高压氧和低压缺氧预适应对缺血脑损伤的神经保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     预先给予机体某种刺激可以使机体产生对有害因素的耐受性或适应性增强,称为预适应(preconditioning)。以往在缺血/低氧预适应(ischemia/hypoxia preconditioning,IP/HP)对缺血性脑损伤的保护作用方面研究较广泛,但缺血/低氧预适应的临床应用受到伦理学限制。因此寻找新的预适应方案非常重要,近来少数研究发现高压氧预适应(hyperbaric oxygen preconditioning,HBOP)对缺血性脑损伤也有保护作用,但其机制不清,且HBOP和低压缺氧预适应(hypobaric hypoxia preconditioning,HHP)对脑保护作用有何异同和优缺点也不清楚。本研究利用家兔右侧大脑中动脉闭塞(middlecerebral artery occlusion,MCAO)模型,观察HBOP和HHP对MCAO家兔行为学、MRI、病理学表现,脑梗塞灶体积,梗塞灶周围局部脑组织氧分压(partial pressure ofbrain tissue oxygen,PbtO_2)及脑组织间液微透析(microdialysis)结果等的影响,比较HBOP和HHP对缺血性脑损伤的神经保护作用,并初步探讨预适应对缺血性脑损伤的神经保护机制。
     方法:
     1.选择体重2.0~2.5kg,月龄3~4月的雄性家兔72只,随机分为单纯MCAO组,HBOP+MCAO组,HHP+MCAO组,每组24只;
     2.采用改良Bederson法建立家兔右侧MCAO模型;
     3.动物放入高压氧舱(100%O_2,250Kpa,1hr/d,5d)行HBOP;动物放入低压氧舱(4000m,61.6Kpa,3d)行HHP;
     4.分别观察各组家兔MCAO模型制备后第1、3、10及20d的行为学变化、MRI、病理学表现及脑梗塞灶体积;
     5.运用LICOX CMP组织氧监测仪动态监测家兔MCAO后第1、3和10d的梗塞灶周围PbtO_2;
     6.家兔MCAO后第1、3、10及20d行脑组织间液微透析监测,了解梗塞灶周围脑组织及对侧相应脑区脑组织间液葡萄糖、乳酸、丙酮酸、甘油和谷氨酸浓度。
     结果:
     1.本实验三组均选择雄性家兔并采用改良Bederson法经眶后入颅制作家兔MCAO模型可靠性强;
     2.与单纯MCAO组比较,HBOP+MCAO组和HHP+MCAO组动物的神经功能缺损评分明显降低(P<0.05),且两种预适应组之间无明显差别;
     3.家兔脑MRI检查发现MCAO后不同时相点缺血区T2WI均呈高信号,第1d时高信号较均匀,主要位于右基底节区和右侧大脑半球颞顶叶,三组的信号范围及强度无明显差别;第3d时T2WI高信号范围稍扩大且欠均匀,边界较模糊,平均信号强度增高,但HBOP和HHP组信号强度及范围明显小于单纯MCAO组(P<0.05);第10d时三组T2WI高信号范围缩小,信号强度降低,多位于顶叶或颞叶,二种预适应组信号范围及强度均显著小于单纯MCAO组(P<0.05);
     4.TTC染色测定MCAO后1d三组家兔大脑基底节区及颞叶部位出现明显梗塞灶,且三组间梗塞灶体积无明显差异;梗塞灶体积在MCAO后第3d达高峰,但HBOP和HHP组明显小于单纯MCAO组(P<0.05);第10、20d三组梗塞灶体积均明显缩小,且二种预适应组显著小于单纯MCAO组(P<0.05);
     5.病理学结果显示单纯MCAO组可见缺血区脑组织染色苍白,第10d时梗塞灶脑组织崩解成无结构的细颗粒状物,细胞成分少见,神经纤维网呈空泡化;HBOP+MCAO组和HHP+MCAO组第10d时可见缺血坏死周围胶质细胞增生,梗塞灶边界较清楚;
     6.HBOP+MCAO组和HHP+MCAO组家兔梗塞灶周围PbtO_2于第1、3和10d均明显高于单纯MCAO组(P<0.05);并且预适应后PbtO_2水平恢复较不行预适应快;
     7.梗塞灶周围脑组织间液微透析分析发现三组家兔MCAO后葡萄糖浓度均持续降低,但HBOP+MCAO和HHP+MCAO组在第3d时已明显恢复,第10d时已基本恢复至基线值且左右侧对比无明显差异,而单纯MCAO组在第10d时才逐渐恢复,第20d时仍低于基线值(P<0.05),与左侧比较显著降低(P<0.05),其中在第3d时HHP+MCAO组明显高于单纯MCAO组(P<0.05);三组家兔乳酸浓度在MCAO后第1d迅速升高达峰值,第3d后开始下降,第20d仍明显高于基线值(P<0.05);甘油浓度在三组家兔MCAO后第1d升高明显(P<0.05),以后逐渐降低,单纯MCAO组在第1、3、10和20d各时相点均明显高于预适应组(P<0.05);三组家兔谷氨酸浓度在MCAO后均持续升高,第3d达峰值,且显著高于对侧(P<0.05),但HBOP+MCAO组在第1d时仅轻度升高,明显低于HHP+MCAO组和单纯MCAO组(P<0.05),而在第10d时显著高于HHP+MCAO组和单纯MCAO组(P<0.05)。
     结论:
     1.本实验采用的改良Bederson法经眶后入颅制作家兔MCAO模型,MCA阻断确切,模型成功率高,动物存活率高,便于护理,可以较好地模拟临床脑梗塞演变过程;
     2.HBOP和HHP能明显改善MCAO家兔神经功能,缩小梗塞灶体积,有一定的神经保护作用,HBOP及HHP的神经保护作用效果无明显差异;
     3.HBOP及HHP均能提高家兔MCAO后脑组织梗塞灶周围的PbtO_2;
     4.HBOP和HHP均能减轻家兔MCAO梗塞灶周围的能量和神经递质代谢紊乱;
     5.梗塞灶周围脑组织间液微透析监测结果支持梗塞灶周围存在“生化半暗带”区域,兴奋性氨基酸毒性作用可能是缺血性脑损伤的重要机制之一,高压氧和低压缺氧预适应改善脑缺血性损伤可能是通过促进“缺血半暗带”或“生化半暗带”的恢复而起作用。
Background and Purposes:
     Pretreating with one kind of stimulus can enhance the tolerance of body to impaired factor which called preconditioning.Ischemia and hypoxia preconditioning have been shown their protective advantages on ischemic neuronal damage,but there exists moral problem.Therefore,it is very important to find a new method.The protection of hyperbaric oxygen preconditioning(HBOP) on cerebral ischemia has been demonstrated in few studies,But its mechanism is unclear.More important are the advantages and disadvantages of neuroprotective effects between HBOP and hypobaric hypoxia preconditioning(HHP) remains unclear.Therefore,we designed the following model to make the above problems clear.The right middle cerebral artery occlusion(MCAO) rabbit modle which established by Bederson was used in our prevent experiment to evaluate the neuroprotective effects of HBOP and HHP on cerebral ischemia and determine their mechanisms.,the neurological deficits,signal intensity of magnetic resonance imaging(MRI),pathological changes, infarct size,Pressure of brain tissue oxygen(PbtO2) and in vivo microdialysis around infarcted area were detected in rabbits after permanent MCAO as well as which were treated by HBOP or HHP before MCAO.
     Materials and methods:
     1.72 male rabbits with body weight 2 to 2.5 kg and age 3 to 4 months were randomly divided into three groups:simple MCAO group(n=24),HBOP+MCAO group(n=24) and HHP+MCAO group(n=24).
     2.Before MCAO,preconditioning were performed,the animals in HBOP+MCAO group had been kept in hypobaric hypoxia oxygen chamber for 5d(100%O_2, 250Kpa,1hr/d),while the animals in HHP+MCAO group had been kept in hyperbaric oxygen chamber for 3 d(4000m,61.6Kpa).
     3.Then the MCAO model were made according to Bederson's method.
     4.The neurological deficits,signal intensity of MRI,pathological changes and infarct size were detected at 1、3、10、20d respectively after permanent MCAO in rabbits of three groups.
     5.The PbtO_2 at the edge of the infarcted region was monitored with LICOX CMP tissue oxygen pressure monitor(TOPM) at 1、3、10d after permanent MCAO in rabbits.
     6.Microdialysis of interstitial fluid of brain at the edge of infarcted region,including the concentration of glucose,lactate,pyruvate,glutamate were monitored,and the ratio of lactate/pyruvate was calculated.
     Results:
     1.All animals of the three groups are male and the reliability of MCAO model was well.
     2.Compared with simple MCAO group,the score of neurological deficits decreased significantly in HBOP group and HHP group at all time points(1、3、10、20d)(P<0.05).
     3.T2WI of MRI of the animals in three groups were showed High signal around the right temporal and parietal lobes at all time points(1、3、10、20d),Infarcted size and signal intensity reduced at 3 d after permanent MCAO(P<0.05).Compared with the simple MCAO group,the abnormal signal zones of T2WI in MRI which represented the ischemia and infarcted size were reduced significantly in HBOP group and HHP group at 3、10 d after permanent MCAO.
     4.The results of TTC staining indicated infarcted regions appeared in right side of brain after permanent MCAO,there were no statistical differences in the three groups in infarcted size at 1 d,and the infarcted size arrived the top in 3 d after permanent MCAO. Compared with simple MCAO group,size reduced significantly in HBOP+MCAO group and HHP+MCAO group at 3、10、20 d after permanent MCAO(P<0.05).
     5.Pathology at 1d showed that,in the simple MCAO group,the color of cerebral ischemia were white,almostly no normal cell could be seen in infarcted region in 10 d.But clear boundary could be found in HBOP+MCAO group and HHP+MCAO group at 10、20 d after permanent MCAO.
     6.PbtO_2 around the infarcted regions in the simple MCAO group significantly decreased at 1、3、10 d after permanent MCAO(P<0.05),which were significantly increased after HBOP and HHP(P<0.05).PbtO_2 in preconditioning groups come to normal quicker than simple MCAO group.
     7.The variations of the components in the microdialysis fluid from the interstitial brain in the simple MCAO group,HBOP+MCAO group and HHP+MCAO group were not the same. Glucose productions decreased at 1d after MCAO,the two preconditioning groups recovered to normal at 3 d,there were statistically significant between the two preconditioning group and simple MCAO group;while the simple MCAO group still decreased at 20 d and were significantly lower than the left(P<0.05).The lactate production increased at 1、3d,pyruvate increased at 1、3d, glyceral increased at 1d,there were statistically significant between two preconditioning groups and simple MCAO group.The glutamate concentration increased after MCAO,peaking at 3d,the difference of the glutamate concentration between the HBOP+MCAO group and the other two groups was statistically significant at 1、10d(P<0.05).
     Conclusions:
     1.Because of the characteristics of high survival rate and easy to breed,the MCAO model prepared by improved Bederson's method is very useful,and it can imitate the clinical changes of cerebral ischemia.
     2.HBOP and HHP can improve neurologic deficits and reduce infarcted volume after permanent MCAO in rabbits.There are no significant differences on the neuroprotective effects of HBOP and HHP on cerebral ischemia.
     3.HBOP and HHP can improve the PbtO_2 around the infracted zone after MCAO in rabbits
     4.HBOP and HHP can improve the energy metabolism and neurotransimitters disorders around the infracted zone after MCAO in rabbits
     5.The variations of the components of the microdialysis interstitial fluid from the brain support the presence of "biochemical penumbra" around the infracted zone after MCAO,which suggested disorders of the toxicities of excitatory amino acids probably be one of the important mechanisms of cerebral ischemia injuries and the neuroprotective effects of HBOP and HHP maybe due to they could facilitate the recovery of "ischemia penumbra" and "biochemical penumbra" around the infracted zone.
引文
1.饶明利主编.中国脑血管病防治指南.北京:人民卫生出版社,2007.1
    2.Keyser JD,Sulter G,Luiten PG.Clinical trials with neuroprotective drugs in acute is chemic stroke:are we doing the right thing[J].Trends Neurosci,1999;22:535-542
    3.Beger R,Garnier Y,Jensen A.Perinatal brain damage:underlying mechanisms and neuroprotective strategies[J].J Soc Gynecol Investig,2002;9:319-328
    4.Astrup J,Syom L,Branston NM,et al.Cortical evoked potential and extracellular K+and H+ and critical levels of brain ischemia[J].Stroke,1977;8(1):51-55
    5.Murry CE,Jenning RB,Reimer KA.Preconditioning ischemia:a delay of Iethal cell injury in ischemic myocardium[J].Circulation,1986;74(5):1124-1136
    6.Kitagawa K,Matsumoto M,Tagaya M,et al.Ischemic tolerance phenomenon found in the brain[J].Brain Res,1996;528:21-24
    7.Toyoda,T,Kassell NF,lee KS.Induction of ischemic tolerance and antioxidant activity by brief focal ischemia[J].Neuro Report,1997;8(4):847-851
    8.Kato H,Kogure K Aiaki T,et al.AS troliat and mcrfogHal reactions in the gerbil hippocampus with induced ischemic tolerance[J].Brain Res,1994;664:69-76
    9.Liu J,Bartels M,Lu A,et al.Microglia/macrophages prolife rate in striatum and neocortex but not in hippocampus after brief global ischemia that produces ischemic tolerance in gerbil brain[J].J Cereb Blood Flow Metab,2001;21(4):361-73
    10.Wada k,Ito M,Miyazawa T,et al.Repeated hyperbaric oxygen induces ischemia tolerance in gebil hippocampus[J].Brain Res.1996;740(1-2):15-20
    11.Liu J,Purnima N,Fengshan YU,et al.Neuroprotection by hypoxia preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin[J].Stroke,2005;36(6):1264-1269
    12.Bergeron M,Gidday JM,Yu AY,et al,Role of hypxia-inducible factor in hypoxia-induced ischemia tolerance in neonatal rat brain[J].Ann Neurol.2000;48(3):285-296
    13.Vannucci RC,Towtighi J,Vannucci SJ,Hypoxic preconditioning and hypoxic-ischemic brain damage in the inmature rat:pathologi and metabolic correlates[J].J Neurochcm.1998;71(3):1215-1220
    14.吕国蔚,崔秀玉,于顺,等.低氧耐受极限与低氧预适应.中国神经科学杂志 [J].2004;20(9):388-393
    15.Miler BA,Perez RS,Shah AR et al.Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia-reperfusion[J].Neuroreport,2001;12(8):1663
    16.Romanovskii DY,Tyul EI,Samoilov MO,Preconditioning hypobaric hypoxia prevents anoxia induced inhibition of generation of focal petontials in slice of olfactory cortex from rat brain[J].Bull Exp Biol Med,2001;132(6):1154-1156
    17.Luo G,Liu FY,Xie ZZ et al.Efects of hypoxic preconditioning on myocardial mitochondria energy metabolism during acute hypoxia in rats[J].J Med Coll PLA,1998;13(1):22
    18.Mu D,Chang YS,Vexler ZS,et al.Hypoxia-inducible factor 1 alpha and erythropoitein upregulation with deferoxamine salvage after neonatal stroke[J].Exp eurol,2005;195(2):407-415
    19.Miljkovic-Lolic M,Silbergleit R,fiskum G,et al.Neuroprotective effects of hyperbaric oxygen treatment in experimental focal cerebral ischemia are associated with reduced brain leukocyte myeloperoxidase activity[J].Brain Res,2003;971(1):90-94
    20.Nie H,Xiong L,Lao N,et al.Hyperbaric oxygen preconditioning induces tolerance against spinal cord ischemia by upregulation of antioxidant enzymes in rabbits[J].J Cere Blood Flow Metab,2006;26(5):666-674
    21.Kim C H,Choi H,Chun YS,et al.Hyperbaric oxygenation pretreatment induces catalase and reduces infarct size in ischemic rat myocardium[J].Pfl(u|¨)gers Arch Eur J Physiol,2001;442(4):519-525
    22.胥全宏,冯华,王宪荣,等.高原大鼠颅脑损伤局部脑组织氧分压变化特点[J].中华神经外科疾病研究杂志,2005;4(2):137-140
    23.Badr A E,Yin W,Mychaskiw G,et al.Effect of hyperbaric oxygen on striatal metabolites:a microdialysis study in awake freely moving rats after MCA occlusion[J].Brain Res,2001;916(1):85
    24.Berderson JB,Pitts LH,Daves RL,et al.Rat middle cerebral artery occlusion:Evlutation of the model and development of neurologic examination[J].Stroke,1986;17(2):472-476
    25.Li F,Silva MD,Sotak CH,et al.Temporal evolution of ischemic injury evaluated with diffusion-perfusion-and T2-weighted MRI[J].Neurology,2000;54(3):689-696
    26.黎海涛,应大君,孙建森,等。犬严重烧伤早期脑水肿MRI与病理对照观察的实验研究[J].第三军医大学学报,2000;22(9):844-848
    27.Roh JK,KangDW,LeeSH,et al.Significance of acute multiple brain infarction or diffusion-weighted imaging[J].Stroke,2000;31:688
    28.Zhang W Q,William R M,Hong J S.Decreased glutamate release correlates with elevated dynorph in content in the hippocampus of aged rats with spatial learning deficits[J].Hippocampus,1991;1(4):391-398
    29.Joshua B.Bederson MD,Lawrence H,et al.Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats[J].Stroke,1986;6:1304-1308
    30.Koennecke HC.Editorialcomment-Challenging the concept of a dynamic penumbra in acute ischemicstroke[J].Stroke,2003;34(10):2434
    31.Niklasa,A,Brockb D,Schoberc R,et al.Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation-HBO effects on brain edema and necrosis after severe brain trauma in rabbits[J].Neurological Sciences,2004;219:77-82
    32.Kiening K L,Hartl R,U nterberg A W,et al.Br ain tissue PO_2-Monitoing in comatose patients:Implications for therapy[J].J Neurol Res,1997;19(3):233-240
    33.张金兰,刘颖,周同惠.微透析取样技术在药物代谢研究中的应用及前景[J].药学学报,2001;36(7):555-558
    34.Shibata M,Araki N,Hamada J,et al.Brain nitrite production during global ischemia and reperfusion:an in vivo microdialysis study[J].Brain Res,1996,734:86-90
    35.Benvensite H,Huttemeier PC.Microdialysis theory and application[J].Prog Neurobiol,1990;35(3):195
    36.Landolt H,Langemann H,Alessandri B.A concept for the introduction of cerebral microdialysis in neurointensive care[J].Acts Neurochir,1996;67(Suppl):3133
    37.Weinstein PR,Anderson GG,Telleo DA.Neurological deficit and cerebral infarction after middle cerebral artery occlusion in unanesthetized rabbits[C].Stroke,1986;17(2):318
    38.卞杰勇,王宇卉,张世明等,雌激素对大鼠局灶性脑缺血的保护作用[J].苏州大学学报(医学版)2003;23(4):399-401
    39.Rauca C,Zerbe R,Jantze H,et al.The importance of free hydroxyl radicals to hypoxia preconditioning[J].Brain Res,2000;868(1):147-149
    40.Hakim AM.Ischemic penumbra:the therapeutic window[J].Neurology,1998;51(3supp13):S44-S46
    41.Chen J,Graham SH,Zhu RL,et al.Stress proteins and toerlance to focal cerebral ischemial[J].J Cereb Blood Flow Metab,1996;16(1):566-577
    42.Zhang W Q,Tilson H A,Hong J S,et al.Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage[J].Brain Res,1988;461:335-342
    43.Zhang W Q,Hong J S,Tilson H A,et al.System icadm in istration of kainic acid increased GABA levels in perfusate from the hippocampus of rats in vivo[J].Neurotoxicology,1990;11:593-600
    44.Zhang W Q,Hong J S,Tilson H A,et al.Extracellular concent rations of amino acid transmitters invent ralhippocampus during and after the development of kindling [J].Brain Res,1991;540:315-318
    45.胡胜利,金清东,冯华,等.高压氧预适应对大鼠高原颅脑损伤的影响[J].军事医学科学院院刊,2006;30(6):541-543
    46.Zhang H,Zhang X,Zhang T,et al.Excitatory amino acids in cerebrospinal fluid of patients with acute head injuries[J].Clin Chem,2001;47:1458
    47.Yao T,Yano T,Nanjyo Y,et al.Simultaneous determination of glucose and L-lactate in rat brain by an electrochemical in vivo flow-injection system with an on-line microdialysis sampling[J].Anal Sci,2003;19(1):61-65
    48.Tsai PJ,Wu J P,Lin NN,et al.In vivo,continuous and automatic monitoring of extracellular ascorbic acid by microdialysis and on line liquid chromatography[J].J Chromatogr,1996;686:151-156
    49.Yamamuro Y,Iwano H,Sensui N,et al.Acetylcholine in the hippocampus during the discrimination learning performance in a rat model of chronic cerebral ischemia[J].Neuroreport,1996;7:1837-1840
    50.Shibata M,Araki N,Hamada J,et al.Brain nitrite production during global ischemia and reperfusion:an in vivo microdialysis study[J].Brain Res,1996;734:86-90
    51.Osuga H,Hakin AM.Relationship between extracellular glutamate concentration and voltage sensitive calcium channel function in focal ischemia in the rat[J].J Cereb Blood Flow metab,1996;16:629-636
    52. Crespi F. Concomitant in vivo electrophysiological and voltametric analysis indicate that ascorbic acid is a biochemical index of early ischemia[J]. Neurosci Lett, 1996; 215:189-192
    53. Benvensite H,Huttemeier PC. Microdialysis theory and application [J].Prog Neurobiol, 1990;35(3):195
    54. Landolt H, Langemann H, Alessandri B. A concept for the introduction of cerebral microdialysis in neurointensive care[J].Acts Neurochir, 1996;67(Suppl): 3133
    55. Sun Y, Jin K, Xie L,et al. VEGF-induced neuroprotection ,neurogenesis and angiogenesis after focal cerebral ischemia [J]. J Clin Invest ,2003;111 (12):843 - 1851.
    56. Zhang ZG, Zhang L , Jiang Q , et al. VEGF enhances angiogenesis and promotes blood brain barrier leakage in the ischemic brain [J] . J Cerebral Blood Flow Metab,2000; 106 (7): 829 - 838
    57. Van Bruggen N , Thibodeaux H , Palmer J T , et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/ reperfusion injury in the mouse brain[J] . J Clin Invest, 1999 ;104 (11): 1613 -1620
    58. Byzova TV , Goldman CK, Jankau J , et al. Adenvirus encoding vascular endothelial growth factor2D induces tissue2specific vascular patterns in vivo[J ] . Blood , 2002;99 (12): 4434-4442
    59. Shingo T , Date I , Yano A , et al. Cell therapy for cerebral ischemia using vascular endothelial growth factor secreting cells[J] . International Congress Series,2003;125 (4): 483 - 487
    60. Alon T,Hemo I, Itin A,et al.VEGF acts as a survival factor for newly formed retinal vessels and implications for retinophathy of prematurity[J].Nat Med, 1995; 1:1024
    61. Bernaudin M,Tang Y,Reilly M,et al.Brain genomic response following hypoxia and reoxygenation in the neonatal rat[J].J Biol Chem,2002;277(42):39728-39738
    62. Bernaudin M , Nedelec AS , Divoux D , et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia inducible factor-1 and its target genes ,erythropoietin and VEGF , in the adult mouse brain[J]. J Cereb Blood Flow Metab,2002;22(4):393-403
    63.Engstrom M,Polito A,Reinstrup P, et al.Intracerebral microdialysis in severe brain trauma: The importance of catheter location[J]. J Neurosurg.2005; 102:460-469
    64.Nilsson OG,Brandt L,Ungerstedt U,et al.Bedside detection of brain ischemia using intracerebral microdialysis:Subarachnoid hemorrhage and delayed ischemic deterioration[J].Neurosurgery.1999;45:1176-1184
    65.Stahl N,Mellergard P,Hallstr(o|¨)m A,et al.Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions[J].Acta Anaesthesiol Scand.2001;45:977-985
    66.万登峰,陈劲草,古金海.脑损伤后脑细胞外液中糖代谢变化的微透析研究[J].中国临床神经外科杂志,2004;9(6):404-406
    67.Nilsson OG,Angelo P,Hans S,et al.Are Primary Supratentorial Intracerebral Hemorrhages Surrounded by a Biochemical Penumbra? A Microdialysis Study[J].Neurosurgery.2006;59(3):521-528
    68.Unegerstedt U,Rostami E.Microdialysis in neurointensive care[J].Curr Pharm Des,2004;10:2145-2152
    69.Tolias CM,Reinert M,Seiler R,et al.Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury:a prospective historical cohort-matched study[J].J neurosurg,2004;101:435-444
    70.Frykholm P,Hillered L,Langstr(o|¨)m B,et al.The increase of interstitial glycerol reflects the degree of ischemic brain damage:A PET and microdialysis study in a MCA occlusion-reperfusion primate model[J].J Neurol Neurosurg Psychiatry.2001;71:455-461
    71.Lipton SA,Rosenberg PA:Excitatory amino acids as a final common pathway for neurologic disorders[J].N Engl J Med,1994;330(9):613-622
    72.Rothman SM:Synaptic activity mediates death of hypoxic neurons[J].Science,1983;220(4596):536-537
    73.Qureshi Adnan I,Ali Zulfiqar,Suri M Fareed K,et al.Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage:An in vivo microdialysis study[J].Critical Care Medicine,2003;31(5):1482-1489
    74.Lees KR:Cerestat and other NMDA antagonists in ischemic stroke.Neurology,1997;49:S66-S69
    75.Gomi S,Karp AH.Regional alterations in an excitatory amino-acid transporter,blood flow,and glucose metabolism after middle cerebral artery occlusion in the rat[J].Exp Brain Res,2000;130(4):521-528
    76. Giufirida R, Malation LS, Bellomo M, et al. Immunohistochemical modifications of vasoactive neuropeptides and excitatory amino acids in the nervous tissue of the Mongolial gerbil transient cerebral ischemia[J]. Int J Dev Neurosci,1999;17(2):99-107
    77. Furukawa N. Endogenouslyreleased DOPA is a causal factor for glutamate release and resultant delayed neuronal cell death by transient ischemia in rat striate[J]. J Neurochem,2001 ;76(3): 815-824
    78. Dawson LA,Djali S,Gonzales C,et al.Haracterization of transient focal ischemical -induced increases in extra cellular glutamate and aspartame in spontaneously hypertensive rats[J].Brain Res Bull,2000;53(6):767-776
    79. Hillened L, Person L. Neurochemical monitoring of the acutely injured human brain[J]. Scand J Clin Lab Invest, 1999;229(suppl): 9-18
    80. Rae VL, Bowen KK, Dempsey RJ.Transient focal cerebral ischemia down regulates glutama te transporters GlT-1 and EAACL expression in rat brain[J].Neurochemistry Res,2001;26(5):407-502
    81. Keith W Muir. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists [J]. Current Opinion in Pharmacology, 2006; 6:53-60
    82. Niels C. Danbolt. Glutamate uptake. Progress in Neurobiology, 2001; 65: 1-105
    83. Bond A, Lodge D, Hicks CA, et al NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischemic tolerance in the gerbil hippocampus [J]. Eur J Pharmacol,1999;10:91-99
    84. Rae VL, Bowen KK, Dempsey RJ.Transient focal cerebral ischemia down regulates glutamate transporters GlT-1 and EAACL expression in rat brain[J].Neurochemistry Res,2001;26(5):407-502
    85. Uchino S,Nakamura T, Nakamura K.Real-time two dimensional visualization of ischemia induced glutamate release from hippocampus sIices[J].Euro J Neurosis, 2001;13(4):670-678
    86. Alan S. Hazell. Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies [J]. Neurochemistry International, 2007;50: 941-953
    87. Jae-Hyuk Yi, Alan S. Hazell. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury[J]. Neurochemistry International,2006; 48: 394-403
    1.Bergeron M,Gidday JM,Yu AY,et al.Role of hypxia-inducible factor in hypoxia-induced ischemia tolerance in neonatal rat brain[J].Ann Neurol.2000;48(3):285-296
    2.Murry CE,Jenning RB,Reimer KA.Preconditioning ischemia:a delay of Iethal cell injury in ischemic myocardium.[J].Circulation,1986;74(5):1124-1136
    3.Kitagawa K,Matsumoto M,Tagaya M,et al.Ischemic tolerance phenomenon found in the brain[J].Brain Res,1996;528:21-24
    4.Vannucci RC,Towtighi J,Vannucci SJ.Hypoxic preconditioning and hypoxic-ischemic brain damage in the inmature rat:pathologi and metabolic correlates[J].J Neurochcm,1998;71(3):1215-1220
    5.吕国蔚,崔秀玉,于顺,等,低氧耐受极限与低氧预适应[J].中国神经科学杂,2004;20(9):388-393
    6.Miler BA,Perez RS,Shah AR et al.Cerebral protection by hypoxic preconditioning in a murine model of focal ischemia-reperfusion[J].Neuroreport,2001;12(8):1663
    7.Romanovskii DY,Tyul EI,Samoilov MO,Preconditioning hypobaric hypoxia prevents anoxia induced inhibition of generation of focal petontials in slice of olfactory cortex from rat brain[J].Bull Exp Biol Med,2001;132(6):1154-1156
    8.范有明,高钰琪,刘福玉,等.低压缺氧延迟预适应对小鼠海马神经元的保护作用研究[J].中国病理生理杂志,2006;22(1):93-97
    9.Chen CF,Tesi SY,Mn MC,et al.Hypoxia preconditioning enhances renal supercocide dismutase leves in rats[J].J Physiol,2003;552(2):561-569
    10.Kolar F,Ostada B,Prochazka J,et al.Comparison of cardiopulmonary response to intermittent high-altitude hypoxia in young and adult rats[J].Respiration,1989;56(1-2):57-62
    11.Luo G,Liu FY,Xie ZZ et al.Efects of hypoxic preconditioning on myocardial mitochondria energy metabolism during acute hypoxia in rats[J].J Med Coll PLA,1998;13(1):22
    12.Robach P,Dechaux M,Jarrot S,et al.Operation Everest Ⅲ:role of plasma volume expansion on VO_2 during prolonged high-altitude exposure[J].J Appl Physiol,2000;89(1):29
    13.De Angelis C,Haupert Jr GT.Hypoxia triggers release of an endogenous inhibitor of Na+-k+-ATPase from midbrain and adrenal[J].Am J Physiol,1998;274(1-2),F182-188
    14.Bergeron M,Gidday JM,Yu AY,et al,Role of hypxia-inducible factor in hypoxia-induced ischemia tolerance in neonatal rat brain[J].Ann Neurol,2000;48(3):285-296
    15.Jin KL,Mao XO,Nagayama T,et al.Induction of vascular endothelial growth factor and hypoxia-inducible factor-1 by global ischemia in rat brain[J].Neuroscience,2000;99(3):577-585
    16.Jones NM,Bergeron M.Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain[J].J Cereb Blood Flow Metab,2001,21(9):1105-1114
    17.Bernaudin M,Nedelec AS,Divoux D,et al.Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia inducible factor-1 and its target genes,erythropoietin and VEGF,in the adult mouse brain[J].J Cereb Blood Flow Metab,2002;22(4):393-403
    18.Zhang W L,Lu GW.Changes of adenosine and its A(1) receptor to hypoxic preconditioning[J].Biol Signals Recept,1999;8(4-5):275-280
    19.Chen Y Ginis I,Hallenbeck JM.The protective effect of ceramide in immature rat brain hypoxia-ischemia involves up-regulation of bcl-2 and reduction of TUNLL-positive cells[J].J Cereb Blood Flow Metab,2001;21(1):34-40
    20.Camier P,Demougeot C,Berband N,et al.Stress response to hypoxia in gerbil brain:HO-1 and Mn SOD expression and glial activation[J].Brain Res,2001;893(1-2):301-309
    21.Xie J,Lu G.Hou Y.Role of excitatory amino acids in hypoxic preconditioning[J].Biol Signals Recept,1999;8(4-5):267-274
    22.Alsbo CW,Mang ML,Nielsen M,et al.Ischemia tolerance affects the adenylation state of GluR2 Mrna[J].Neuroreport,2000;11(14):3279-3282
    23.Liu J,Gams 1,Spatz M,et al.hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-α and ceramide[J].Am J Physiol Cell Physiol,2000;278(1):CI44-C153
    24.崔秀玉,李俊发,韩松,等.低氧预适应增高小鼠脑组织内cPKCγ膜转位水平[J].生理学报,2004;56(4):461-465
    25.李江,李俊发,吕国蔚,等,脑红蛋白在急性重复低氧小鼠脑皮质中的表达[J].华北煤炭医学院学报,2003;5(4):403-404
    26.Langmeier M,Maresova D.Intemittent hypobaric hypoxia during development morphologic changes in the neocortex and hippocampus[J].Cesk Fysiol,1998;47(2):62-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700