idiopathic paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol, 1998,9:612-617.
    28. Baba A, Yoshikawa T, Fukuda Y, et al:Autoantibodies against M2-muscarinic acetylcholine receptors:new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J,2004,25:1108-1115.
    29. Hong CM, Zheng QS, Liu XT, et al:Effects of autoantibodies against M2 muscarinic acetylcholine receptors on rabbit atria in vivo. Cardiology,2009,112:180-187.
    30. Xichun Yu, Eugene Patterson, Stavros Stavrakis, et al. Developmentof cardiomyopathy and atrial tachyarrhythmias associated with activating autoantibodies to beta-adrenergic and muscarinic receptors. Journal of the American Society of Hypertension,2009, 3(2):133-140.
    31. Stavros Stavrakis, Xichun Yu,Eugene Patterson,et al. Activating Autoantibodies to the Beta-1 Adrenergic and M2 Muscarinic Receptors Facilitate Atrial Fibrillation in Patients With Graves'Hyperthyroidism. J Am Coll Cardiol,2009,54:1309-1316.
    32. Scherlag BJ, Patterson E, Po SS. The neural basis of atrial fibrillation. J Electrocardiol, 2006,39:S180-S183.
    33. Po SS, Scherlag BJ, Yamanashi WS, et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm,2006,3:201-208.
    34. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm,2005,2:624-631.
    35. Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchange initiated by the Ca2+ transient:an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol,2006,47: 1196-1206.
    36. Xu Q, Schett G, Seitz CS, et al. Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ Res,1994,75:1078-1085.
    37. Kaushik Mandal, Marjan Jahangiri, Michael Mukhin, et al. Association of Anti-Heat Shock Protein 65 Antibodies With Development of Postoperative Atrial Fibrillation. Circulation,2004,110:2588-2590.
    38. Mehmet Oc, Halil Ibrahim Ucar, Asli Pinar,et al. Heat shock protein 60 antibody:a new marker for subsequent atrial fibrillation development. Saudi Med J,2007,28(6):844-847.
    39. Xu Q, Schett G, Seitz CS, et al. Surface staining and cytotoxic activity of heat-shock protein 60 antibody in stressed aortic endothelial cells. Circ Res,1994,75:1078-1085.
    40. Gupta S, Knowlton AA. Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation,2002,106:2727-2733.
    41. Perschinka H, Mayr M, Millonig G, et al. Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vase Biol, 2003,23:1060-1065.
    42. Schett G, Xu Q, Amberger A, et al. Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest,1995,96:2569-2577.
    43. Mehmet Oc, Halil Ibrahim Ucar, Asli Pinar,et al. Heat shock protein 70 antibody:a new marker for subsequent atrial fibrillation development? Artificial Organs,2008,32(11): 846-850.
    44. Bers DM, Despa S. Na/K-ATPase-an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc Med,2009,19:111-118.
    45. Akiyasu Baba, Tsutomu Yoshikawa, Masao Chino, et al:autoantibodies:new upstream targets of paroxysmal atrial fibrillation in patients with congestive heart failure. J Cardiol,2002,40(5):217-223.
    46. Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort:The Framingham Heart Study. JAMA,1994,271:840-844.
    47. Kannel WB, Abbott RD, Savage DD, et al. Coronary heart disease and atrial fibrillation: The Framingham Study. Am Heart J.1983,106:389-396.
    48. The AFFIRM investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl Med,2002,347:1825-1833.
    49. Verdecchia P, Reboldi G, Gattobigio R, et al. Atrial fibrillation in hypertension: predictors and outcome. Hypertension,2003,41:218-223.
    50. Fu ML, Herlitz H, Walluat G, et al. Functional autoimmunity epitope on alpha 1-adrenergic receptor iin patients with malignant hypertension. Lancet,1994,344:1660-1663.
    51. Fu ML, Herlitz H, Walluat G, et al. Non-desensitized positive chronotropic effect of anti-angiotensin 2 receptor autoantibodies in patients with malignant hypertension. Circulation,1996,94:4046-4049.
    I. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke:The Framingham Study. Stroke,1991,22:983-988.
    2.周自强,胡大一,陈捷,等.中国心房颤动现状的流行病学研究.中华内科杂志,2004,43(7):491-494.
    3. Stafford RS, Singer DE. National patterns of warfarin use in atrial fibrillation. Arch Intern Med,1996,156:2537-2541.
    4. Davies MD, Pomerance A. Pathology of atrial fibrillation in man. Br Heart J,1972,34: 520-525.
    5. Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort:The Framingham Heart Study.JAMA,1994,271:840-844.
    6. Magnusson Y, Marullo S, Hoyer S, et al. Mapping of a functional autoimmune epitope on the beta 1-adrenergic receptor in patients with idiopathic cardiomyopathy. J Clin Invest,1990,86:1658-1663.
    7. Fu LX, Magnusson, Bergh CH, et al. Localization of a functional autoimmune epitope on the muscarinic acetylcholine receptor-2 in patients with idiopathic dilated Cardi-omyopathy. J Clin Invest,1993,91:1964-1968.
    8. Alvare FL, Neu N, Rose NR, et al. Heart specific autoantibodies induced by coxsackievirus B3:identification of heart autoantigens. Clin Immunol Immunopathol, 1987,43:129-139.
    9. Neumann DA, Burck CL, Baughman KL, et al. Circulating heart-reactive antibodies in patients with myocarditis or cardiomyopathy. J Aim Coll Cardiol,1990,16:839-846.
    10. Klein R, Berg PA. Anti-mitochondrial antibodies (anti-M7) in heart disease recognize epitopes of bacterial and mammalian sarcosine dehydrogenase. Clin Exp Immunol, 1990,82:289-293.
    11. Benjamin EJ, Levy D, Vaziri SM, et al. Independent risk factors for atrial fibrillation in a population-based cohort:The Framingham Heart Study. JAMA,1994,271:840-844.
    12. Vaziri SM, Larson MG, Benjamin EJ, Levy D. Echocardiographic predictors of nonrheumatic arial fibrillation:The Framingham Heart Study. Circulation,1994,89: 724-730.
    13. Tsang TS, Barnes ME, Bailey KR, et al. Left atrial volume:important risk marker of incident atrial fibrillation in 1655 older men and wemon. Mayo Clin Proc,2001,76: 467-475.
    14. Caforio AL, Goldman JH, Haven AJ, et al. Evidence for autoimmunity to myosin and other heart-specific autoantigens in patients with dilated cardiomyopathy and their relatives. Int J Cardiol,1996,54(2):157-163.
    15. Maixent JM, Paganelli F, Scaglione J, Levy S. Antibodies against myosin in sera of patients with idiopathic paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol, 1998,9:612-617.
    16. Zhang L, Hu D, Li J et al. Autoantibodies against the myocardial betal-adrenergic and M2-muscarinic receptors in patients with congestive heart failure. Chin Med J,2002,115:1127-31.
    17. Baba A, Yoshikawa T, Fukuda Y, et al. Autoantibodies against M2-muscarinic acetylcholine receptors:new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J,2004,25:1108-1115.
    18. Stavros Stavrakis, Xichun Yu.Eugene Patterson,et al. Activating Autoantibodies to the Beta-1 Adrenergic and M2 Muscarinic Receptors Facilitate Atrial Fibrillation in Patients With Graves'Hyperthyroidism. J Am Coll Cardiol,2009,54:1309-1316.
    19. Scherlag BJ, Patterson E, Po SS. The neural basis of atrial fibrillation. J Electrocardiol, 2006,39:S180-S183.
    20. Luther HP, Homuth V, Wallukat G. Alpha 1-adrenergic receptor antibodies in patients with primary hypertension. Hypertension,1997,29(2):678-682.
    21. Fu ML, Herlitz H, Schulze W, et al. Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension. J Hypertens,2000,18(7):945-953.
    22. Zhang L, Zhang J, Tao WZ, et al. Study of autoantibodies against G-protein coupled β1 and M2 receptor in patients with hypertensive heart diseases. Chinese Journal of Hypertension,1998,6(1):5-8.
    23. Hui-Rong Liu, Rong-Rui Zhao, Xiang-Ying Jiao, et al. Relationship of Myocardial Remodeling to the Genesis of Serum Autoantibodies to Cardiac Betal-Adrenoceptors and Muscarinic Type 2 Acetylcholine Receptors in Rats. JACC,2002,39(11):1866-73.
    1. Caulfield MP, Birdsall NJM. International Union of Pharmacology. ⅩⅦ. Classification of muscarinic acetylcholine receptors. Pharmacol Rev,1998,50:279-290.
    2. Caulfield MP. Muscarinic receptors-characterization, coupling and function. Pharmacol Ther,1993,58:319-379.
    3. Deighton NM, Motomura S, Borquez D, et al. Muscarinic cholinoceptors in the human heart:demonstration, subclassification, and distribution. Naunyn Schmiedebergs Arch Pharmacol,1990,341(1-2):14-21.
    4. Liang-Xiong Fu, Yvonne Magnusson, Claes-Hakan Bergh, et al. Localization of a Functional Autoimmune Epitope on the Muscarinic Acetylcholine Receptor-2 in Patients with Idiopathic Dilated Cardiomyopathy. J. Clin. Invest,1993,91:1964-1968.
    5. Johan Hoebeke, Wolfgang Schulze, Gerd Wallukata, et al. Synthetic Peptide Corresponding to the Second Extracellular Loop of the Human M2 Acetylcholine Receptor Induces Pharmacological and Morphological Changes in Cardiomyocytes by Active Immunization after 6 Months in Rabbits. Clinical Immunology and immunopat-hology,1996,78:203-207.
    6. Baba A, Yoshikawa T, Fukuda Y, et al. Autoantibodies against M2-muscarinic acetylcholine receptors:new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J,2004,25:1108-1115.
    7. Stavros Stavrakis, Xichun Yu,Eugene Patterson,et al. Activating Autoantibodies to the Beta-1 Adrenergic and M2 Muscarinic Receptors Facilitate Atrial Fibrillation in Patients With Graves'Hyperthyroidism. J Am Coll Cardiol,2009,54:1309-1316.
    8. Jean-Christophe Peter, Jean Tugler, Pierre Eftekhari, et al. Effects on heart rate of an anti-M2 acetylcholine receptor immune response in mice. FASEB J,2005,19:943-949.
    9. HuiZhen Wang, Hong Han, LiMing Zhang, et al. Expression of Multiple Subtypes of Muscarinic Receptors and Cellular Distribution in the Human Heart. Mol Pharmacol, 2001,59:1029-1036.
    10. Y-H Yeh, XQi, A Shiroshita-Takeshita, et al. Atrial tachycardia induces remodelling of muscarinic receptors and their coupled potassium currents in canine left atrial and pulmonary vein cardiomyocytes.British Journal of Pharmacology,2007,152:1021-1032.
    11. Qin Pan, Yusong He, Zhimin Zhang, et al. Spatial heterogeneity of muscarinic type 2 receptors in the atrium. International Journal of Cardiology,2008,127:427-429.
    12. Schiaffino S, Gorza L, Saggin L, et al. Myosin changes in hypertrophied human atrial and ventricular myocardium:A correlated immunofluorescence and quantitative immunochemical study on serial cryosections. Ear Heart J,1984,75(Suppl F):95-102.
    13. Cummins P, Lambert SJ. Myosin transitions in the bovine and human heart:A developmental and anatomical study of heavy and light chain subunits in the atrium and ventricle. Circ Res,1986,58:846-858.
    14. Mercadier JJ, Bouveret P, Gorza L, et al. Myosin isotypes in normal and hypertrophied human ventricular myocardium. Circ Res,1983,53:52-62.
    15. Yamauchi-Takihara K, Sole MJ, Liew J,et al. Characterization of human cardiac myosin heavy chain genes. Proc Natl Acad Sci,1989,86:3504-3508.
    16. P. L. Schwimmbeck, N. K. Bland, H.P. Schultheiss, et al. The possible value of synthetic peptides in the diagnosis and therapy of myocarditis and dilated cardiomyopa-thy. European Heart Journal,1991,12 (Supplement D):76-80.
    17. Peter J. Reiser, Michael A. Portman, Xue-Han Ning, et al. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol,2001,280:H1814-H1820.
    18. Rahat S. Warraich, Elinor Griffiths, Andrew Falconar, et al. Human cardiac myosin autoantibodies impair myocyte contractility:a cause-and-effect relationship. FASEB J,2006,20:651-660.
    19. Ya Li, Janet S. Heuser, Luke C. Cunningham, et al. In Autoimmune Myocarditis Mimicry and Antibody-Mediated Cell Signaling. J Immunol,2006,177:8234-8240.
    20. Liu HR, Zhao RR, Zhi JM, et al. Screening of serum autoantibodies to cardiac beta 1-adrenoceptors and M2-muscarinic acetylcholine receptors in 408 healthy subjects of varying ages. Autoimmunity,1999,29:43-51.
    21.Braciale TJ, Braciale VL. Antigen presentation:structural themes and functional variations. Immunol Today,1991,12:124-129.
    1. Nattel S, Opie LH. Controversies in atrial fibrillation. Lancet,2006,367:262-272.
    2. Lloyd-Jones DM, Wang TJ, Leip, et al. Lifetime risk for development of atrial fibrilla-tion:the Framingham Heart study. Circulation,2004,110:1042-1046.
    3. Olgin JE, Sih HJ, Hanish S, et al. Heterogeneous atrial denervation creates substrate for sustained atrial fibrillation. Circulation,1998,98:2608-2614.
    4. Liu L, Nattel S. Differing sympathetic and vagal effects on atrial fibrillation in dogs: role of refractoriness heterogeneity. Am J Physiol,1997,273:H805-H816.
    5. Hirose M, Carlson MD, Laurita KR. Cellular mechanisms of vagally mediated atrial tachyarrhythmia in isolated arterially perfused canine right atria. J Cardiovasc Electro-physiol,2002,13:918-926.
    6. Qin Pan, Yusong He, Zhimin Zhang,et al. Spatial heterogeneity of muscarinic type 2 receptors in the atrium. International Journal of Cardiology,2008,127:427-429.
    7. Tan AY, Li HM, Wachsmann-Hogiu S, et al. Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction. J Am Coll Cardiol,2006,48:132-43.
    8. Nattel S.New ideas about atrial fibrillation 50 years on. Nature,2002,415:219-226.
    9. Cong-Xin Huang, Qing-Yan Zhao, Jin-Jun Liang, et al. Differential Densities of Muscarinic Acetylcholine Receptor and IK,ACh in Canine Supraventricular Tissues and the Effect of Amiodarone on Cholinergic Atrial Fibrillation and IK,Ach Cardiology, 2006,106:36-43.
    10. Ya Li, Janet S. Heuser, Luke C, et al. in Autoimmune Myocarditis Mimicry and Antibody-Mediated Cell Signaling. J Immunol,2006,177:8234-8240.
    11. Hernandez CC, Nascimento JH, Chaves EA, et al. Autoantibodies enhance agonist action and binding to cardiac muscarinic receptors in chronic Chagas' diseasc. J Recept Signal Transduct Res,2008,28:375-401.
    12. Wijffels MC, Kirchhof CJ,Dorland R,et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation,1995,92:1954.
    13. Schram G, Pourrier M, Melnyk P, et al. Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res,2002, 90:939.
    14. Yamada M, Inanobe A, Kurachi YG. Protein regulation of potassium ion channels. Pharmacol Rev,1998,50:723.
    15. Dora E, Benavides-Haro, Ricardo A, et al. The cholinomimetic agent bethanechol activates IK(ACh) in feline atrial myocytes. Naunyn-Schmiedeberg's Arch Pharmacol, 2003,368:309-315.
    16. Coumel P. Neural aspects of paroxysmal atrial fibrillation. In:Falk RH. Podrid PJ. 2eds. Atrial fibrillation:mechanisms and management. New York:RavenPress,1992, 109.
    17. Kneller J, Zou R, Vigmond EJ, et al. Cholinergic atrial fibrillation in a computer model of a two dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res,2002,90 (9):73
    18. Pramesh Kovoor, Kevin Wickman, Colin T. Maguire, et al. Evaluation of the Role of IKACh in Atrial Fibrillation Using a Mouse Knockout Model. J Am Coll Cardiol,2001, 37:2136-2143.
    19. Rosenbaum MB, Chiale PA, Schejtman D, et al. Antibodies to beta-adrenergic receptors disclosing agonist-like properties in idiopathic dilated cardiomyopathy and Chagas'heart disease. J Cardiovasc Electrophysiol,1994,5:367-375.
    20. Hoebeke J. Autoimmunity against cardiovascular receptors:structural and functional implications. Rev Argent Cardiol,1995,63:221-230.
    21. Zhang L, Liu H, Zhao R, et al. A preliminary study of autoantibodies against the myocardial betal and M2 receptors with dilated cardiomyopathy. Chin J Cardiol, 1998,26:15-17.
    22.张麟,张健,陶贞寅,等.高血压性心脏病抗G-蛋白偶联β1-肾上腺素能受体与M2-胆碱能受体自身抗体的初步.中国高血压杂志,1998,6(1):5-8.
    23. Xichun Yu, Eugene Patterson,Stavros Stavrakis,et al. Development of cardiomyopathy and atrial tachyarrhythmias associated with activating autoantibodies to beta-adrenergic and muscarinic receptors. Journal of the American Society of Hypert-ension,2009,3(2):133-140.
    24. Andre Talvani, Manoel O.C. Rocha, Antonio L. Ribeiro, et al. Levels of anti-M2 and anti-bl autoantibodies do not correlate with the degree of heart dysfunction in Chagas'heart disease. Microbes and Infection,2006,8:2459-2464.
    25. S.F. Oliveira, R.C. Pedrosa, J.H. Nascimento, et al. Sera from chronic chagasic patients with complex cardiac arrhythmias depress electrogenesis and conduction in isolated rabbit hearts. Circulation,1997,96:2031-2037.
    26. Baba A, Yoshikawa T, Fukuda Y, et al. Autoantibodies against M2-muscarinic acetylcholine receptors:new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J,2004,25:1108-1115.
    27. Hong CM, Zheng QS, Liu XT, et al. Effects of autoantibodies against M2 muscarinic acetylcholine receptors on rabbit atria in vivo. Cardiology,2009,112:180-187.
    28. Scherlag BJ, Patterson E, Po SS. The neural basis of atrial fibrillation. J Electrocardiol, 2006,39:S180-83.
    29. Bonner TI, Buckley NJ, Young AC, Brann MR. Identification of a family of muscari-nic acetylcholine receptor genes. Science,1987,237:527-532.
    30. D. Dobrev, A. Friedrich, N. Voigt, et al. The G Protein-Gated Potassium Current Ik,ACh Is Constitutively Active in Patients With Chronic Atrial Fibrillation. Circulation, 2005,112:3697-3706.
    31. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals,and sudden cardiaec death. Circulation.2007,30(115): 442-449.
    32. Yue L, Feng J, Gaspo R,et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res,1997,81:512-525.
    33. Gaspo R, Sun H, Fareh S, et al. Dihydropyridine and b-adrenergic receptor binding in dogs with tachycardia-induced atrial fibrillation. Cardiovasc Res,1999,42:434-442.
    34. Le Grand B, Hatem S, Deroubaix E, et al. Depressed transient outward and calcium currents in dilated human atria. Cardiovasc Res,1994,28:548-556.
    35. Lai LP, Su MJ, Lin JL, et al. Down-regulation of L-type calcium channel and sarcoplasmicreticulum Ca21-ATPase mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban:an insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol,1999,33:1231-1237.
    36. Brundel BJ, Van Gelder IC, et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res,1999,42:443-454.
    37. David R. Van Wagoner, Amber L. Pond, Michelle Lamorgese, et al. Atrial L-Type Ca2+ Currents and Human Atrial Fibrillation. Circ Res,1999,85:428-436.
    38. Marius Skasa, Eberhardt Jungling, Eckard Picht, et al. L-type calcium currents in atrial myocytes from patients with persistent and non-persistent atrial fibrillation. Basic Res Cardiol,2001,96:151-159.
    39.缪国斌,刘瑾春,王树岩,等.心力衰竭患者M2乙酰胆碱受体的自身抗体对豚鼠心肌细胞L型钙通道的影响.中华心血管病杂志,2006,34(6):537-540.
    40. Koumi S, Sato R, Nagasawa K, Hayakawa H. Activation of inwardly rectifying potassium channels by muscarinic receptor-linked G protein in isolated human ventricular myocytes. J Membr Biol,1997,157:71-81.
    41. Dobrzynski H, Janvier NC, Leach R, et al. Effects of ACh and adenosine mediated by Kir3.1 and Kir34 on ferret ventricular cells. Am J Physiol Heart Circ Physiol,2002, 283:H615-H630,.
    42. Cristiane del Corsso, Anto nio Carlos Campos de Carvalho, Helena Furtado Martino, Wamberto Antonio Varandal. Sera from patients with idiopathic dilated cardiomyop-athy decrease Ica in cardiomyocytes isolated from rabbits. Am J Physiol Heart Circ Physiol,2004,287:Hl 928-H1936.
    43. Gaspo R, Bosch RF, Talajic M, Nattel S. Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model. Circulation, 1997,96:4027-4035.
    44. Van Wagoner DR, Pond AL, McCarthy PM, et al. Outward K+current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res,1997,80: 772-781.
    45. Wijffels M C, Kirchof C J, Dorland R D, Allessie M A. Atrial fibrillation begets atrial fibrillation:a study inawake chronically instrumented goats. Circulation,1995,92: 1954-1968.
    46. Boutjdir M, Le Heuzey JY, Lavergne T, et al. Inhomogeneity of cellular refractoriness in human atrium:factor of arrhythmia? Pacing Clin Electrophysiol,1986,9:1095-1110.
    47. D.Dobrev, E.Graf, E.Wettwer, et al. Molecular Basis of Downregulation of G-Protein-Coupled Inward Rectifying K+ Current (IK,ACh) in Chronic Human Atrial Fibrillation. Circulation,2001,104:2551-2557.
    48. Nattel S. New ideas about atrial fibrillation 50 years on. Nature,2002,415:219-226.
    49. Caforio AL, Goldman JH, Haven AJ, et al. Evidence for autoimmunity to myosin and other heart-specific autoantigens in patients with dilated cardiomyopathy and their relatives. Int J Cardiol,1996,54(2):157-163.
    50. Liu Kun, Shao Liang, Wang Li, et al. Induction of Cardiomyocyte Apoptosis by Anti-Cardiac Myosin Heavy Chain Antibodies in Patients with Acute Myocardial Infarction. J Huazhong Univ Sci Technol,2010,30(5):582-588.
    51. Rahat S.Warraich, Elinor Griffiths, Andrew Falconar, et al. Human cardiac myosin autoantibodies impair myocyte contractility:a cause-and-effect relationship. FASEB J. 2006,20:651-660.
    52. Tibbetts RS,McCormick TS,Rowland EC,et al. Cardiac antigen-specific autoantibody production is associated with cardiomyopathy in Trypanosoma cruzi-infected mice. J Immunol,1994,152(3):1493-9.
    53. Yan Wang, Marina Afanasyeve,Susan L,et al.Characterization of Murine Autoimmune Myocarditis Induced by Self and Foreign Cardiac Myosin. Autoimmunity,1999,31: 151-162.
    54. Wang Zhaohui, Liao Yuhua, Dong Jihua, et al. Clinical significance and pathogenic role of anti-cardiac myosin autoantibody in dilated cardiomyopathy. Chinese medical journal,2003,116(4):499-502.
    1. Davidson A, Diamond B. Autoimmune diseases. N Engl J Med,2001,345:340-350.
    2. Amital H, Shoenfeld Y. Natural autoantibodies, heralding, protecting and inducing autoimmunity. In:Shoenfeld Y, Meroni P-L, Gershwin ME, eds. Autoantibodies.2nd. Amsterdam:Elsevier Science,2007:7-12.
    3. Toubi E, Shoenfeld Y. Protective autoimmunity in cancer [Review]. Oncol Rep,2007, 17:245-251.
    4. Paul WE. Fundamental Immunology.6thed.Philadelphia:Wolters Kluwer/Lippincott Williams & Wilkins; 2008.
    5. Nussinovitch U, Shoenfeld Y. Autoimmunity and heart diseases:pathogenesis and diagnostic criteria. Arch Immunol Ther Exp (Warsz),2009,57:95-104.
    6. Nussinovitch U, Shoenfeld Y. Anti-troponin autoantibodies and the cardiovascular system. Heart,2010,96:1518-1524.
    7. Sitia S, Atzeni F, Sarzi-Puttini P, et al. Cardiovascular involvement in systemic autoimmune diseases. Autoimmun Rev,2009,8:281-286.
    8. Lazzerini PE, Capecchi PL, Guideri F, et al. Connective tissue diseases and cardiac rhythm disorders:an overview. Autoimmun Rev,2006,5:306-313.
    9. Lazzerini PE, Capecchi PL, Guideri F, et al. Autoantibody-mediated cardiac arrhythmias:mechanisms and clinical implications. Basic Res Cardiol,2008,103:1-11.
    10. Costedoat-Chalumeau N, Amoura Z, Villain E, Cohen L, Piette JC. AntiSSA/Ro antibodies and the heart:more than complete congenital heart block? A review of electrocardiographic and myocardial abnormalities and of treatment options. Arthritis Res Ther,2005,7:69-73.
    11. Eisen A, Arnson Y, Dovrish Z, Hadary R, Amital H. Arrhythmias and conduction defects in rheumatological diseases-a comprehensive review. Semin Arthritis Rheum, 2008,39:145-156.
    12. Hu K, Qu Y, Yue Y, Boutjdir M. Functional basis of sinus bradycardia in congenital heart block. Circ Res,2004,94:e32-e38.
    13. Karnabi E, Boutjdir M. Role of calcium channels in congenital heart block.Scand J Immunol,2010,72:226-234.
    14. Hernandez CC, Nascimento JH, Chaves EA, et al. Autoantibodies enhance agonist action and binding to cardiac muscarinic receptors in chronic Chagas'disease. J Recept Signal Transduct Res,2008,28:375-401.
    15. Schulze W, Kunze R, Wallukat G. Pathophysiological role of autoantibodies against G-protein-coupled receptors in the cardiovascular system. Exp Clin Cardiol,2005,10: 170-172.
    16. Yoshikawa T, Baba A, Nagatomo Y. Autoimmune mechanisms underlying dilated cardiomyopathy. Circ J,2009,73:602-607.
    17. Del Corsso C, de Carvalho AC, Martino HF, Varanda WA. Sera from patients with idiopathic dilated cardiomyopathy decrease ICa in cardiomyocytes isolated from rabbits. Am J Physiol Heart Circ Physiol,2004,287:H1928-H1936.
    18. Escobar AL, Fernandez-Gomez R, Peter JC, et al.IgGs and Mabs against the beta2-adrenoreceptor block A-V conduction in mouse hearts:a possible role in the pathogenesis of ventricular arrhythmias. J Mol Cell Cardiol,2006,40:829-837.
    19. Lazzerini PE, Capecchi PL, Laghi-Pasini F. Anti-Ro/SSA antibodies and cardiac arrhythmias in the adult:facts and hypotheses. Scand J Immunol,2010,72:213-222.
    20. Brady PA, Low PA, Shen WK. Inappropriate sinus tachycardia, postural orthostatic tachycardia syndrome, and overlapping syndromes. Pacing Clin Electrophysiol,2005, 28:1112-1121.
    21. Chiale PA, Garro HA, Schmidberg J, et al. Inappropriate sinus tachycardia may be related to an immunologic disorder involving cardiac beta andrenergic receptors. Heart Rhythm,2006,3:1182-1186.
    22. Jahns R, Boivin V, Lohse MJ. Beta (1)-adrenergic receptor function, autoimmunity, and pathogenesis of dilated cardiomyopathy. Trends Cardiovasc Med,2006,16:20-24.
    23. Kourliouros A, Savelieva I, Kiotsekoglou A, Jahangiri M, Camm J. Current concepts in the pathogenesis of atrial fibrillation. Am Heart J.2009,157:243-252.
    24. Fu M. Autoantibodies in atrial fibrillation:actors, biomarkers or bystanders? How far have we come? Cardiology,2009,112:178-179.
    25. Baba A, Fu M. Autoantibodies in atrial fibrillation:actor, biomaker or bystander? Autoimmunity,2008,41:470-472.
    26. Baba A, Yoshikawa T, Chino M, et al. Autoantibodies:new upstream targets of paroxysmal atrial fibrillation in patients with congestive heart failure. J Cardiol,2002, 40:217-223.
    27. Bers DM, Despa S. Na/K-ATPase an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc Med,2009,19:111-118.
    28. Chen PS, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm, 2007,4:S61-S64.
    29. Baba A, Yoshikawa T, Fukuda Y, et al. Autoantibodies against M2-muscarinic acetylcholine receptors:new upstream targets in atrial fibrillation in patients with dilated cardiomyopathy. Eur Heart J,2004,25:1108-1115.
    30. Stavrakis S, Yu X, Patterson E, et al. Activating autoantibodies to the beta-1 adrenergic and M2 muscarinic receptors facilitate atrial fibrillation in patients with Graves'hyperthyroidism. J Am Coll Cardiol,2009,54:1309-1316.
    31. Lazzerini PE, Capecchi PL, Guideri F, et al. Comparison of frequency of complex ventricular arrhythmias in patients with positive versus negative anti-Ro/SSA and connective tissue disease. Am J Cardiol,2007,100:1029-1034.
    32. Nakamura K, Katayama Y, Kusano KF, et al. Anti-KCNH2 antibody-induced long QT syndrome:novel acquired form of long QT syndrome. J Am Coll Cardiol,2007,50: 1808-1809.
    33. Labovsky V, Smulski CR, Gomez K, et al. Anti-betal-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease. Clin Exp Immunol,2007, 148:440-449.
    34. Tutor AS, Penela P, Mayor F Jr. Anti-betal-adrenergic receptor autoantibodies are potent stimulators of the ERK1/2 pathway in cardiac cells. Cardiovasc Res,2007,76: 51-60.
    35. Baba A, Yoshikawa T, Ogawa S. Autoantibodies produced against sarcolemmal Na-K-ATPase:possible upstream targets of arrhythmias and sudden death in patients with dilated cardiomyopathy. J Am Coll Cardiol,2002,40:1153-1159.
    36. Stork S, Boivin V, Horf R, et al. Stimulating autoantibodies directed against the cardiac betal-adrenergic receptor predict increased mortality in idiopathic cardiomyo-pathy. Am Heart J,2006,152:697-704.
    37. Medei E, Pedrosa RC, Benchimol Barbosa PR, et al. Human antibodies with muscari-nic activity modulate ventricular repolarization:basis for electrical disturbance. Int J Cardiol,2007,115:373-380.
    38. Miao GB, Liu JC, Liu MB, et al. Autoantibody against betal-adrenergic receptor and left ventricular remodeling changes in response to metoprolol treatment. Eur J Clin Invest,2006,36:614-620.
    39. Nagatomo Y, Yoshikawa T, Kohno T, et al. A pilot study on the role of autoantibody targeting the betal-adrenergic receptor in the response to beta-blocker therapy for congestive heart failure. J Card Fail,2009,15:224-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700