固态胺吸附剂的制备及二氧化碳捕集行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固态胺吸附剂由于具有高吸附性能和选择性的特点,在二氧化碳捕集领域得到了广泛的关注。尽管固态胺吸附剂载体的开发已获得较大的进展,但是,关于固态胺吸附剂捕集二氧化碳的系统性研究,包括二氧化碳在孔道内扩散的优化以及吸附性能的进一步提升,多孔材料的孔结构对吸附性能的影响,固态胺吸附剂室温下对低浓度二氧化碳的捕集以及固态胺吸附剂形貌设计的研究仍较为有限。本工作以担载修饰多孔材料在二氧化碳捕集方面的应用为背景,建立固态胺吸附剂脱除C02的系统性研究,开发研制具有高吸附容量、高选择性、高吸脱附速率的二氧化碳捕集用新型固态胺吸附材料。主要结论如下:
     1.固态胺吸附剂捕集二氧化碳的工艺条件最优化研究。以中孔炭为载体,通过液相担载法制备固态胺吸附剂,考察了胺的种类、担载量、C02浓度、空速、湿度等工艺条件对C02捕集行为的影响。结果发现,基于小分子有机胺如MEA, DEA, DETA的固态胺吸附剂热稳定性较差,而基于大分子PEI和(?)TEPA的固态胺吸附剂具有较高的热稳定性和二氧化碳吸附量;加入环氧氯丙烷(EHC)助剂能够进一步提高TEPA的稳定性及循环性能;PEI固态胺吸附剂中最佳胺担载量为65wt.%,此吸附剂对15%的CO2/N2混合气的C02吸附量高达4.82mmol/g,胺利用率可达63%;水的存在对固态胺吸附剂的吸附性能起到促进作用,良好的耐水性可以减低二氧化碳捕集过程对湿度控制的要求。
     2.基于热力学吸附-动力学扩散平衡控制提升固态胺吸附剂性能。在不改变中孔载体和PEI的前提条件下,通过聚合物表面活性剂和PEI分子的共担载,实现固态胺吸附剂捕集C02性能的大幅提升。表面活性剂的引入将单一有机胺膜分散为相互贯穿的二元聚合物网络,阻止C02与PEI反应后在表面的致密化,从而有利于C02扩散到有机胺膜深部并创造更多的扩散通道,提高胺的利用率和吸附容量,达到更快的吸附-脱附平衡。同时,表面活性剂的引入,有效的缓解了PEI反应前后的体积变化,提高了PEI的稳定性,进一步提升了固态胺的热再生性能。该扩散平衡控制理念适用于各种载体和有机胺体系,具有极高的普适性。在所选中孔载体体系中,筛选出最优的表面活性齐(?)Span80,最优的添加量为7wt.%,此时二氧化碳吸附量可以达至(?)J4.96mmol/g,与未添加表面活性剂相比,其吸附性能提高了26%。
     3.固态胺吸附剂的低温捕集二氧化碳行为研究。制备出系列中孔炭基材料,以其为载体,制备出高效的中孔炭基固态胺吸附剂,并突出其低温捕集C02行为。中孔炭发达的3D孔结构有利于PEI在孔道内的均匀分散,确保了固态胺具有相当大的气体/PEI接触界面;连通的开孔结构加速了C02的内扩散过程,充分提高了胺的利用效率;此外,表面活性剂的引入进一步提升了固态胺的热力学吸附-动力学扩散行为。因而,所制的炭基固态胺材料具有高效的C02吸附性能,能够极大的克服C02在孔内以及PEI内扩散阻力,实现了低温高效捕集C02。在30℃时,其C02吸附容量为4.67mmol/g,在0℃时,其C02吸附容量可达至(?)2.80mmol/g,并同样具有较快的二氧化碳吸附动力学行为和稳定的循环性能。
     4.固态胺吸附剂对低浓度二氧化碳的捕集行为研究。以表面活性剂促进的中孔炭基固态胺为吸附剂,使用固定床吸附系统室温直接捕集低浓度二氧化碳。在二氧化碳浓度为0.5%,25℃时,所制固态胺吸附剂的吸附量为3.3mmol/g,胺利用率为50.8%,与已报道的同类材料相比,具有最高的吸附性能;所制固态胺吸附剂在25℃时具有典型的Langmuir-Freundlich吸附等温线,其C02的吸附穿透曲线符合失活模型;低温下水对二氧化碳捕集过程存在促进作用,在湿度为20%时,其C02吸附量可达4.04mmol/g;在室温下,该吸附剂具有稳定的二氧化碳吸附性能,在10次循环内,吸附性能未发生衰减。
     5.中孔炭基固态胺吸附剂的形态控制及其动态捕集性能。采用溶胶-反相乳液聚合-凝胶结合的方法制备出高强度、高孔容球状中孔炭,并对其孔径、粒径控制进行了研究。以球状中孔炭为载体,制备出高性能碳基固态胺吸附剂,考察了其对C02的动态捕集能力。结果发现该球状中孔炭固态胺吸附剂对低浓度CO2具有较高的吸附性能(2.7mmol/g,25℃),颗粒直径对吸附剂的吸附性能无明显的影响,反映出中孔对扩散的促进作用。对不同颗粒直径吸附剂的动态实验数据进行非线性回归分析,表明失活模型对不同颗粒直径样品的拟合都是有效的。
Solid amine sorbents have attracted considerable attention due to their high efficiency and selectivity for CO2capture from gas mixtures. Although great progress has been achieved in advancing the support, the systematic study of the CO2adsorption on the solid amine sorbents including facilitating the CO2kinetic diffusion to improve the CO2capture capacity, the relation of porous structure and application performance, capturing of low-concentration CO2on solid amine sorbents at ambient temperature and optimizing morphology of the support is still limited. Moreover, the current solid amine sorbents only have a small capture capacity and low utilization ratio of the amine compound. This thesis mainly focused on the impregnation of amine on the mesoporous supports to obtain the solid amine sorbents for CO2adsorption. The CO2adsorption capacity over the solid amine sorbents with control structures were detailed studied and the CO2capture materials with a large adsorption capacity, high selectivity and sorption/desorption rates were developed. The main results of this thesis are summarized as follows:
     (1) Process conditions of CO2capture using polyethylenimine-loaded mesoporous carbons:Mesoporous carbon was synthesized via a combined sol-gel process and hard templating and a supercritical drying process. Solid amine sorbents was obtained by impregnated with different amines. Mesoporous carbons impregnated with low molecule amines (MEA, DEA and DETA) had low CO2adsorption capacities owing to the decomposition at high temperature while mesoporous carbons impregnated with PEI and TEPA showed an excellent CO2adsorption performance at75℃. The addition of ECH could improve the performance of MC-TEPA in the cyclic process. The optimal PEI loading was fixed to be65wt.%with a CO2adsorption capacity of4.82mmol/g in15%CO2/N2at75℃, owing to low mass-transfer resistance and high utilization ratio of the amine compound (63%). Moreover, the sorbents have very good water tolerance, which is significant in eliminating the need for strict humidity control prior to CO2capture.
     (2) Improvement of CO2adsorption capacity based on the balance of kinetic diffusion and thermodynamic adsorption. A new strategy to improve the CO2capture performance of solid amine sorbents was developed. The CO2-neutral surfactant was introduced into polyethylenimine (PEI) to create extra CO2transfer pathways, facilitating CO2diffusion into the deeper PEI films. The addition of surfactants could break the bulk PEI film or its CO2 adsorption product from a compact entity into a dual interpenetrated composite, allowing the diffusion of more CO2into the deeper PEI films. Consequently, the surfactant-promoted sorbents offered increased amount of reactive sites and high utilization efficiency of amine groups for CO2capture, leading to an enhanced CO2capture capacity, especially for the sorbents working at low temperature. This method of introducing CO2natural surfactant into solid amine sorbents to improve adsorption performance is universal for different supports and different amines. For the hierarchical porous silica support, Span80was screened to be an optimal candidate and a maximum adsorption capacity of4.96mmol/g was achieved at7wt.%of Span80, which was26%greater than the surfactant-free sorbent. The surfactant-promoted sorbents also exhibited much better adsorption kinetics and regeneration performance.
     (3) Solid amine sorbents for low temperature CO2capture. A novel high efficiency solid amine sorbents were developed for regenerative removing CO2at low temperature. The adequate pore volume, proper pore size and interconnected3D framework of as-prepared MC allow the easy dispersion and immobilization of PEI within their channels. The structure generates considerable gas/amine interfacial area and provides access to fast CO2diffusion for reactivity with the amine groups. In addition, the kinetic inhibition to CO2diffusion within the PEI films could be alleviated by the introduction of polymer surfactant, offering increased amount of reactive sites and higher utilization efficiency of amine groups. The highest adsorption capacities of4.67mmol/g at30℃and2.80mmol/g at0℃are attained. They also show fast kinetic, a good selectivity for CO2/N2separation, and very reversible and durable CO2capturing performance at low temperature.
     (4) Adsorption of low-concentration CO2on mesoporous carbon-based solid amine sorbents. Surfactant promoted mesoporous carbon-based solid amine sorbents were employed for low-concentration CO2capture at ambient temperature. The adsorption behavior toward CO2(0.5vol.%) was investigated in a fixed-bed column. After the addition of span80, the adsorption capacity reached3.3mmol/g and the amine utilization ratio of50.8%at25℃. In comparison to many other types of modified carbon or silica sorbents in the literature, the solid amine sorbent had a higher adsorption capacity at the same temperature. The CO2single component adsorption isotherm at25℃was obtained and fitted well by the Langmuir-Freundlich isotherm models. The deactivation model, capable of describing the uptake of CO2, was applied under various conditions. In all cases, the experimental data agreed with the predicted breakthrough model. The adsorption capacity was also improved by moisture and reached as high as4.04mmol/g (20%RH). The adsorption capacity for CO2remained almost the same after10cyclic regeneration experiments.
     (5) Solid amine sorbents with controlled morphology for dynamic CO2adsorption. Mesoporous carbon spheres (MCSs) with controlled particle size and pore structure were synthesized via a combined hard templating and sol-gel processing within water-in-oil emulsions, using resorcinol-formaldehyde polymer as carbon precursor and colloidal silica nanoparticles as hard templates. The sphere size of MCSs can be controlled in the range from10to500μm by changing the emulsification conditions. The pore structure of MCSs can be tuned by adjusting the mass ratio of resorcinol-formaldehyde polymer to silica nanoparticles and the diameter of silica nanoparticles. The mesoporous carbon spheres were employed as support for solid amine sorbents and showed a CO2adsorption capacity of2.7mmol/g at25℃, The experimental data of sorbents with different particle sizes were fitted well by the deactivation model models.
引文
[1]Holloway S., Pearce J. M., Hards V. L., et al. Natural emissions of CO2 from the geosphere and their bearing on the geological storage of carbon dioxide [J]. Energy. 2007(7),32,1194-1201.
    [2]IPCC, Special report on carbon capture and storage. In:Metz, B., et al. (Ed.), Working group Ⅲ of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK, New York,2005.
    [3]IPCC, Summary for Policymakers. In:Solomon, S.e.a. (Ed.), Climate Change 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK, New York,2007.
    [4]Bilanovic D., Andargatchew A., Kroeger T., et al. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations-Response surface methodology analysis [J]. Energy Conversion & Management.2008,50(2):262-267'.
    [5]Skjanes K., Lindblad P., Muller J. Bio CO2-A multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products [J]. Biomolecular Engineering.2007,24(4):405-413.
    [6]Stewart C., Hessami M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach [J]. Energy Conversion and Management.2004,46(3):403-420.
    [7]Steeneveldt R., Berger B., Torp T. A. CO2 capture and storage:closing the knowing-doing gap [J]. Chemical Engineering Research & Design.2006,84(A9): 739-763.
    [8]Figueroa J. D., Fout T., Plasynski S., et al. Advances in CO2 capture technology. The U.S. Department of Energy's Carbon Sequestration Program [J]. International Journal of Greenhouse Gas Control.2008,2(1):9-20.
    [9]Kanniche, M., Bouallou, C. CO2 capture study in advanced integrated gasification combined cycle. Applied Thermal Engineering.2007,27(16):2693-2702.
    [10]Thiruvenkatachari R., Su S., An H., et al. Post combustion CO2 capture by carbon fibre monolithic adsorbents [J]. Progress in Energy and Combustion Science.2009,35(5): 438-455.
    [11]Mccoy S. T., Rubin E. S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage [J]. International Journal of Greenhouse Gas Control.2008,2(2):219-229.
    [12]Svensson R., Odenberger M., Johnsson F., et al. Transportation systems for CO2-application to carbon capture and storage [J]. Energy Conversion & Management. 2004,45(15-16):2343-2353.
    [13]Zhang Z. X., Wang G. X., Massarotto P., et al. Optimization of pipeline transport for CO2 sequestration [J]. Energy Conversion & Management.2006,47(6):702-715.
    [14]Bode S., Jung, M. Carbon dioxide capture and storage-liability for non-permanence under the UNFCCC [J]. International Environmental Agreement Politics Law Economics 2006,6(2),173-186.
    [15]Solomon S., Carpenter M., Flach T. A. Intermediate storage of carbon dioxide in geological formations:a technical perspective [J]. International Journal of Greenhouse Gas Control.2008,2(4):502-510。
    [16]Bachu S. CO2 storage in geological media:Role, means, status and barriers to deployment [J]. Progress in Energy and Combustion Science.2008,34(2):254-273.
    [17]VanderZwaan, B., Gerlagh, R. Economics of geological CO2 storage and leakage [J]. Climatic Change.2009,93(3-4),285-309.
    [18]Damen K., Van T. M., Faaij A., et al. A comparison of electricity and hydrogen production systems with CO2 capture and storage-Part B:Chain analysis of promising CCS options [J]. Progress in Energy and Combustion Science.2007,33(6):580-609.
    [19]Kaggerud K. H., Bolland O., Gundersen T. Chemical and process integration:synergies in co-production of power and chemicals from natural gas with CO2 capture [J]. Applied Thermal Engineering.2006,26(13):1345-135
    [20]Gibbins J., Chalmers H. Carbon capture and storage [J]. Energ Policy,2008,36(16): 4317-4322.
    [21]Zanganeh K.E., Shafeen A., Salvador C. CO2 capture and development to fan advanced pilot-scale cryogenic separation and compression unit [J]. Energy Procedia.2009,1(1): 247-252.
    [22]Olajire A. A. CO2 capture and separation technologies for end-of-pipe applications-A review [J]. Energy.2010,35(6):2610-2628.
    [23]Blomen E., Hendriks C., Neele F. Capture technologies:improvements and promising developments [J]. Energy Procedia.2009,1(1):1505-1512.
    [24]Mendes D., Mendes A., Madeira L. M., et al. The water-gas shift reaction:from conventional catalytic systems to Pd-based membrane reactors-a review [J]. Asia-Pacific Journal of Chemical Engineering.2010,5(1):111-137.
    [25]Pfaff I., Kather A. Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation [J]. Energy Procedia.2009,1(1):495-502.
    [26]Kather A., Scheffknecht G. The oxycoal process with cryogenic oxygen supply [J]. Naturwissenschaften.2009,96(9):993-1010.
    [27]Bolland O., Undrum H. A novel methodology for comparing CO2 capture options for natural gas-fired combined cycle plants [J]. Advances in Environmental Research 2003, 7(4):901-911.
    [28]Burdyny T., Struchtrup H. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process [J]. Energy.2010,35(5):1884-1897.
    [29]Zhu Y., Legg S., Laird C.D. Optimal design of cryogenic air separation columns under uncertainty [J]. Computers & Chemical Engineering.2010,34(9),1377-1384.
    [30]Majchrowicz M. E., Brilman D. W. F., Groeneveld M. J. Precipitation regime for selected amino acid salts for CO2 capture from flue gases [J]. Energy Procedia.2009, 1(1):979-984.
    [31]Rochelle G. T. Amine Scrubbing for CO2 Capture [J]. Science.2009,325(5948): 1652-1654.
    [32]Knudsen J. N., Jensen J. N., Vilhelmsen P., et al. Experience with CO2 capture from coal flue gas in pilot-scale:testing of different amine solvents [J]. Energy Procedia. 2009,1(1):783-790.
    [33]Thitakamol B., Veawab A., Aroonwilas A. Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant [J]. International Journal of Greenhouse Gas Control.2007,1(3):318-342.
    [34]Dey A., Aroonwilas A. CO2 absorption into MEA-AMP blend:mass transfer and absorber height index [J]. Energy Procedia,2009.1(1):211-215.
    [35]Lee S., Maken S., Park J., et al. A study on the carbon dioxide recovery from 2 ton-CO2/day pilot plant at LNG based power plant [J]. Fuel.2008,87(8-9):1734-1739.
    [36]Freeman S. A., Dugas R., Van W. D. H., et al. Carbon dioxide capture with concentrated, aqueous piperazine [J]. International Journal of Greenhouse Gas Control. 2010,4(2):119-124.
    [37]Lepaumier H., Martin S., Picq D., et al. New amines for CO2 capture. Ⅲ. effect of alkyl chain length between amine functions on polyamines degradation [J]. Industrial & Engineering Chemistry Research.2010,49(10):4553-4560.
    [38]Darde V., Thomsen K., Van W. W. J. M., et al. Chilled ammonia process for CO2 capture [J]. International Journal of Greenhouse Gas Control,2010,4(2):131-136.
    [39]Mclarnon C. R., Duncan J. L. Testing of ammonia based CO2 capture with multi-pollutant control technology [J]. Energy Procedia.2009,1(1):1027-1034.
    [40]Li Z., Cai N., Croiset E. Process analysis of CO2 capture from flue gas using carbonation/calcination cycles [J]. AIChE Journal.2008,54(7):1912-1925.
    [41]Lu D. Y., Hughes R. W., Anthony E. J. Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds [J]. Fuel Processing Technology.2008,89(12): 1386-1395.
    [42]Fang F., Li Z., Cai N. CO2 capture from flue gases using a fluidized bed reactor with limestone [J]. Korean Journal of Chemical Engineering.2009,26(5):1414-1421.
    [43]Manovic V., Anthony E. J., Loncarevic D. CO2 looping cycles with CaO-based sorbent pretreated in CO2 at high temperature [J]. Chemical Engineering Science.2009,64(14): 3236-3245.
    [44]Manovic V., Charland J., Blarney J., et al. Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles [J]. Fuel.2009,88(10): 1893-1900.
    [45]Drage T. C., Smith K. M., Pevida C., et al. Development of adsorbent technologies for post-combustion CO2 capture [J]. Energy Procedia.2009,1(1):881-884.
    [46]Ho M. T., Allinson G. W., Wiley D. E. Reducing the cost of CO2 capture from flue gases using membrane technology [J]. Industrial & Engineering Chemistry Research. 2008,47(5):1562-1568.
    [47]Xiao P., Zhang J., Webley P., et al. Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption [J]. Adsorption.2008,14(4-5):575-582.
    [48]Zhang J., Webley P. A. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption [J]. Environmental Science & Technology.2008,42(2): 563-569.
    [49]Drage T. C., Arenillas A., Smith K. M., et al. Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies [J]. Microporous & Mesoporous Materials.2008,116(1-3):504-512.
    [50]Grande C. A., Rodrigues A. E. Electric swing adsorption for CO2 removal from flue gases [J]. International Journal of Greenhouse Gas Control.2008,2(2):194-202.
    [51]Grande C. A., Ribeiro R. P. L., Oliveira E. L. G., et al. Electric swing adsorption as emerging CO2 capture technique [J]. Energy Procedia.2009,1(1):1219-1225.
    [52]Grande C. A., Ribeiro R. P. P. L., Rodrigues A. E. CO2 capture from NGCC power stations using electric swing adsorption (ESA) [J]. Energy & Fuels.2009,23(5): 2797-2803.
    [53]Sjostrom S., Krutka H. Evaluation of solid sorbents as a retrofit technology for CO2 capture [J]. Fuel,2010,89(6):1298-1306.
    [54]Othman M.R., Martunus Z. R., Fernando, W. J. N. Strategic planning on carbon capture from coal fired plants in Malaysia and Indonesia:a review [J]. Energ Policy.2009, 37(5):1718-1735.
    [55]Lackner K. S., Brennan S. Envisioning carbon capture and storage:expanded possibilities due to air capture, leakage insurance, and C-14 monitoring [J]. Climatic Change,2009,96(3):357-378.
    [56]Bounaceur R., Lape N., Roizard D., et al. Membrane processes for post-combustion carbon dioxide capture:A parametric study [J]. Energy (Oxford, United Kingdom). 2006,31(14):2556-2570.
    [57]Favre E., Bounaceur R., Roizard D. A hybrid process combining oxygen enriched air combustion and membrane separation for post-combustion carbon dioxide capture [J]. Separation and Purification Technology,2009,68(1):30-36.
    [58]Okabe K., Mano H., Fujioka Y. Separation and recovery of carbon dioxide by a membrane flash process [J]. International Journal of Greenhouse Gas Control,2008, 2(4):485-491.
    [59]Merkel, T.C., Lin, H., Wei, X., Baker, R. Power plant post-combustion carbon dioxide capture:an opportunity for membranes [J]. Journal of Membrane Science.2010, 359(1-2):126-139.
    [60]Scholes C. A., Kentish S. E., Stevens G. W. The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture [J]. Energy Procedia.2009,1(1):311-317.
    [61]Xomeritakis G., Tsai C. Y., Jiang Y. B., et al. Tubular ceramic-supported sol-gel silica-based membranes for flue gas carbon dioxide capture and sequestration [J]. Journal of Membrane Science.2009,341(1-2):30-36.
    [62]Powell C. E., Qiao G. G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases [J]. Journal of Membrane Science.2006, 279(1-2):1-49.
    [63]Favre E., Bounaceur R., Roizard D. Biogas, membranes and carbon dioxide capture [J]. Journal of Membrane Science.2009,328(1-2):11-14.
    [64]Favre E., Bounaceur R., Roizard D. A hybrid process combining oxygen enriched air combustion and membrane separation for post-combustion carbon dioxide capture [J]. Separation& Purification Technology.2009,68(1):30-36.
    [65]Hart A., Gnanendran N. Cryogenic CO2 capture in natural gas [J]. Energy Procedia. 2009,1(1):697-706.
    [66]Zarenezhad B., Hosseinpour N. An extractive distillation technique for producing CO2 enriched injection gas in enhanced oil recovery (EOR) fields [J]. Energy Conversion & Management.2009,50(6):1491-1496.
    [67]Khoo H. H., Tan R. B. H. Life Cycle Investigation of CO2 Recovery and Sequestration [J]. Environmental Science & Technology.2006,40(12):4016-4024.
    [68]Tuinier M. J., Van S. A. M., Kramer G. J., et al. Cryogenic CO2 capture using dynamically operated packed beds [J]. Chemical Engineering Science.2009,65(1): 114-119.
    [69]Northrop P. S., Valencia J. A. The CFZ process:a cryogenic method for handling high-CO2 and H2S gas reserves and facilitating geosequestration of CO2 and acid gases [J]. Energy Procedia.2009,1(1):171-177.
    [70]Takashi H., Eisuke A, Takeshi Y. et al. Fire extinction using carbon dioxide hydrate [J]. Industrial Engineering Chemistry Research,2009,48(8):4083-4087.
    [71]Abu-khader M. M.Recent progress in CO2 capture/sequestration:a review [J]. Energy Sources Part A,2006,28(14):1261-1279.
    [72]Radosz M., Hu X., Krutkramelis K., et al. Flue-Gas carbon capture on carbonaceous sorbents:Toward a low-cost multifunctional carbon filter for "green" energy producers [J]. Industrial & Engineering Chemistry Research.2008,47(10):3783-3794.
    [73]Smiglak M., Metlen A., Rogers R. D. The second evolution of ionic liquids:from solvents and separations to advanced materials-energetic examples from the ionic liquid cookbook [J]. Accounts of Chemical Research.2007,40(11):1182-1192.
    [74]Anthony J. L., Aki S. N. V. K., Maginn E. J., et al. Feasibility of using ionic liquids for carbon dioxide capture [J]. International Journal of Environmental Technology and Management.2004,4(1-2):105-115.
    [75]Cadena C., Anthony J. L., Shah J. K., et al. Why is CO2 so soluble in imidazolium-based ionic liquids? [J]. Journal of the American Chemical Society.2004, 126(16):5300-5308.
    [76]Anderson J. L., Dixon J. K., Maginn E. J., et al. Measurement of SO2 solubility in ionic liquids [J]. Journal of Physical Chemistry B.2006,110(31):15059-15062.
    [77]Bates E. D., Mayton R. D., Ntai I., et al. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society.2002,124(6):926-927.
    [78]Tang J., Tang H., Sun W., et al. Poly(ionic liquid)s:A new material with enhanced and fast CO2 absorption [J]. Chemical Communications.2005,26:3325-3327.
    [79]Tang J., Tang H., Sun W., et al. Poly(ionic liquid)s as new materials for CO2 absorption [J]. Journal of Polymer Science, Part A:Polymer Chemistry.2005,43(22):5477-5489.
    [80]Choi S., Drese J. H., Jones C. W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources [J]. ChemSusChem.2009,2(9):796-854.
    [81]Feng B., An H., Tan E. Screening of CO2 adsorbing materials for zero emission power generation systems [J]. Energy & Fuels.2007,21(2):426-434.
    [82]Yamaguchi T., Niitsuma T., Nair B. N., et al. Lithium silicate based membranes for high temperature CO2 separation [J]. Journal of Membrane Science.2007,294(1-2): 16-21.
    [83]Ochoa-Fernandez E., Rusten H. K., Jakobsen H. A., et al. Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent:Sorption kinetics and reactor simulation [J]. Catalysis Today.2005,106(1-4):41-46.
    [84]Nelson T. O., Coleman L. J. I., Green D. A., et al. The dry carbonate process:carbon dioxide recovery from power plant flue gas [J]. Energy Procedia.2009,1(1): 1305-1311.
    [85]Electric Power Research Institute, Program on Technology Innovation:Post-combustion CO2 Capture Technology Development [M]. Electric Power Research Institute, Palo Alto,2008.
    [86]Siriwardane R. V., Shen M., Fisher E. P., et al. Adsorption of CO2 on molecular sieves and activated carbon [J]. Energy & Fuels.2001,15(2):279-284.
    [87]Harlick P. J. E., Sayari A. Applications of pore-expanded mesoporous silicas.3. triamine silane grafting for enhanced CO2 adsorption [J]. Industrial & Engineering Chemistry Research.2006,45(9):3248-3255.
    [88]Chue K. T., Kim J. N., Yoo Y. J., et al. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption [J]. Industrial & Engineering Chemistry Research.1995,34(2):591-598.
    [89]Maurin G., Llewellyn P. L., Bell R. G. Adsorption mechanism of carbon dioxide in faujasites:grand canonical monte carlo simulations and microcalorimetry measurements [J]. The journal of physical chemistry. B.2005,109(33):16084-16091.
    [90]Hicks J. C., Drese J. H., Fauth D. J., et al. Designing adsorbents for CO2 capture from flue gashyperbranched aminosilicas capable of capturing CO2 reversibly [J]. Journal of the American Chemical Society.2008,130(10):2902-2903.
    [91]Lee J., Kim J., Hyeon T. Recent process in the synthesis of porous carbon material [J]. Advanced Materials.2006,18(16):2073-2094.
    [92]Samant P. V., Fernandes J. B., Rangel C. M., et al. Figueiredo. Carbon xerogel supported Pt and Pt-Ni catalysts for electro-oxidation of methanol in basic medium [J]. Catalysis Today.2005,102-103:173-176.
    [93]Hyun Joong K., Hyung-Sang P., Dong Jin S. The stability of platinum-carbon aerogel catalysts upon repeated potential cycles [J]. Chemistry & Sustainability.2009,2(3): 221-225.
    [94]Huang J., Zou J., Winston Ho W. S. Carbon dioxide capture using a CO2-selective facilitated transport membrane [J]. Industrial & Engineering Chemistry Research.2008, 47(4):1261-1267.
    [95]Tin P. S., Chung T. S., Hill A. J. Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers [J]. Industrial & Engineering Chemistry Research.2004,43(20):6476-6483.
    [96]Konduru N., Lindner P., Assaf-Anid N. M. Curbing the greenhouse effect by carbon dioxide adsorption with zeolite 13X [J]. American Institute of Chemical Engineers. 2007,53(12):3137-3143.
    [97]Arenillas A., Smith K. M., Drage T.C. CO2 capture using some fly ash-derived carbon materials [J]. Fuel.2005,84(17):2204-2210.
    [98]Jiang L. Y., Chung T. S., Rajagopalan R. Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers [J]. Carbon.2007,45(1): 166-172.
    [99]Cong H., Zhang J., Radosz M., et al. Carbon nanotube composite membranes of brominated poly (2,6-diphenyl-1,4-phenylene oxide) for gas separation [J]. Journal of Membrane Science.2007,294(1-2):178-185.
    [100]Kim S., Chen L., Johnson J. K., et al. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation:Theory and experiment [J]. Journal of Membrane Science.2007,294(1-2):147-158.
    [101]Yang Q. H., Hou P. X., Unno M., et al. Dual raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls [J]. Nano Letters.2005,5(12): 2465-2469.
    [102]Yang Q. H., Xu W. H., Tomita A, et al. Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls [J]. Chemistry of Materials.2005,17(11):2940-2945.
    [103]Li Z., Liu X., Li J., et al. Synthesis of ordered mesoporous carbon molecular sieve and its adsorption capacity for H2.N2.O2-CH4 and CO2 [J]. Chemical Physics Letters.2005, 413(1-3):6-9.
    [104]Thallapally P. K., Mcgrail B. P., Atwood J. L., et al. Carbon dioxide capture in a self-assembled organic nanochannels [J]. Chemistry of Materials.2007,19(14): 3355-3357.
    [105]Thallapally P. K., Peter M. B., Dalgarno S. J., et al. Gas-induced transformation and expansion of a non-porous organic solid [J]. Nature Materials.2008,7(2):146-150.
    [106]Furukawa H., Yaghi O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications [J]. Journal of the American Chemical Society.2009,131(25):8875-8883.
    [107]Babarao R., Jiang J. Molecular screening of metal-organic frameworks for CO2 storage [J]. Langmuir.2008,24(12):6270-6278.
    [108]Okada K., Kay M. I., Cromer D. T., et al. Crystal structure by neutron diffraction and the antiferroelectric phase transition in copper formate tetrahydrate [J]. Journal of Chemical Physics,1966,44(4):1648-1653.
    [109]Farha O. K., Hupp J. T. Rational design, purification, and activation of metal-organic framework materials [J]. Accounts of Chemical Research.2010,43(8):1166-1175.
    [110]Zelenak V., Halamova D., Gaberova L., et al. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture:Effect of amine basicity on sorption properties [J]. Microporous and Mesoporous Materials.2008,116(1-3):358-364.
    [111]Su F. S., Lu C. S., Kuo S. C., et al. Adsorption of CO2 on amine-functionalized Y-type zeolites [J]. Energy & Fuels.2010,24(2):1441-1448.
    [112]Kim S., Ida J., Guliants V. V., et al. Tailoring pore properties of MCM-48 silica for selective adsorption of CO2 [J]. Journal of Physical Chemistry. B.2005,109(13): 6287-6293.
    [113]Satyapal S., Filburn T., Trela J., et al. Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications [J]. Energy & Fuels.2001,15(2):250-255.
    [114]Ma X. L., Wang X. X., Song C. S. "Molecular basket" sorbents for separation of CO2 and H2S from various gas streams [J]. Journal of the American Chemical Society.2009, 131(16):5777-5783.
    [115]Chen C., Yang S. T., Arm W. S., et al. Amine-impregnated silica monolith with a hierarchical pore structure:enhancement of CO2 capture capacity [J]. Chemical Communication,2009,0:3627-3629.
    [116]Liu Y, Shi J. J., Chen J., et al. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6 [J]. Microporous and Mesoporous Materials,2010, 134(1-3):16-21.
    [117]Yan W., Tang J., Bian Z. J., et al. Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template [J]. Industrial & Engineering Chemistry Research.2012,51(9):3653-3662.
    [118]Yue M. B., Chun Y., Cao Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template [J]. Advanced Functional Materials.2006,16(13):1717-1722.
    [119]Li W., Bollini P. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam [J]. ACS Applied Materials & Interfaces.2010,2(11):3363-3372.
    [120]Harlick P. J. E., Sayari A. Applications of pore-expanded mesoporous silica.5. triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance [J]. Industrial & Engineering Chemistry Research.2007,46(2):446-458.
    [121]Hiyoshi N., Yogo K., Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15 [J]. Microporous & Mesoporous Materials.2005, 84(1-3):357-365.
    [122]Kim H. J., Park H. S., Suh D. J. The stability of platinum-carbon aerogel catalysts upon repeated potential cycles [J]. Chemistry & Sustainability.2009,2(3):221-225.
    [123]Chen Q. J., Long D. H., Ling L. C., et al. Synthesis of ultrahigh-pore-volume carbon aerogels through a "reinforced-concrete" modified sol-gel process [J]. Journal of Non-crystalline Solids.2011,357(1):232-235.
    [124]Xomeritakis G., Tsai C.Y., Brinker C.J. Microporous sol-gel derived aminosilicate for carbon dioxide separation [J]. Separation & Purification Technology.2005,42 (3): 249-257.
    [125]Xu X., Song C. S., Andresen J. M., Miller B. G., et al. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 [J]. Microporous & Mesoporous Materials.2003,62(1-2): 29-45.
    [126]Zeng P., Zajac S., Clapp P. C., Rifkin J. A. Nanoparticle sintering simulations [J]. Materials Science & Engineering:A.1998,252(2):301-306.
    [127]Swiatkowski A., Pakula M., Biniak S., Walczyk M. Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead (Ⅱ) ions [J]. Carbon.2004,42(15):3057-3069.
    [128]Tanaka K., White J. M. Characterization of species adsorbed on oxidized and reduced anatase [J]. The Journal of Physical Chemistry.1982,86(24):4708-4714.
    [129]Wang X. X., Schwartz V., Clark J. C., et al. Infrared study of CO2 sorption over "molecular basket" sorbent consisting of polyethylenimine-modified mesoporous molecular sieve [J]. Journal of Physical Chemistry C.2009,113(17):7260-7268.
    [130]White L. D., Tripp C. P. Reaction of (3-aminopropyl) dimethylethoxysilane with amine catalysts on silica surfaces [J]. Journal of Colloid & Interface Science.2000,232(2): 400-407.
    [131]Leal O., Bolivar C., Ovalles C., Garcla J. J, Espidel Y. Reversible adsorption of carbon dioxide on amine surface-bonded silica gel [J]. Inorganica Chimica Acta.1995, 240(1-2):183-189.
    [132]le Bouhelec E. B., Mougin P., Barreau A., et al. Rigorous modeling of the acid gas heat of absorption in alkanolamine solutions [J]. Energy & Fuels.2007,21(4):2044-2055.
    [133]Son W. J., Choi J. S., Ahn W. S. Adsorptive removal of carbon dioxide using polyethylenimine-loaded mesoporous silica material [J]. Microporous & Mesoporous Materials.2008,113(1-3):31-40.
    [134]Xu X. C., Song C. S., Andresen J. M., et al. Scaroni. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture [J]. Energy & Fuels.2002,16(6):1463-1469.
    [135]Chen C., Son W. J., You K. S., et al. Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity [J]. Chemical Engineering Journal.2010(1-2):161, 46-52.
    [136]Qi G., Wang Y., Estevez L., et al. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules [J]. Energy & Environmental Science.2011,4(2):444-452.
    [137]Yan X. L., Zhang L., Zhang Y., et al. Amine-modified SBA-15:Effect of pore structure on the performance for CO2 capture [J]. Industrial & Engineering Chemistry Research. 2011,50(6):3220-3226.
    [138]Filburn T., Helble J. J., Weiss R. A. Development of supported ethanolamines and modified ethanolamines for CO2 capture [J]. Industrial & Engineering Chemistry Research.2005,44(5):1542-1546.
    [139]Chen Q. J., Fan F. C., Long D. H., et al. Poly(ethyleneimine)-loaded silica monolith with a hierarchical pore structure for H2S adsorptive removal [J]. Industrial & Engineering Chemistry Research.2010,49(22):11408-11414.
    [140]Jaroniec C. P., Kruk M., Jaroniec M., et al. Tailoring surface and structural properties of MCM-41 silica by bonding organosilanes [J]. The Journal of Physical Chemistry B. 1998,102(28):5503-5510.
    [141]Socrates G. Infrared and raman characteristic group frequencies [M].3rd ed. John Wiley & Sons, Chichester.2001.
    [142]Yoshitake H., Koiso E., Horie H., et al. Polyamine-functionalized mesoporous silicas: preparation, structural analysis and oxyanion adsorption [J]. Microporous Mesoporous Materials.2005,85(1-2):183-194.
    [143]Wang X., Ma X., Xu X., et al. A nanoporous polymeric sorbent for deep removal of H2S from gas mixtures for hydrogen purification [J]. Green Chemistry.2007,6(9): 695-702.
    [144]Zheng F., Tran D. N., Busche B. J., et al. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent [J]. Industrial & Engineering Chemistry Research.2005,44(9): 3099-3105.
    [145]Franchi R. S., Harlick P. J. E., A. Sayari. Applications of pore-expanded mesoporous silica.2. development of a high-capacity, water-tolerant adsorbent for CO2 [J]. Industrial & Engineering Chemistry Research.2005,44(21):8007-8013.
    [146]Heydari-Gorji A., Belmabkhout Y., Sayari A. Polyethylenimine-impregnated mesoporous silica:effect of amine loading and surface alkyl chains on CO2 adsorption [J]. Langmuir.2011,27(20):12411-12416.
    [147]Sayari A., Kruk M., Jaroniec M., I. L., et al. New approaches to pore size engineering of mesoporous silicates [J]. Advanced Materials.1998,10(16):1376-1379.
    [148]Harlick P. J. E., Sayari A. Applications of pore-expanded mesoporous silicas.3. Triamine silane grafting for enhanced CO2 adsorption [J]. Industrial & Engineering Chemistry Research.2006,45(9):3248-3255.
    [149]Yue M. B., Sun L. B., Cao Y., et al. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine [J]. Chemistry-A European Journal.2008,14(11): 3442-3451.
    [150]Yue M. B., Sun L. B., Cao Y., et al. Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group [J]. Microporous Mesoporous Materials. 2008,114(1-3):74-81.
    [151]Bhagiyalakshmi M., Yun L. J., Anuradha R., et al. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting [J]. Journal of Hazardous Materials.2010,175(1-3): 928-938.
    [152]Knowles G. P., Delaney S. W., Chaffee A. L. Diethylenetriamine [propyl (silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents [J]. Industrial & Engineering Chemistry Research.2006,45(8):2626-2633.
    [153]Goeppert A., Meth S., Prakash G. K. S., et al. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents [J]. Energy & Environmental Science.2010,3:1949-1960.
    [154]Wang J. T., Long D. H., Zhou H. H., et al. Surfactant promoted solid amine sorbents for CO2 capture [J]. Energy & Environmental Science.2012,5(2):5742-5749.
    [155]Wang J. T., Chen Q. J., Liu X. J., et al. Hard-templating synthesis of mesoporous carbon spheres with controlled particle size and mesoporous structure for enzyme immobilization [J]. Materials Chemistry & Physics.2011,129(3):1035-1041.
    [156]Serna-Guerrero R., Da'na E., Sayari A. New insights into the interactions of CO2 with amine-functionalized silica [J]. Industrial & Engineering Chemistry Research.2008, 47(23):9406-9412.
    [157]Chang A. C. C., Chuang S. S. C., Gray M., et al. In-situ infrared study of CO2 adsorption on SBA-15 grafted with γ-(aminopropyl) triethoxysilane [J]. Energy Fuels. 2003,17(2):468-473.
    [158]Ahn, H., Moon, J.H., Hyun, S.H., et al. Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets [J]. Adsorption.2004,10(2):111-128.
    [159]Newalkar, B.L., Choudary, N.V., Turaga, U.T., et al. Adsorption of light hydrocarbons on HMS type mesoporous silica [J]. Microporous & Mesoporous Materials.2003, 65(2-3):267-276.
    [160]Do D.D. Adsorption Analysis:Equilibria and Kinetics [M]. Imperial College Press. London, UK.,1998.
    [161]Eisenberger P. M., Cohen R. W., Chichilnisky G., et al. Global warming and carbon-negative technology:Prospects for a lower-cost route to a lower-risk atmosphere [J]. Energy & Environment.2009,20(6):973-984.
    [162]Serna-Guerrero R., Sayari A. Modeling adsorption of CO2 on amine-functionalized mesoporous silica.2:Kinetics and breakthrough curves [J]. Chemical Engineering Journal.2010,161(1-2):182-190.
    [163]Moloney P., Huffman C., Gorelik, O., et al. Advanced Life Support for Space Exploration:Air Revitalization Using Amine Coated SingleWall Carbon Nanotubes [M]. In Materials for Space Applications, Symposium on Materials for Space Applications, Boston, USA, Nov.29-Dec.03.2004; Chipara, M.; Edwards, D. L.; Benson, R.S.; Phillips, S., Eds.; Materials Research Society:Warrendale,2005,851:59-64.
    [164]Jones C. W. CO2 capture from dilute gases as a component of modern global carbon management [J]. Chemical & Biomolecular Engineering.2010,2:31-52.
    [165]Lackner K. S., Ziock H. J., Grimes P. Capturing Carbon Dioxide From Air [J]. SourceBook.1999,57(9):6-10
    [166]Zeman F. S., Lackner K. S. Capturing carbon dioxide directly from the atmosphere [J]. World Resource Review.2004,16(2):157-172.
    [167]Keith D., Ha-Duong M., Stolaroff J. Climate Strategy with CO2 Capture from the Air [J]. Climatic Change.2006,74(1-3):17-45.
    [168]Stolaroff J. K., Keith D. W., Lowry G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray [J]. Environment Science & Technology.2008,42(8): 2728-2735.
    [169]Zeman F. Energy and material balance of CO2 capture from ambient air [J]. Environmental Science & Technology.2007,41(21):7558-7563.
    [170]Mahmoudkhani M., Keith D. Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air-Thermodynamic analysis [J]. International Journal of Greenhouse Gas Control.2009,3(4):376-384.
    [171]Sunho C., Jeffrey H. D., Peter M. E., Christopher W. J. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air [J]. Environmental Science & Technology.2011,45(6):2420-2427.
    [172]Levenspiel O. Chemical reaction engineering, John Wiley & Sons:New York,1999.
    [173]Orbey N., Dogu G., Dogu T. Breakthrough analysis of noncatalytic solid-gas reactions: reaction of SO2 with calcined limestone [J]. Chemical Engeerning.1982,60(2): 314-318.
    [174]Ding Y., Alpay E. Adsorption-enhanced steam-methane reforming [J]. Chemical Engineering Science.2000,55(18):3929-3940.
    [175]Yasyerli S., Dogu G., Ar I., Dogu T. Activities of copper oxide and Cu-V and Cu-Mo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model [J]. Industrial & Engineering Chemistry Research.2001,40(23): 5206-521.
    [176]Yasyerli S., Ar I., Dogu G., Dogu T. Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber [J]. Chemical Engineering Progress.2002,41(9):785-792.
    [177]Bird R. B., Stewart W. E., Lightfoot E. N. Transport phenomena, John Wiley & Sons, New York,2003.
    [178]Liu N., Zhang S. T., Fu R. W., et al. Carbon aerogel spheres prepared via alcohol supercritical drying [J]. Carbon.2006,44(12):2430-2436.
    [179]Liu J., Qiao S. Z., Liu H., et al. Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres [J]. Angewandte Chemie.2011,50(26):5947-5951.
    [180]Li Q., Yang J. P., Feng D. et al. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture [J]. Nano Research.2010, 3(9):632-642.
    [181]Fuertes A.B. Template synthesis of mesoporous carbons with a controlled particle size [J]. Journal of Materials Chemistry.2003,13:3085-3088.
    [182]Pekala R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde [J]. Journal of Materials Science.1989,24(9):3221-3227.
    [183]Horikawa T., Hayashi J., Muroyama K. Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel [J]. Carbon.2004,42(8-9):169-175.
    [184]Yang Y. Y, Chung T. S., Bai X.L., et al. Effect of preparation conditions on morphology and release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion method [J]. Chemical Engineering Science.2000,55(12): 2223-2236.
    [185]Santini E., Liggieri L., Sacca L., et al. Interfacial rheology of Span 80 adsorbed layers at paraffin oil-water interface and correlation with the corresponding emulsion properties [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2007,309(1-3): 270-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700