个旧锡矿高峰山矿段开采期渗流场数值模拟及涌水量预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着探矿、采矿技术的高速发展,更深层的矿床不断被发现,探矿、采矿过程中地下水的危害及影响也越来越大。如何较为准确的模拟地下水渗流场及预测巷道涌水量的大小,为巷道施工制定合理的防排水措施提供依据,成为日益关注的课题之一。
     本文以个旧矿区高峰山矿段为研究对象,在前人研究的基础上,通过野外地质调查及矿段水文地质特征分析,建立概念模型与数学模型,利用GMS软件,运用有限差分法,对1650中段开拓及使用期进行数值模拟,预测1650中段开拓及使用期地下水渗流场及涌水量变化情况。研究表明:
     1、矿段地层岩溶岩组、地质构造、表层岩溶及地下水运动控制岩溶发育特征,从而控制矿段含水岩组的划分、水文地质参数递变规律、地下水补径排等水文地质特征。
     2、矿段地下水动态成因类型属于气象型,大气降雨是主要补给源;径流模态为波态型,地下水径流具有一定深度、长度及明显的垂直分带性;地下水排泄主要是侧向排泄及巷道涌水。
     3、建立模拟区水文地质概念模型、数学模型,通过多次校正与调参,获取了一套符合高峰山矿段实际水文地质条件的渗透系数、给水度等水文地质参数,并实现了地下水运动三维可视化。
     4、通过数值模型预测:(1)1650中段2008年开拓期,1650巷道涌水量为1.21×10"m3,月平均最大涌水量约为8600 m3/d,日最大涌水量约为9100 m3/d;1800巷道涌水量为6.1×104m3,月平均最大涌水量约为1000m3/d,日最大涌水量约为1700 m3/d;(2)1650中段2009年使用期,1650巷道涌水量为0.77×106m3,月平均最大涌水量约为7800 m3/d,日最大涌水量约为8700 m3/d;1800巷道无明显涌水量;(3)2010年以后,模拟区地下水补给、排泄基本达到均衡,呈稳定形态,每年渗流场及涌水量变化情况与2009年情况大致相同,受大气降水影响有小幅度的变化。
With the rapid development of the technology about prospecting and mining, the deeper deposits had been found, and the harm brought from the prospecting and mining activities increased obviously. So how to make the simulation to the groundwater seepage field and take the prediction of water inflow of the roadway more accuratly can provide the basis for making the reasonable measures to prevent drainage in the roadway construction, and become one of the topics of increasing concern.
     The paper takes the ore section of Gao-feng mountain in Gejiu mining areas as the research object. On the basis of previous studies, the paper sets up the conceptual model and the mathematical model by means of massive field geological survey and the mineral paragraph hydrogeological characteristics analysis. By using GMS software and the finite difference method, the study takes the numerical simulation to the development and useful life for the middle section of the 1650 and makes the prediction of the changes of the groundwater seepage field and water inflow during the development and useful life to the 1650's middle section. The study shows that:
     1. The formation's karst petrofabric in ore section, the geological structure, the surficial karst and the groundwater activity control the characteristics of karst development, which controls the hydrogeology characteristics including the division of the aquiferous rock formations, the rules of change to the hydro-geological parameters and the groundwater's recharge, runoff and excretion etc.
     2. The genetic type of the groundwater's dynamic belongs to the Weather-type and the atmospheric precipitation is the main supply source. The mode of run-off is the Wave-State type and the groundwater's runoff has a certain depth, length and has the obvious vertical zonation. The discharge of groundwater is mainly lateral excretion and the roadway water gushing.
     3. The study sets up the hydrogeological conceptual model and mathematical model in the simulation area, and by means of repeated calibration and scheduling, which obtained a set of hydrogeological parameters including permeability coefficient and specific yield etc. and realized the actual hydro-geological conditions to ore section of Gao-feng mountain.
     4. The paper made the prediction through the numerical model:
     (1) In the 1650's middle section in the opening period of 2008, the water inflow of 1650 roadway is 1.21×106m3, the maximum monthly average inflow of water is 8600 m3/d, the maximum daily inflow is 9100 m3/d. And the water inflow of roadway 1800 is 6.1×104m3, the maximum monthly average inflow is 1000 m3/d, the maximum daily inflow is 1700 m3/d.
     (2) In the 1650's middle section in the using period of 2009, the water inflow of roadway 1650 is 0.77×106m3, the maximum monthly average inflow of water is 7800 m3/d, the maximum daily inflow of water is 8700 m3/d; but the roadway 1800 had not water inflow obviously
     (3) After 2010, the groundwater's recharge and excretion will tend to be a balance in the simulation area, and will show the stable morphology, the annual seepage field and the change of water inflow is the same to the situation in 2009 approximately, and will be changed with a small margin by the atmospheric precipitation.
引文
[1]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.6.
    [2]房佩贤.专门水文地质学[M].北京:地质出版社,1996.11.
    [3]采矿手册VoI6[M].冶金工业出版社,1991.
    [4]魏军.矿井涌水量的数值模拟研究[D].辽宁:辽宁工程技术大学,2006年.
    [5]个旧矿区矿产资源规划[R].个旧:个旧锡矿.
    [6]薛禹群.地下水动力学[M].北京:地质出版社,1997.9.
    [7]徐文旬等.地下水动力学[M].成都地质学院,1985.
    [8]李俊亭,王愈吉等.地下水动力学[M].北京:地质出版社,1987.10.
    [9]李义昌,李宾亭等.地下水动力学[M].中国矿业大学出版社,1995.11.
    [10]郝治福,康绍忠等.地下水系统数值模拟的研究现状和发展趋势[J].水利水电科技进展2006年2月第1期.
    [11]ANDERSON M P, WOESSNER W W. Applied groundwater modeling:Simulation of flow and advective transport[M]. New York:Academic Press Inc.,1992:145 152.
    [12]EWING R E. Multidisciplinary. interactions in energy and environmental model ing[J]. Journal of Computational and Applied Mathematics,1996,74: 193-215.
    [13]Wood W L. A note on how to avoid spurious oscillation in the finite element solution of the unsaturated flow equation[J]. Journal of Hydrology,1996, 176:205-218.
    [14]KIM Jun-mo,PARIZEK R R. Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system[J]. Journal of Hydrology,1997:231-243.
    [15]SCHEIBE T, YABUSAKI S. Scaling of flow and transport behavior in heterogeneous groundwater systems [J]. Advances in Water Resources,1998,22(3):223-238.
    [16]GHASSEMI F, MOLSON J W, FALKLAND A. Three-dimensional simulation of the Home Island freshwater lens:preliminary results [J]. Environmental Modelling & Software,1999,14:181-190.
    [17]PORTER D W, GIBBS B P. Data fusion modeling for groundwater systems [J]. Journal of Contaminant Hydrology,2000.42:303-335.
    [18]MAZZIA A, PUTTII M. Mixed-finite element and finite volume discretization for heavy brine simulations in groundwater[J]. Journal of Computational and Applied Mathematics,2002,147:191-213.
    [19]LI Shu-guang, McLANGHLIN D. A computationally practical method for stochastic groundwater modeling[J]. Advances in Water Resources,2o03,26:1137-1148.
    [20]MEHL S, HILL M C. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes [J]. Advances in Water Resources,2002,25:497-511.
    [21].陈家军,王红旗,张征.地质统计学方法在地下水水位估值中应用[J].水文地质工程地质,1998(6):7-10.
    [22]卞锦宇,薛禹群,程诚.上海市浦西地区地下水三维数值模拟[J].中国岩溶,2002,21(3):182-187.
    [23]王玮.水文地质数值模拟中节点地面标高的获取方法[J].长安大学学报:地球科学版,2003,25(2):41-45.
    [24]卢文喜.地下水运动数值模拟过程中边界条件问题探讨[J].水利学报,2003(3):33-36.
    [25]武强,徐华.地下水模拟的可视化设计环境[J].计算机工程,2003,29(6):69-70.
    [26]张明江,门国发,陈崇希等.渭干河流域三维地下水流数值模拟[J].新疆地质,2004,22(3):238-243.
    [27]张祥伟,竹内邦良.大区域地下水模拟的理论和方法[J].水利学报,2004(6):7-13.
    [28]廖华胜,李连侠,LI Shu-guang等.地下水非平稳随机模型及空间变异性与非均匀性相互关系研究的展望[J].水利学报,2004(10):13-21.
    [29]薛禹群,叶淑君,谢春红.多尺度有限元法在地下水模拟中的应用[J].水利学报,2004(7):7-13.
    [30]魏连伟.召景力,崔亚莉等.模拟退火算法反演水文地质参数算例研究[J].吉林大学学报:地球科学版,2004,34(4):612-616.
    [31]邬强.齐岳山隧道涌水量预测的研究[D].西南交通大学,2006年.
    [32]郭文雅,温继满.谈矿井涌水量预测方法的发展[J].黑龙江科技信息,22.
    [33]张雷.隧道涌水量预测的计算方法研究[J].公路交通技术,2002年2月,第一期.
    [34]邓百洪.隧道涌水预测方法的研究[J].公路交通技术,2005年6月,第三期.
    [35]管恩太.矿井涌水量预测评述[J].中州煤炭,2005年第一期.
    [36]魏帼钧.隧道涌水量预测的计算方法比较[J].山西建筑,2007年5月第十四期.
    [37]赵海清,李向国,李学勤.矿坑涌水量分析[J].西部探矿工程,2006年第一期.
    [38]魏文清,马长明,魏文炳等.地下水数值模拟的建模方法及应用[J].东北水利水电,2006年第三期.
    [39]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.4.
    [40]王君连.工程地下水计算[M].中国水利水电出版社,2004.3.
    [41]梁煦枫,王文科,曾永刚等.GMS在水文地质结构可视化方面的应用[J].东北水利水电,2006年第九期.
    [42]许乐昌.地下水模拟常用软件介绍[J].铀矿冶,2002年2月第一期.
    [43]梁秀娟,林学珏,苏小四等.GMS与苏锡地区地下水流模拟[J].人民长江,2005年11月第11期.
    [44]郭纯青,李文兴等.岩溶多重介质环境与岩溶地下水系统[M].化学工业出版社,2006.9.
    [45]王明章,王尚彦.贵州岩溶石山生态地质环境研究[M].北京:地质出版社,2005.6.
    [46]刘招伟,张民庆,王树仁.岩溶隧道灾变预测与处治技术[M].科学出版社,2007.6.
    [47]袁道先.中国岩溶学[M].北京:地质出版社,1994.9.
    [48]程星.岩溶塌陷机理及其预测与评价研究[M].北京:地质出版社,2006.10
    [49]王宇,张贵,李丽辉等.岩溶找水与开发技术研究[M].北京:地质出版社,2007.1.
    [50]王运生,李永昭.第四纪地质学及地貌学简明教程[M].成都理工大学,2001.10.
    [51]云南省地质局第十五地质队.区域水文地质普查报告个旧幅[R].1980.12.
    [52]薛禹群,谢春红.地下水数值模拟[M].科学出版社,2007.9.
    [53]徐开礼,朱志澄.构造地质学[M].北京:地质出版社,1989.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700