短跑过程中下肢动作控制和股后肌群损伤机制的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的与意义:
     通过对高水平短跑运动员短跑最高速阶段的运动学、动力学及下肢主要肌群的肌电数据的采集,引入环节互动动力学方法对短跑最高速阶段的下肢运动控制机制及股后肌群受力情况进行研究,分析短跑最大速度阶段控制下肢运动的主要力矩及下肢的神经肌肉募集情况,探讨短跑最大速度阶段主要力矩控制下肢运动的模式和下肢肌肉所承受外力负荷与损伤原因,尤其是运动过程中极易受伤的股后肌群的肌力变化角色。
     同时使用CON-TREX等动肌力测试系统,对短跑运动员膝关节处的最大等长收缩肌力矩及在不同角速度下的等速运动的肌力矩和肌电活动进行测量,用以分析短跑运动员下肢在等长收缩及不同角速度下等速运动时的动力学指标,分析不同运动速度下的关节肌力的变化趋势,及膝关节伸、屈肌群肌力的平衡问题,试图探讨股后肌群损的伤机制。
     本研究的意义在于:采用运动学、动力学、等动测试系统、肌电系统采集高水平短跑运动员的相关数据,引入环节互动动力学方法,对短跑最高速阶段腾空期与支撑期的下肢动作控制及肌肉受力情况进行分析,这有利于帮助我们研究短跑的动作控制模式和支撑期,摆动期内下肢肌肉的主要功能,为预防下肢肌肉(特别是股后肌群)损伤以及伤后康复治疗和专项肌肉力量训练提供生物力学理论参考依据。
     研究方法:
     使用CON-TREX(瑞士,型号:PM1/MK2a,b,序列号:O3c06)多关节等动肌力测试、评价与训练系统、VICON红外高速摄影系统(英国,VICON公司),摄像头为8台MX13,KISTLER三维测力台(瑞士,KISTLER公司,型号9287B)、德国BIOVISOION的16导无线肌电信号采集系统系统采集8名优秀短跑运动员在短跑最高速度阶段的运动学、动力学、肌电图数据,及膝关节的等长伸、屈,60、120、180、240°/s等速运动时的膝关节伸、屈肌力矩和膝关节主要伸、屈肌群的肌电图数据。
     研究结果:
     动作控制研究结果
     支撑期内,肌肉力矩(MUS)与外力矩(EXF)为控制下肢运动的主要力矩,肌肉力矩(MUS)的主要作用是抵抗平衡外力矩(EXF)的作用。触地初期,地面反作用力通过髋、膝关节前方,在髋、膝关节处产生较大的屈髋、伸膝力矩(EXF),此时肌肉力矩(MUS)产生屈膝伸髋力矩,对膝关节屈肌、髋关节伸肌—股后肌群提出较高要求,是股后肌群损伤发生的高危险期。而在支撑末期(80%-100%)阶段,髋、膝关节处的外力矩(EXF)趋向于零,此时肌肉力矩已不再为推动人体前进做贡献,髋关节处肌肉力矩(MUS)的主要功能是平衡大腿角加速度及髋线加速度在髋关节处产生的惯性力矩(MDT),该力矩有利于小腿在离地后的后摆动作。
     腾空期,肌肉力矩(MUS)的主要作用则是抵抗平衡惯性力矩(MDT)的作用。在腾空前期(10-60%),小腿在惯性力矩(MDT)的作用下做后摆运动。在腾空后期(80%左右),肌肉力矩(MUS)与惯性力矩(MDT)达到最大,此阶段肌肉力矩(MUS)的作用同支撑初期一样是伸髋、屈膝,说明股后肌群承受较大负荷。本研究发现,惯性力矩(MDT)是拉伸股后肌群的力量来源,其惯性力矩(MDT)主要由小腿角加速度产生的力矩(LAAT)构成,此后肌肉力矩(MUS)的主要作用是减慢小腿的前摆速度,防止膝关节过度伸展,并在腾空末期,使小腿后摆,为积极着地做准备。
     股后肌群损伤机制研究结果
     股后肌群在高速运动的触地初期及摆动末期,不仅要抵消股前肌群和屈髋肌群的力量,同时还要对抗地面反作用力通过髋、膝关节前方而产生的屈髋、伸膝力矩,以及由肢体运动在髋、膝关节处产生的屈髋、伸膝的力矩,为伸髋、屈膝做出贡献。因此在触地初期和摆动末期,股后肌群处在同一种负荷状态下,受到来自于髋、膝关节处外力矩(触地初期的地面反作用力产生的外力矩、摆动末期为环节运动产生的惯性力矩)同时向相反方向的牵拉,导致股后肌群处在巨大的应力(超过体重10倍)和快速的应变状态下,从而易导致股后肌群损伤的发生。
     膝关节肌力平衡结果
     通过比较受试者的屈膝肌群及伸膝肌群的峰值力矩发现,本实验受试者的屈肌与伸肌肌力的配比较为理想,左右膝关节的屈膝肌群及伸膝肌群的肌力的配比较为接近,左右膝关节的屈、伸肌肌力较为平衡。但是通过爆发力参数发现屈膝肌群在高速运动过程中爆发力水平较伸膝肌群存在显著差异,这有可能是影响运动成绩、导致股后肌群损伤的一个重要的潜在因素。这提示我们通过使用等动肌力测得的峰值力矩来评判肌肉力平衡问题的准确性尚待探讨,本研究的结果显示使用发力率参数来对高速运动状态下肌力爆发力水平的评判具有一定的优势。
     主要结论:
     支撑期控制下肢运动的主要力矩是肌力矩和有地面反作用力产生的外力矩;摆动期控制下肢运动的主要力矩是肌力矩和由环节运动产生的惯性力矩。惯性力矩在支撑末期和摆动期对运动都有明显影响。
     支撑初期和摆动末期,股后肌群的受力状态相似,即外力矩同时向相反的方向牵拉股后肌群,使其处于巨大的应力应变中,因此支撑初期和摆动末期都是股后肌群发生损伤的高危期。
     使用发力率指标对膝关节伸、屈肌群肌力平衡问题的研究反映出短跑运动员膝关节伸、屈肌群在高速运动状态下爆发力能力存在显著差异,这可能是影响短跑成绩和导致股后肌群损伤的一个因素。
Purpose:
     The purpose of this study was to analyze the movement control of lower extremity by collecting the kinematic, dynamic and EMG data during sprint running. The intersegmental dynamics was introduced into the study to figure out the movement control mechanisms and the loading condition of hamstring muscle, analyze the main torques and muscle activity during lower extremity movement, the main torques of lower extremity were used to study the pattern of movement control and the muscle loading was used to analyze muscle injury mechanism, especially the relationship between hamstring muscle loading and hamstring muscle injury.
     The CON-TREX Biomechanical Test and Training Systems were used to measure the knee joint torques during isometric contraction and at different isokinetic movement, to study the characteristics and trends of knee joint torques and the muscle force balance condition at different conditions, this will be a window for us to understand the mechanisms of hamstring muscle injury.
     The significance of this study is that the kinematic, dynamic, isokinetic, EMG data of elite sprinters and intersegmental dynamics were used in the study to research into the mechanisms of movement control and the condition of muscle loading during stance phase and swing phase during sprint running. This would help us to understand movement control, lower extremity muscles’function during the swing and stance phases, furthermore, to provide biomechanical theory for preventing lower extremity muscle injury, rehabilitation therapy and muscle strength training of sprinter.
     Methods:
     The CON-TREX Biomechanical Test and Training Systems (Switzerland, type: PM1/MK2a,b), Vicon Motion Analysis System (England, Camera type:MX13), Kistler force plate (Switzerland, type:9287B), Biovisions EMG Measurement System, (Germany, 16 Channels) were selected for this study. The kinematics, dynamics, EMG and isokinetic movement torques data at 0, 60, 120, 180, 240°/s were collected from 8 male elite athletes.
     Results:
     During stance phase, the active MUS functioned mainly to counteract the EXF created by the GRF at the knee and hip joint. At the initial phase, the MUS flexed the knee joint and counterbalanced the extension torques of EXF, and the MUS also extended the hip joint and neutralized the flexion torques (EXF) created by the ground reaction forces. During the swing phase, the MUS and MDT at the knee and hip joint functioned for controlling movement of the leg and thigh, causing knee joint flexion from extension and hip joint extension from flexion. The inertial torques produced by leg angular acceleration at the knee and hip joint were the main components of MDT.
     During initial stance phase and late swing phase, the external torques (EXF, MDT) which were produced by GRF and the segments movement of lover extremity stretched the hamstring muscles to opposite direction at the same time at knee and hip joint. To counterbalance the external torques, the hamstring muscles endured great loading, without considering the effects of external torques at hip joint and the torques which were produced by the knee extensors (quadriceps femoris) and the hip flexors, just at knee joint, the loading of hamstring muscles is more than 10 times of body weight. So the actual torque values which produced by the hamstring muscle at the knee and the hip might be far bigger than the estimated ones. We concluded that when excessive stretching force was applied, especially when powerful muscle contraction was combined with simultaneous forced lengthening of the myotendinous unit, a strain-type injury occurs.
     According to the peak torques of flexion and extension muscles at knee joint, the data indicated that the flexor and extensor force were an ideal condition, the peak torques of knee flexor were similar to the peak torques of knee extensor at different isokinetic movement speeds. The explosive force indexes of knee flexor were significantly less than the knee extensor explosive force indexes. Maybe this is the key factor which affects the sprint running performance and hamstring muscle injury. The results indicated that by useing the peak torques of knee flexor and extensor to study the balance of knee flexor and extensor is necessary to be investigated. The Rate of Force Development (RFD) enjoyed a great advantage in the judgment of lower extremity muscle explosive force level during high-velocity motion.
     Conclusion:
     Inter-segment analysis helped us to further understand muscle’s role during sprinting. Muscle torque functioned mainly to counteract the external torques created by the ground reaction force at hip and knee joint during stance phase, its functional role changed during swing phase to mainly counteract movement related torques partially due to the absence of ground reaction forces.
     The hamstring muscles were stretched by the external torques to opposite directions at the same time at knee and hip joint and endured great loading during initial stance phase and late swing phase. So a hamstring muscle strain injury was more likely to occur during the initial stance phase and the late swing phase of sprint running.
     The Rate of Force Development (RFD) could reflect the explosive force level difference between knee flexor and extensor during high velocity movement. Maybe this is the key factor which affects the sprint running performance and hamstring muscle injury.
引文
[1] BERNSTEIN N. The Co-ordination and Regulation of Movements [M]. Oxford, UK: Pergamon Press, 1967.
    [2] PUTNAM C A. Sequential motions of body segments in striking and throwing skills: descriptions and explanations [J]. J Biomech, 1993, 26(1): 125-35.
    [3] ZERNICKE R F. Biomechanical Insights into neural control of Movement. [M]//ROWELL L B, SHEPHERD J T. Handbook of physiology: A critical, comprehensive presentation of physiological knowledge and concepts: Sec 12: Exercise: Regulation and integration of multiple systems Oxford, NY: Oxford University Press. 1996: 293-330.
    [4] ZERNICKE R F, SCHNEIDER K. Biomechanics and developmental neuromotor control [J]. Child Development, 1993, 64(4): 982-1004.
    [5] PUTNAM C A. A segment interaction analysis of proximal-to-distal sequential segment motion patterns [J]. Medicine and Science in Sports and Exercise, 1991, 23(1): 130-44.
    [6] SMITH J L, ZERNICKE R F. Predictions for neural control based on limb dynamics [J]. Trends in Neurosciences, 1987, 10(3): 123-8.
    [7] BASTIAN A J, MARTIN T A, KEATING J G, et al. Cerebellar ataxia: abnormal control of interaction torques across multiple joints [J]. Journal of Neurophysiology, 1996, 76(1): 492-509.
    [8] WICKELGREN I. The cerebellum: the brain's engine of agility [J]. Science, 1998, 281(5383): 1588-90.
    [9] TOPKA H, DICHGANS J. The cerebellum and the physics of movement [J]. Behav Brain Sci, 1997, 20(02): 266-.
    [10] HIRASHIMA M, YAMANE K, NAKAMURA Y, et al. Kinetic chain of overarm throwing in terms of joint rotations revealed by induced acceleration analysis [J]. J Biomech, 2008, 41(13): 2874-83.
    [11] KETCHAM C J, DOUNSKAIA N V, STELMACH G E. Age-related differences in the control of multijoint movements [J]. Motor Control, 2004, 8(4): 422-36.
    [12] KODEK T, MUNIH M. An analysis of static and dynamic joint torques in elbow flexion-extension movements [J]. Simulation Modelling Practice and Theory, 2003, 11(3-4): 297-311.
    [13] KERRIGAN D C, LEE L W, NIETO T J, et al. Kinetic alterations independent of walking speed in elderly fallers [J]. Archives of Physical Medicine and Rehabilitation, 2000, 81(6): 730-5.
    [14] YU B, QUEEN R M, ABBEY A N, et al. Hamstring muscle kinematics and activation during overground sprinting [J]. Journal of Biomechanics, 2008, 41(15): 3121-6.
    [15] HRELJAC A, IMAMURA R T, ESCAMILLA R F, et al. The relationship between joint kinetic factors and the walk-run gait transition speed during human locomotion [J]. J Appl Biomech, 2008, 24(2): 149-57.
    [16] HUNTER J P, MARSHALL R N, MCNAIR P J. Segment-interaction analysis of the stance limb in sprint running [J]. Journal of Biomechanics, 2004, 37(9): 1439-46.
    [17] GANLEY K J, POWERS C M. Intersegmental dynamics during the swing phase of gait: a comparison of knee kinetics between 7 year-old children and adults [J]. Gait and Posture, 2006, 23(4): 499-504.
    [18] HOLLERBACH J M, FLASH T. Dynamic interactions between limb segments during planar arm movement [J]. Biological Cybernetics, 1982, 44(1): 67-77.
    [19] SAINBURG R L, GHILARDI M F, POIZNER H, et al. Control of limb dynamics in normal subjects and patients without proprioception [J]. J Neurophysiol, 1995, 73(2): 820-35.
    [20] BASTIAN A J. Cerebellar limb ataxia: abnormal control of self-generated and external forces [J]. Annals of the New York Academy of Sciences, 2002, 978(16-27.
    [21] TOPKA H, KONCZAK J, SCHNEIDER K, et al. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics [J]. Experimental Brain Research, 1998, 119(4): 493-503.
    [22] HOY M G, ZERNICKE R F. Modulation of limbdynamics in the swing phase of locomotion [J]. Journal of Biomechanics, 1985, 18(49–60.
    [23] LIU Y. Kinematik, dynamik und simulation des leicht-athletischen sprints :Kinematics, dynamics and simulation of sprint running [D]. Frankfurt Frankfurt am main, 1993.
    [24] THELEN D G, CHUMANOV E S, BEST T M, et al. Simulation of Biceps Femoris Musculotendon Mechanics during the Swing Phase of Sprinting [J]. Medicine and Science in Sports and Exercise, 2005, 37(11):
    [25] THELEN D G, CHUMANOV E S, HOERTH D M, et al. Hamstring muscle kinematics during treadmill sprinting [J]. Medicine and Science in Sports and Exercise, 2005, 37(1): 108-14.
    [26] THELEN D G, CHUMANOV E S, SHERRY M A, et al. Neuromusculoskeletal models provide insights into the mechanisms and rehabilitation of hamstring strains [J]. Exercise and Sport Sciences Reviews, 2006, 34(3): 135-41.
    [27] DE SMET A A, BEST T M. MR imaging of the distribution and location of acute hamstring injuries in athletes [J]. AJR Am J Roentgenol, 2000, 174(2): 393-9.
    [28] YANG C W, LIU G C, CHEN H Y, et al. MR imaging of sports-related muscle injuries [J]. Gaoxiong Yi Xue Ke Xue Za Zhi, 1994, 10(4): 203-9.
    [29] ASKLING C, KARLSSON J, THORSTENSSON A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload [J]. Scandinavian Journal of Medicine and Science in Sports, 2003, 13(4): 244-50.
    [30] WOOD G. Biomechanical limitations to sprint running. [M]. New York: Karger, Basel,, 1987.
    [31] GARRETT W E, JR. Muscle strain injuries [J]. American Journal of Sports Medicine, 1996, 24(6 Suppl): S2-8.
    [32] HEIDERSCHEIT B C, HOERTH D M, CHUMANOV E S, et al. Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study [J]. Clin Biomech (Bristol, Avon), 2005, 20(10): 1072-8.
    [33] SCHACHE A G, KIM H J, MORGAN D L, et al. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury [J]. Gait Posture, 2010, 32(1): 136-40.
    [34] MANN R V, SPRAGUE P. A kinetic analysis of the ground leg during sprint running [J]. Research Quarterly for Exercise and Sport, 1980, 51(2): 334-48.
    [35] BURKETT L N. Causative factors in hamstring strains [J]. Medicine and Science in Sports, 1970, 2(1): 39-42.
    [36] AGRE J C. Hamstring injuries. Proposed aetiological factors, prevention, and treatment [J]. Sports Medicine, 1985, 2(1): 21-33.
    [37] ORCHARD J, MARSDEN J, LORD S, et al. Preseason hamstring muscle weakness associated with hamstring muscle injury in Australian footballers [J]. American Journal of Sports Medicine, 1997, 25(1): 81-5.
    [38] CAMERON M, ADAMS R, MAHER C. Motor control and strength as predictors of hamstring injury in elite players of Australian football [J]. 2003, 4(4): 159-66.
    [39] BENNELL K, WAJSWELNER H, LEW P, et al. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers [J]. British Journal of Sports Medicine, 1998, 32(4): 309-14.
    [40] JOHNSON M D, BUCKLEY J G. Muscle power patterns in the mid-acceleration phase of sprinting [J]. Journal of Sports Sciences, 2001, 19(4): 263-72.
    [41] MANN R V. A kinetic analysis of sprinting [J]. Medicine and Science in Sports and Exercise, 1981, 13(5): 325-8.
    [42] STIEF F, KLEINDIENST F I, WIEMEYER J, et al. Inverse dynamic analysis of the lower extremities during nordic walking, walking, and running [J]. J Appl Biomech, 2008, 24(4): 351-9.
    [43] PUTNAM C A. Sequential motions of body segments in striking and throwing skills: descriptions and explanations [J]. Journal of Biomechanics, 1993, 26 Suppl 1(125-35.
    [44] PUTNAM C A. Interaction between segments during a kicking motion [M]. Champaign, IL,, 1983.
    [45] ZERNICKE R F, SCHNEIDER K. Intersegmental dynamics during gait: implications for control [M]//A.E. P. Adaptability of human gait: implications for the control of locomotion Elsevier Science Publishers BV (North Holland). 1991: 187-200.
    [46] ZERNICKE R F, SCHNEIDER K. Biomechanics and developmental neuromotor control [J]. Child Dev, 1993, 64(4): 982-1004.
    [47] HOY M G, ZERNICKE R F. The role of intersegmental dynamics during rapid limb oscillations [J]. J Biomech, 1986, 19(10): 867-77.
    [48] SCHNEIDER K, ZERNICKE R F, SCHMIDT R A, et al. Changes in limb dynamics during the practice of rapid arm movements [J]. Journal of Biomechanics, 1989, 22(8-9): 805-17.
    [49]李庆.短跑运动员腿部屈伸肌在不同专项运动阶段中的作用和时序关系; proceedings of the第10届全国运动会科学论文报告会主题发言,北京, F, 2005 [C].
    [50] WIEMANN K, TIDOW G. Relative activity of hip and knee extensors in sprinting - implications for training [J]. New Studies in Athletics, 1995, 10(19-49.
    [51]刘宇.人体多关节运动肌肉控制功能的生物力学分析[M].台北:中国文化大学出版部, 1999.
    [52] MANN R V. Method of sprint training from a biomechanical point of view [J]. New Studies in Athletics, 1998, 13(1): 89-90.
    [53] ZERNICKE R F. Biomechanical Insights into neural control of Movement [M]. NY: Oxford University Press, 1996.
    [54] CROISIER J L. Factors associated with recurrent hamstring injuries [J]. Sports Medicine, 2004, 34(10): 681-95.
    [55] BRYAN DIXON J. Gastrocnemius vs. soleus strain: how to differentiate and deal with calf muscle injuries [J]. Curr Rev Musculoskelet Med, 2009, 2(2): 74-7.
    [56]姜建华,董晓虹.不同蹬地动作下肢诸肌群拉伤率的比较[J].浙江体育科学, 1999, 21(2): 42-5.
    [57] HAGEL B. Hamstring injuries in Australian football [J]. Clinical Journal of Sport Medicine, 2005, 15(5): 400.
    [58] WORRELL T W. Factors associated with hamstring injuries. An approach to treatment and preventative measures [J]. Sports Medicine, 1994, 17(5): 338-45.
    [59] THELEN D G, CHUMANOV E S, BEST T M, et al. Simulation of biceps femoris musculotendon mechanics during the swing phase of sprinting [J]. Med Sci Sports Exerc, 2005, 37(11): 1931-8.
    [60] HAWKINS R D, HULSE M A, WILKINSON C, et al. The association football medical research programme: an audit of injuries in professional football [J]. British Journal of Sports Medicine, 2001, 35(1): 43-7.
    [61] WOODS C, HAWKINS R D, MALTBY S, et al. The Football Association Medical Research Programme: an audit of injuries in professional football--analysis of hamstring injuries [J]. British Journal of Sports Medicine, 2004, 38(1): 36-41.
    [62] ORCHARD J, SEWARD H. Epidemiology of injuries in the Australian Football League, seasons 1997-2000 [J]. British Journal of Sports Medicine, 2002, 36(1): 39-44.
    [63] WOODS C, HAWKINS R, HULSE M, et al. The Football Association Medical Research Programme: an audit of injuries in professional football-analysis of preseason injuries [J]. British Journal of Sports Medicine, 2002, 36(6): 436-41; discussion 41.
    [64] SALLAY P I, FRIEDMAN R L, COOGAN P G, et al. Hamstring muscle injuries among water skiers. Functional outcome and prevention [J]. American Journal of Sports Medicine, 1996, 24(2): 130-6.
    [65] VAN DON B J. Hamstring injuries in sprinting [D]; The University of Iowa, 1998.
    [66] FOREMAN T K, ADDY T, BAKER S, et al. Prospective studies into the causation of hamstring injuries in sport: A systematic review [J]. 2006, 7(2): 101-9.
    [67] MONTGOMERY W H, 3RD, PINK M, PERRY J. Electromyographic analysis of hip and knee musculature during running [J]. American Journal of Sports Medicine, 1994, 22(2): 272-8.
    [68] KUITUNEN S, KOMI P V, KYROLAINEN H. Knee and ankle joint stiffness in sprint running [J]. Medicine and Science in Sports and Exercise, 2002, 34(1): 166-73.
    [69] SWANSON S C, CALDWELL G E. An integrated biomechanical analysis of high speed incline and level treadmill running [J]. Medicine and Science in Sports and Exercise, 2000, 32(6): 1146-55.
    [70] JONHAGEN S, ERICSON M O, NEMETH G, et al. Amplitude and timing of electromyographic activity during sprinting [J]. Scandinavian Journal of Medicine and Science in Sports, 1996, 6(1): 15-21.
    [71] DEVLIN L. Recurrent posterior thigh symptoms detrimental to performance in rugby union: predisposing factors [J]. Sports Medicine, 2000, 29(4): 273-87.
    [72] UPTON P A, NOAKES T D, JURITZ J M. Thermal pants may reduce the risk of recurrent hamstring injuries in rugby players [J]. British Journal of Sports Medicine, 1996, 30(1): 57-60.
    [73] HISLOP H J, PERRINE J J. The isokinetic concept of exercise [J]. Phys Ther, 1967, 47(2): 114-7.
    [74]吴毅.等速技术在体育运动中的应用[J].体育科研, 1999, 03): 22-3.
    [75] BOSCO C, KOMI P, TIHANYI J, et al. Mechanical power test and fiber composition of human leg extensor muscles [J]. European Journal of Applied Physiology and Occupational Physiology, 1983, 51(1): 129-35.
    [76] KOMI P V. How important is neural drive for strength and power development in human skeletal muscle? [M]//SALTIN B C. Human Kinetics, Biochemical Exercise VI. 1986.
    [77] RICARD M D, UGRINOWITSCH C, PARCELL A C, et al. Effects of rate of force development on EMG amplitude and frequency [J]. International Journal of Sports Medicine, 2005, 26(1): 66-70.
    [78] AAGAARD P, SIMONSEN E B, ANDERSEN J L, et al. Increased rate of force development and neural drive of human skeletal muscle following resistance training [J]. Journal of Applied Physiology, 2002, 93(4): 1318-26.
    [79] GIRARD O. Maximal rate of force development can represent a more functional measure of muscle activation [J]. Journal of Applied Physiology, 2009, 107(1): 359-60; discussion 67-8.
    [80] BLAZEVICH A J, HORNE S, CANNAVAN D, et al. Effect of contraction mode of slow-speed resistance training on the maximum rate of force development in the human quadriceps [J]. Muscle and Nerve, 2008, 38(3): 1133-46.
    [81] BARCLAY C J. Effect of fatigue on rate of isometric force development in mouse fast- and slow-twitch muscles [J]. American Journal of Physiology, 1992, 263(5 Pt 1): C1065-72.
    [82] VERRALL G M, SLAVOTINEK J P, BARNES P G, et al. Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging [J]. British Journal of Sports Medicine, 2001, 35(6): 435-9; discussion 40.
    [83] BAHR R, HOLME I. Risk factors for sports injuries--a methodological approach [J]. British Journal of Sports Medicine, 2003, 37(5): 384-92.
    [84] KONRAD P. The ABC of EMG [M]. Noraxon INC. USA. 2005.
    [85] HAY J G. The Biomechanics of Sports Techniques [M]. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1993.
    [86] HINRICHS R N. Adjustments to the segment center of mass proportions of Clauser et al. (1969) [J]. Journal of Biomechanics, 1990, 23(9): 949-51.
    [87] YU B. Determination of the optimum cutoff frequency in the digital filter Data smoothing procedure; proceedings of the Proceedings of XII International Congress of Biomechanics, Los Angeles, CA., University of California, F June 26-30, 1989 [C]. 1989.
    [88] WINTER D A. Biomechanics and motor control of human movement [M]. Hoboken, NJ:Wiley, 2009.
    [89] SANCHEZ-MARQUEZ A, GIL-GARCIA M, VALLS C, et al. Sports-related muscle injuries of the lower extremity: MR imaging appearances [J]. Eur Radiol, 1999, 9(6): 1088-93.
    [90] FLECKENSTEIN J L, WEATHERALL P T, PARKEY R W, et al. Sports-related muscle injuries: evaluation with MR imaging [J]. Radiology, 1989, 172(3): 793-8.
    [91] KLEIN HORSMAN M D, KOOPMAN H F, VAN DER HELM F C, et al. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity [J]. Clin Biomech (Bristol, Avon), 2007, 22(2): 239-47.
    [92] ZERNICKE R F. Biomechanical Insights into neural control of Movement [M]//ROWELL L B, SHEPHERD J T. Handbook of physiology. Oxford, NY; Oxford University Press. 1996: 293-330.
    [93]文超.田径运动高级教程[M].北京:人民体育出版社, 2003.
    [94] RUAN M. Maximize muscle mechanical output during the stretch-shortening cycle: The contribution of preactivation and stretch load [D]. Louisiana, USA; Louisiana State University, 2007.
    [95] MCCARTHY PERSSON U, FLEMING H F, CAULFIELD B. The effect of a vastus lateralis tape on muscle activity during stair climbing [J]. Man Ther, 2009, 14(3): 330-7.
    [96] SCHACHE A G, WRIGLEY T V, BAKER R, et al. Biomechanical response to hamstring muscle strain injury [J]. Gait Posture, 2009, 29(2): 332-8.
    [97]赵杰.后蹬式与屈蹬式短跑技术分析[J].武汉体育学院学报, 1995, 108(1): 63-6.
    [98]宋广林.对现代短跑技术特征的研究[J].山东师范大学学报, 2004, 19(2): 110-2.
    [99]宋高晴,王红兵. 400米短跑速度与肌电平均功率频率(MFP) [J].湖北体育科技, 1993, 01): 71-7.
    [100]张原. 400m跑下肢肌电活动规律探讨[J].武汉体育学院学报, 2008, 06): 84-7+96.
    [101]章国峰.短跑运动员途中跑与部分力量练习手段的下肢肌电特征对比分析[D];北京体育大学, 2009.
    [102]刘宁宁,章国峰.通过肌电测试对短跑运动员途中跑摆动腿肌肉工作特征的研究[J].运动, 2010, 04): 27-8.
    [103]宫本庄.通过下肢肌电观察对部分短跑专门力量练习的分析[J].体育科学, 1993, 05): 40-3+94.
    [104] KYR?L?INEN H, KOMI P V, BELLI A. Changes in Muscle Activity Patterns and Kinetics With Increasing Running Speed [J]. The Journal of Strength & Conditioning Research, 1999, 13(4): 400-6.
    [105] HAMNER S R, SETH A, DELP S L. Muscle contributions to propulsion and support during running [J]. J Biomech, 2010, 43(14): 2709-16.
    [106]胡声宇.运动解剖学[M].北京:人民体育出版社, 2003.
    [107] KELLIS E, BALTZOPOULOS V. In vivo determination of the patella tendon and hamstrings moment arms in adult males using videofluoroscopy during submaximal knee extension and flexion [J]. Clin Biomech (Bristol, Avon), 1999, 14(2): 118-24.
    [108] HASSELMAN C T, BEST T M, SEABER A V, et al. A threshold and continuum of injury during active stretch of rabbit skeletal muscle [J]. Am J Sports Med, 1995, 23(1): 65-73.
    [109]张海平,宋吉锐.急性骨骼肌损伤动物实验模型构建及应用[J].中国组织工程研究与临床康复, 2007, 49): 9984-8.
    [110]张胜年,陆爱云.骨骼肌运动损伤实验研究中的动物模型[J].中国运动医学杂志, 2000, 02): 185-8.
    [111]周里,李永智.骨骼肌损伤后修复的组织学研究现状[J].西安体育学院学报, 2000, 02): 89-91+6.
    [112] SILDER A, HEIDERSCHEIT B C, THELEN D G, et al. MR observations of long-term musculotendon remodeling following a hamstring strain injury [J]. Skeletal Radiol, 2008, 37(12): 1101-9.
    [113] RETTIG A, MEYER S, BHADRA A. Evaluation of Hamstring Injuries: The Role of Magnetic Resonance Imaging [J]. 2009, 17(4): 215-8.
    [114] GRIFFITHS R I. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance [J]. J Physiol, 1991, 436(219-36.
    [115] BONNEFOY A, DORIOT N, SENK M, et al. A non-invasive protocol to determine the personalized moment arms of knee and ankle muscles [J]. J Biomech, 2007, 40(8): 1776-85.
    [116] SCHEYS L, SPAEPEN A, SUETENS P, et al. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models [J]. Gait Posture, 2008, 28(4): 640-8.
    [117] KNAPIK J J, RAMOS M U. Isokinetic and isometric torque relationships in the human body [J]. Arch Phys Med Rehabil, 1980, 61(2): 64-7.
    [118]李国平,陈晓鸣,张维娜.用等速测力法评定优秀运动员股四头肌和腘绳肌力量和耐力[J].中国运动医学杂志, 1988, 03): 143-8+90.
    [119] AAGAARD P, SIMONSEN E B, TROLLE M, et al. Isokinetic hamstring/quadriceps strength ratio: influence from joint angular velocity, gravity correction and contraction mode [J]. Acta Physiol Scand, 1995, 154(4): 421-7.
    [120] GERODIMOS V, MANDOU V, ZAFEIRIDIS A, et al. Isokinetic peak torque and hamstring/quadriceps ratios in young basketball players. Effects of age, velocity, and contraction mode [J]. J Sports Med Phys Fitness, 2003, 43(4): 444-52.
    [121] KANNUS P. Hamstring/quadriceps strength ratios in knees with medial collateral ligament insufficiency. Isokinetic and isometric results and their relation to patients' long-term recovery [J]. J Sports Med Phys Fitness, 1989, 29(2): 194-8.
    [122] READ M T, BELLAMY M J. Comparison of hamstring/quadriceps isokinetic strength ratios and power in tennis, squash and track athletes [J]. Br J Sports Med, 1990, 24(3): 178-82.
    [123] STAFFORD M G, GRANA W A. Hamstring/quadriceps ratios in college football players: a high velocity evaluation [J]. Am J Sports Med, 1984, 12(3): 209-11.
    [124] HEWETT T E, MYER G D, ZAZULAK B T. Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity [J]. J Sci Med Sport, 2008, 11(5): 452-9.
    [125] BENNELL K, WAJSWELNER H, LEW P, et al. Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers [J]. British Journal of Sports Medicine, 1998, 32(4): 309-14.
    [126] OBERG B, MOLLER M, GILLQUIST J, et al. Isokinetic torque levels for knee extensorsand knee flexors in soccer players [J]. Int J Sports Med, 1986, 7(1): 50-3.
    [127] KANNUS P. Ratio of hamstring to quadriceps femoris muscles' strength in the anterior cruciate ligament insufficient knee. Relationship to long-term recovery [J]. Phys Ther, 1988, 68(6): 961-5.
    [128] CROCE R V, PITETTI K H, HORVAT M, et al. Peak torque, average power, and hamstrings/quadriceps ratios in nondisabled adults and adults with mental retardation [J]. Arch Phys Med Rehabil, 1996, 77(4): 369-72.
    [129] ROSENE J M, FOGARTY T D, MAHAFFEY B L. Isokinetic Hamstrings:Quadriceps Ratios in Intercollegiate Athletes [J]. J Athl Train, 2001, 36(4): 378-83.
    [130] MORRIS A, LUSSIER L, BELL G, et al. Hamstring/quadriceps strength ratios in collegiate middle-distance and distance runners [J]. Physician Sportsmed, 1983, 10(11): 77.
    [131] GRACE T G, SWEETSER E R, NELSON M A, et al. Isokinetic muscle imbalance and knee-joint injuries. A prospective blind study [J]. J Bone Joint Surg Am, 1984, 66(5): 734-40.
    [132] SANGNIER S, TOURNY-CHOLLET C. Comparison of the decrease in strength between hamstrings and quadriceps during isokinetic fatigue testing in semiprofessional soccer players [J]. Int J Sports Med, 2007, 28(11): 952-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700