用户名: 密码: 验证码:
有机分子模板控制下的三氧化二铁的矿化结晶及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁的生物矿化是生物矿化物中发现得比较晚,但又极重要的一类。铁矿物的变化对其所处环境的地球化学性质影响极大。铁氧化物因其具有稳定的化学性质和较高的比表面积,吸附性能良好,对阴、阳离子、重金属离子及有机螯合剂在环境中的迁移和沉淀有重要影响,特别是铁氧化物(如磁、赤铁矿)的定向膜沉积在信息储存材料领域的应用正在开发,因而具有十分重要的研究意义。因此,本论文根据生物矿化原理,研究可溶性有机质和不可溶性有机质调控氢氧化铁凝胶的矿化过程仿生制备纳米三氧化二铁晶体,具有重要的理论意义。取得的研究成果归纳如下:
     1.首先,通过选择不同的pH值、阴离子、不同沉淀剂、不同溶剂等条件,来改变氢氧化铁凝胶的矿化环境,从而得到最有利于三氧化二铁晶体的形成条件;然后,在最优的矿化条件下,以可溶性的有机质(聚丙烯酸钠)作为晶体生长的模板和引导剂,调控氢氧化铁凝胶矿化仿生制备三氧化二铁晶体。目的是研究可溶性有机质对氢氧化铁凝胶矿化行为的调控及其机理,结果表明矿化体系的pH、阴离子、沉淀剂以及溶剂的类型等都能影响氢氧化铁凝胶的矿化行为;而且在最优的矿化条件下,可溶性有机质聚丙烯钠通过选择成核和相变的机制控制矿化产物的晶体类型、形貌、性质及生长方式等。
     2.在最优的矿化条件下,以不可溶性有机质(壳聚糖和聚乙烯醇)作为晶体生长的模板,调控氢氧化铁凝胶的矿化过程仿生制备三氧化二铁晶体。目的是研究不可溶性有机质对氢氧化铁凝胶矿化行为的调控及其机理,结果表明不可溶性有机质分子的官能团存在着周期性的结构,与矿物晶体之间存在着有机-无机的界面匹配,可以有效的降低晶体成核的势能位垒,来控制矿物晶体的形核以及相转变过程。
     3.模拟生物矿物的形成过程,在上述可溶性有机质和不可溶性有机质协同作用下,调控氢氧化铁凝胶矿化仿生制备三氧化二铁晶体。目的是研究有机质协同作用对氢氧化铁凝胶矿化行为的调控作用及其机理,结果表明不同类型的有机质在矿物晶体形成过程中的作用不同,不可溶性有机质作为模板,通过有机-无机的界面匹配控制矿物晶体的形核以及相转变过程;可溶性有机质吸附在矿物晶体的表面控制晶体的取向生长和聚集,二者协同作用共同控制氢氧化铁凝胶的矿化过程以及矿化产物的晶体类型、形貌、性质及生长方式等。
     4.利用分子动力学原理,通过分子模拟技术模拟聚丙烯酸钠和聚乙烯醇与三氧化二铁晶体之间的相互作用。目的是在原子水平上理解有机质控制晶体生长的作用机理,结果表明聚乙烯醇与三氧化二铁晶体(110)面之间存在强烈的相互作用,水分子的存在可以增加聚丙烯酸钠与三氧化二铁晶体(104)面的结合,并促进三氧化二铁晶体的生长,聚乙烯醇与赤铁矿(110)面之间的作用力以及聚丙烯钠与赤铁矿(104)面之间的作用力均为库伦力和范德华力,它们对于有机质与晶体表面的结合起到促进作用。
Biomineralization of iron was discovered later in biomineralization, which were vital ones. There is significant investigation in iron oxide for their stable chemical properties, higher specific surface area, good absorbability and having significant influence on transportation and deposition of negative ion, positive ion and heavy mental ion and organic sequestering agent, especially, the application of the oriented deposition film of iron oxide (such as magnetism, hematite) is under development in the field of information storage materials. Therefore, in this paper we studied the process that soluble organic matter and insoluble organic matter controlled the biomineralization of ferric hydroxide (Fe(OH)_3) and biomimetic synthesis nano hematite (α-Fe_2O_3) crystals based on the basic principles of biomineralization, which has important theoretical significance. The detailed research results obtained are summarized as follows:
     1. Firstly, the optimal condition ofα-Fe_2O_3 formation was obtained by choosing various pH, negative ion, precipitant and solvent etc to change the environment of the mineralization, and then under the optimal mineralization condition, the soluble organic matter (polyacrylate sodium) was used as an effective soft-template to regulate and control the Fe(OH)3 gel mineralization and biomimetic synthesis theα-Fe_2O_3 crystal. The objective is to study the regulation and mechanism of soluble organic matter on the biomineralization process of Fe (OH) 3 gel. The results showed that the pH value, negative ion, precipitation reagent and type of solvent of mineralized system could influence the biomineralization process of Fe(OH)3 gel. Moreover, under the optimal mineralized condition, soluble organic matter (polyacrylate sodium) controlled the type of crystal, morphology, property and growth patterns of the mineralized products by the way of choosing the mechanism of nucleation and phase transition.
     2. Under the optimal mineralized condition, the insoluble organic matters (chitosan and polyvinyl alcohol) were used as the hard-template of crystal growth to regulate and control the Fe(OH)3 gel mineralization and biomimetic synthesis theα-Fe_2O_3 crystal. The objective is to study the regulation and mechanism of the insoluble organic matters on the biomineralization process of Fe(OH)3 gel. The results indicated that there were periodic structures in the functional group of insoluble organic matters, which can effectively reduce the potential barrier of crystal nucleation, and then control the process of crystal nucleation and phase transition.
     3. We have simulated the formation process of the biominerals, regulating and controlling the Fe(OH)_3 gel mineralization and biomimetic synthesis theα-Fe_2O_3 crystal under the co-effection of the above-mentioned soluble organic matter and insoluble organic matter. The objective is to study the regulation and mechanism of organic matter’s co-effection on the biomineralization process of Fe(OH)_3 gel. The results indicated that different types of organic matter played different roles in the process of mineral crystal formation. Insoluble organic matters were used as the template controlling the nucleation and phase transition of mineral crystals by the organic/inorganic interface matching; while the soluble organic matter absorbed in the surface of the mineral crystal to control the oriented growth and aggregation of crystal. The co-effection of the both co-control the process of Fe(OH)_3 gel and the crystal type of mineralized products, morphology, property and growth patterns etc.
     4. We simulated the interaction between polyacrylate sodium, polyvinyl alcohol and ferric oxide crystals by the Molecular Simulation Technology based on the principle of molecular dynamics. The objective is to understand the mechanism that organic matters control the crystal growth at the atomic level. The results showed that there was strong interaction between polyvinyl alcohol and the (110) plane ofα-Fe_2O_3 crystal; the water molecule can favor the binding between polyacrylate sodium and the (104) plane ofα-Fe_2O_3 crystal and accelerate the growth ofα-Fe_2O_3 crystal. The force between polyvinyl alcohol and the (110) plane ofα-Fe_2O_3 crystal, as well as the force between polyacrylate sodium and the (104) plane ofα-Fe_2O_3 crystal are all Coulomb force and Van der Waals force. These forces facilitated the binding between organic matter and crystal surfaces. It was further concluded that organic matters could modulate iron biomineralization process; they control the nucleation and growth of mineral crystals by the different mode of action.
引文
[1] Lin H., Soow S., Kuwabara K., et al. Crystal growth of lipidocrocite and magnetite under Langmuir monolayers [J]. Journal of Crystal Growth, 1998, 192: 250-256
    [2]唐睿康,两亲分子超薄膜控制下的无机晶体[D].南京大学博士学位论文. 1998: 2-4
    [3]黄江波,多糖/蛋白质调控纳米铁矿物生物矿化作用机理研究[D].武汉理工大学硕士学位论文. 2006: 8-10
    [4]侯文涛.基于贻贝中生物矿化机理的碳酸钙晶型与形貌研究[D].清华大学博士学位论文. 2006: 13-15
    [5] Cisar J O, Xu D, Thompson J, Swaim W, Hu L, Kopecko D J. An alternative interpretation of nanobacteria-induced biomineralization [J]. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(21): 11511-11515
    [6] Bauerlein E. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures [J]. Angew. Chem. Int. Ed., 2003, 42(6): 614-641
    [7] Bouropoulos N, Weiner S, Addadi L. Calcium oxalate crystals in tomato and tobacco plants: morphology and in vitro interactions of crystal-associated macromolecules [J]. Chem. Eur. J., 2001, 7(9): 1881-1888
    [8] Graham T, Sarikaya M. Growth dynamics of red abalone shell a biomimetic model [J]. Mater. Sci. Eng. C, 2000, 11: 145-153
    [9] Weiner S, Traub W, Wagner H D. Lamellar bone: structure–function relations [J]. J. Struct. Biol., 1999, 126(3): 241-255
    [10] Sollner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T. Control of crystal size and lattice formation by starmaker in otolith biomineralization [J]. Science, 2003, 302: 282-286
    [11] Bazylinski D A, Moskowitz B M. Microbial biomineralization of magnetic iron minerals: Microbiology, magnetism and environmental significance [J]. Reviews in mineralogy, 1997, 35: 181-223
    [12] Laurie A. Gower, Overview of Biomineralization [EB]. http://gower.mse.ufl.edu/research.html, 2009, 3.
    [13] Mann S, Ed. Biomineralization: principles and concepts in bioinorganic materials chemistry [M]. New York: Oxford University Press, Inc., 2001. 198-209
    [14] Weiner S, Dove P M. An overview of biomineralization processes and the problem of the vital effect [J]. Rev. Mineral. Geochem., 2003, 54: 1-29
    [15]崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社,2004. 23-25
    [16] Lowenstam H A. Minerals formed by organisms [J]. Science, 1981, 211: 1126-1131
    [17]王秀梅.野生型与基因突变斑马鱼骨分级结构和纳米力学性能研究[D].清华大学博士学位论文. 2005: 18-22
    [18] Fincham A G, Moradian.Oldak. J, Simmer. JP. The structural biology of the developing dental enamel matrix [J]. J Struct Biol 1999, 126: 270-299
    [19] Hunter G K. Interfacial Aspects of Biomineralization [J]. Curr. Opin. Solid State Mater. Sci., 1996, 1(3): 430-435
    [20]郭晓辉,有机分子模板及溶剂效应控制下的碳酸盐的矿化结晶及机理研究[D].中国科技大学博士学位论文. 2007: 8-10
    [21]薛中会,武超,戴树玺等.生物矿化研究进展[J].河南大学学报,2003, 33(3): 21-25
    [22] Mann S. Molecular recognition in biomineralization [J]. Nature, 1998, 332(10): 119-124
    [23] Berman A, Addadi L, Weiner S. Interaction of sea-urchin skeleton macromolecules with growing crystals a study of intracrystalline proteins [J]. Nature, 1988, 311(11): 546-548.
    [24]张立娟,刘洪国,冯结胜.有序分子膜诱导生物功能材料仿生合成的研究进展[J].化学通报,2002, 65: 1-8
    [25]张刚生,谢先德. CaCO3生物矿化的研究进展——有机质的控制作用[J].地球科学进展,2000, 15(2): 204-209
    [26]李恒德,冯庆玲,崔福斋等,贝壳珍珠层及仿生制备研究[J].清华大学学报(自然科学版),2001,41(4/5):41-47
    [27] Mann S, Biomineralization and biomimetic materials chemistry [J]. J Mater Chem, 1995, 5:935-946
    [28] Burton W K, Cabrera N, Frank F C. The growth of crystals and the equilibrium structure of their surfaces [J]. Royal Soc London Philos Trans, 1951, A234: 299-358
    [29] Mann S, Archibald D D, Didymus J M, Heywood B R, Meldum F C, Wade V J. Biomineralization: Biomimetic potential at the inorganic-organic interface [J]. MRS Bulletin 1992,ⅩⅦ: 32-36
    [30] Mutaftschiev. B, Handbook of Crystal Growth [M], Amsterdam: North-Holland, 1993. 477-489
    [31] Everett D.H. Basic Principles of Colloid Science [M]. London: Royal Society of Chemistry, 1988. 98-115
    [32] O. Sohnel and J. Garside, Precipitation: Basic Principles and Industrial Applications [M]. Oxford: Butterworth Heinemann, 1992. 37-50
    [33] Wong K K. Brisdon B J, Heywood B R, Hodson G W, Mann S. Polymer-mediated crystallization of inorganic solids: Calcite nucleation on the surfaces of inorganic polymers [J]. J Mater Chem, 1994, 4: 1387-1392
    [34] Nacollas G H. Biological Mineralization and Demineralization [M]. New York: Springer-Verlag, 1982. 56-71
    [35] Aizenberg J., Tkachenko A., Weiner S., et al. Calcitic microlenses as part of the photoreceptor system in brittlestars [J]. Nature, 2001, 412: 819-822
    [36] Mann S. Molecular recognition in biomineralization [J] Nature, 1988, 332(6213):119-124.
    [37] Aizenberg J., Muller D. A., Grazul J. L., et al. Direct Fabrication of Large Micropatterned Single Crystals [J]. Science, 2003, 299: 1205-1208
    [38]蔡国斌,郭晓辉,俞书宏.聚合物控制模拟生物矿化[J].化学进展, 2008, 20: 1001-1014
    [39] Mann, S., The chemistry of form [J]. Angew. Chem. Int. Ed., 2000, 39: 3393-3406
    [40] Yu S H. Bio-inspired crystal growth by synthetic templates [J].Top. Curr. Chem., 2007, 271: 79-118
    [41] H. C?lfen, and S. Mann, Higher-order organization by mesoscale self-assembly and tramsformation of hybrid nanostructure [J], Angew. Chem. Int. Ed., 2003, 42(21): 2350-2365
    [42] C?lfen, H., Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers [J]. Macromol. Rapid Commun. 2001, 22: 219-252
    [43] Wang, T., Antonietti, M. and C?lfen, H.: Calcite Mesocrystals:“Morphing”Crystals by a Polyelectrolyte [J]. Chem. Eur. J. 2006, 12: 5722-5730
    [44] Niederberger M. and C?lfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly [J]. Phys. Chem. Chem. Phys. 2006. 8: 3271-3287
    [45] Penn RL, Banfield J F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from Titania [J]. Geochim. Cosmochim. Acta, 1999, 63: 1549-1557
    [46] C?lfen, H., Antonietti, M., Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment [J]. Angew. Chem. Int. Edit. 2005, 44: 5576-5591
    [47] C?lfen H. Miles G. Page. Monique Dubois. Thomas Zemb. Mineralization in complex fluids [J]. Top. Curr. Chem., 2007, 271: 1-77
    [48] Kazue T. Biomineralization of layer silicaes and hydrated Fe/Mn oxides in micraobial mats: an electron microscopical study [J]. Clays and Clay Minerals, 1997, 45(2): 203-212.
    [49]刘传琳,赵见高,宫宝安.海洋软体动物组织中的铁生物矿化研究概况[J].生物物理学报,2000, 16(4): 655-666. [50」孙振亚,牟善彬,叶先贤.一种显微管状结构的羟铁矿[J].科学通报,1995, 40: 2196-2198
    [51] Onhauser K.O.. Diversity of bacterial iron mineralization [J]. Earth Science Review, 1998, 43: 19-21
    [52] Junji Akai, Kurumi Akai, Makoto Ito, et al. Biologically induced iron ore at Gunma Iron mine [J], American Miner, 1999, 171-182.
    [53] Kandori K., Yamoto Y., Ishikawa T.. Effects of vinyl series polymers on the formation of hematite particles in a forced hydrolysis reaction [J]. Journal of Colloid and Interface Science, 2005(283): 432-439.
    [54] Nesterova M.V., Sarah A.W., and Webb J., Nanoscale iron (Ⅲ) oxyhydroxy aggregates formed in the presence of functional water-soluble polymers: models for iron (Ⅲ) biomineralisation processes [J]. Journal of Inorganic Biochemistry, 2000(79): 109-118.
    [55] Nesterova M., Moreau J., Banfield J F.. Model biomimetic studies of templated growth and assembly of nanocrystalline FeOOH [J]. Geochimica et Cosmochimica Acta, 2003(67): 1177-1187.
    [57] H Sesigur, E Acma, 0 Addemir, et al. The preparation of magnetic iron oxide [J]. Mate. Res.Bull, 1996, 31(12): 1573-1579.
    [58]严新,朱雪梅,吴俊方,等.均匀氧化铁纳米粒子的制备及表征[J].盐城工学院学报,2002, 15(2): 50-52
    [59]何秋星,杨华,刘素琴,等.转相法制备高比表面积纳米Fe3O4磁性粉体[J].精细化工,2003, 20(5): 257-260
    [60] Dabin Yu, Xiaoquan Sun, Jiwei Zou, et al. Oriented Assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres [J]. J. Phys. Chem.B, 2006, 110: 21667-21671.
    [61] Dongen Zhang, Xiaojun Zhang, Xiaomin Ni, et al. Preperation and characterization ofα-FeOOH nanorods via an ethylenediamine-assisted route [J]. Mater. Lett. 2006, 60: 1915-1917.
    [62] Yannick Cudennec, Andre Lecerf. The transformation of ferrihydrite into goethite or hematite [J]. J. Solid State Chem., 2006, 179: 716-722.
    [63]杨学宏,史佩红,马子川,等.透明氧化铁颜料的应用及发展现状[J].河北师范大学学报(自然科学版),2004, 28(5): 505-509.
    [64] Dagade SP, Waghmode S B, KadamVS, et al. Applied Catalysis A: General [M]. 2002, 226 (1/2): 49-61
    [65] Aijun D, John A, Dalai AK. Symposiumof the 224th ACS Meeting [C], Boston, America, 2002
    [66] Leach AR. Molecular Modeling: Principle and Application [M]. London: Addison Wesley Longman Limited, 1996. 145-168
    [67]俞庆森,朱龙观.分子设计导论[M].北京:高等教育出版社, 2000. 35-40
    [68]杨频,张士国.分子力学进展[J].化学通报, 1990, (6) : 1-5
    [69] Schwertmann U. and Murad E., Effect of pH on the formation of goethite and hematite from ferrihydrite, Clays ClayMiner., 1983, 31: 277-284.
    [70] Yamada Yuri, Equation of State for Free Energy of Homogeneous Nucleation in Supersaturated Lennard-Jones Vapor Phase Derived by Monte Carlo Simulations [J]. http://www.k.hosei.ac.jp/~kataoka/yamada/Chapter1.html, 2003, 3.
    [71] Anderson V J, Lekkerkerker H N W. Insights into phase transition kinetics from colloid science [J]. Nature, 2002, 416 (6883): 811-815
    [72] Leeuw N H D, Cooper T G. Surface simulation studies of the hydration of white rust Fe(OH)2,goethite a-FeO(OH) and hematite a-Fe2O3 [J]. Geochimica et Cosmochimica Acta, 2007, 71: 1655-1673
    [73] Murray C B, Kagan C R. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J]. Annu. Rev. Mat. Sci., 2000, 30: 545-610
    [74]王华林,盛敏刚.聚乳酸/聚乙烯醇共混膜的制备[J].高分子材料科学与工程. 2006, 22 (5): 229-233.
    [75]李湛.模拟生物矿化制备壳聚糖衍生物/CdS纳米颗粒复合物及性能研究[D].武汉大学博士学位论文,2004: 26-28
    [76]王静梅,姚松年.壳聚糖-氨基酸体系中碳酸钙模拟生物矿化的研究[J].无机化学学报,2002, 18(3): 249-254.
    [77]幻丁明,蒋自钢,周从学等.壳聚糖对β-Fe00H微晶生成的影响研究[J].合肥联合大学学报,1998, 2: 21-25.
    [78]丁德润.N-羧甲基壳聚糖对Ca2+,Fe2+的络合(吸附)及光谱分析[J].上海工程技术大学学报,2004, 18(4): 298-301.
    [79]谢志海,强永刚,郎惠云. Fe(II)一脱乙酞壳聚糖配位聚合物的合成及其性能表征[J].离子交换与吸附,2002, 18(1): 76-79.
    [80]崔福斋,冯庆玲,唐睿康等.生物矿化[M].北京:清华大学出版社,2007. 59-70
    [81] Wong K K, Brisdon B J, Heywood B R, Hodson G W, Mann S. Polymer-mediated crystallization of inorganic solids: Calcite nucleation on the surfaces of inorganic polymers [J]. J Mater Chem, 1994, 4: 1387-1392
    [82] Nancollas G H. Biological mineralization and demineralization [M]. New York: Springer-Verlag, 1982. 186-192
    [83]Bunker B C, Rieke P C, et al., Ceramic thin-film formation on funcationalized interface through biomimetic processing [J]. Science, 1994, 264: 48-55.
    [84] Shin H., Collins R.J., DeGuire M.R. et al. Synthesis and characterization of TiO2 thin films on organic self-assembled monolayers: Part I. Film formation from aqueous solutions [J]. J.Mater.Res, 1995, 10: 692-296.
    [85] Shin H., Collins R.J., DeGuire M.R. et al. Synthesis and characterization of TiO2 thin films on organic self-assembled monolayers: Part II. Film formation via an organometallic route [J]. J.Mater.Res, 1995, 10: 699-703
    [86] Taradevich B.J., Rieke P.C., Liu J., Nucleation and Growth of Oriented Ceramic Films onto Organic Interfaces [J]. J Chem.Mater, 1996, 8:292-293.
    [87] Bunker B.C., Rieke P.C., Rarasevich B.J. et al. Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing [J]. Science, 1994, 264:4-5
    [88] Mann S., O’zin G. A., Synthesis of inorganic materials with complex form [J]. Nature, 1996, 382:313-318.
    [89] Sellinger A, Weiss P M, Nguyen A, Lu Y F, Assink R A, Gong W L, Brinker C J. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre [J]. Nature, 1998, 394: 256-260
    [90] Tang Z Y, Kotov N A, Magonov S, Ozturk B. Nanostructured artificial nacre [J]. Nat. Mater., 2003, 2: 413-418
    [91]欧阳健明,生物矿化的基质调控及其仿生应用[M].北京:化学工业出版社,2006. 210-222
    [92] Yuan PQ., Kong N., Cheng ZM., Semiat R. Electrostatic potential on anti-scalants modified CaCO3 (104) surface: A molecular simulation study [J]. Desalination, 2009, 246-256.
    [93] Bhowmik R., Katti KS., Katti D.Molecular dynamics simulation of hydroxyapatite-polyacrylic acid acid interfaces [J]. Polymer, 2007, 664-674.
    [94] Sun H. Compass: an ab intio force-field optimized for condensedphase application– overview with details on alkane and benzene compounds [J]. J Phys Chem B, 1998; 102:7338.
    [95] Li C, Choi P. Molecular dynamics study of the adsorption behavior of normal alkanes on a relaxed a-Al2O3 (0001) surface [J]. J Phys Chem C, 2007; 111:1747.
    [96] Chunbao Xu, Amyn S. Teja. Continuous hydrothermal synthesis of iron oxide and PVA-protected iron oxide nanoparticles [J]. J. of Surpercritical Fluids, 2008, 44: 85-91
    [97] Lois E. Davidson, Samuel Shaw, Liane G. Benning. The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions [J]. American Mineralogist, 2008, 93: 1326-1377
    [98] Tung KL, Lu KT, Ruaan RC, Lai JY. Molecular dynamics study of the effect of solvent types on the dynamic properties of polymer chains in solution [J]. Desalination 2006, 192: 380-384.
    [99] Prathab B, Subramanian V, Aminabhavi TM. Molecular dynamics simulations to investigate polymer–polymer and polymer–metal oxide interactions [J]. Polymer, 2007, 48: 409-411.
    [100] Fernando AR, Yosadara RM. Ab initio molecular dynamics calculations of the phase transformation mechanism for the formation of TiO2 titanate-type nanosheets from anatase [J]. Chem Mater, 2007, 19: 2947-2949.
    [101] Toth R, Ferrone M, Miertus S, Chiellini E, Fermeglia M, Pricl S. Structure and energetics of biocompatible polymer nanocomposite systems: a molecular dynamics study [J]. Biomacromolecules 2006, 7: 1714–1719.
    [102] S. A. Markgraf, and Richard J. Reeder. High-temperature structure refinements of calcite and magnesite [J]. American Mineralogist, 1985, 70: 590-600
    [103] Moore, T.T., Mahajan, R., Vu, D.Q., Koros, W.J. Hybrid membrane materials comprising organic polymers with rigid dispersed phases [J]. A.I.Ch.E. Journal, 2004, 50: 311–321
    [104] Peng, F.B., Lu, L.Y., Hu, C.L. Significant increase of permeation flux and selectivity of poly (vinyl alcohol) membranes by incorporation of crystalline flake graphite [J]. Journal of Membrane Science, 2005, 259: 65-73.
    [105] Chen, K.,Yang, S., Synthesis of epoxy-montmorillonite nanocomposite [J]. Journal of Applied Polymer Science, 2002, 86: 414-421.
    [106] Dlubek, G., De, U., Pionteck, J. Temperature dependence of free volume in pure and silica-filled poly (dimethyl siloxane) from positron lifetime and PVT experiments [J]. Macromolecular Chemistry and Physics, 2005, 206: 827-840
    [107] Pan F., Peng F., Jiang Z. Diffusion behavior of benzene/cyclohexane molecules in poly (vinyl alcohol)-graphite hybrid membranes by molecular dynamics simulation [J]. Chemical Engineering Science, 2007, 703-710

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700