运动鞋和紧身装备对冲击力、软组织振动及肌肉活动影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:跑跳等动作人体下肢所承受的被动冲击力可以对人体肌肉-骨骼系统造成影响,但这并不意味着冲击力就是造成运动损伤的根本原因,近期的研究显示,冲击力的频率(10-20Hz)与人体软组织固有频率(5-65Hz)的重叠而引起的共振是导致软组织损伤的重要因素。本研究以主动落地反跳和被动着地两种常见的落地方式作为目标动作,探讨人体在不同着地策略过程中,运动鞋和紧身裤这两种外加因素对冲击力特征、下肢软组织振动和主要肌群活动的影响,找寻它们之间的相互关系。具体包括:(1)探讨穿着不同运动装备在两种落地方式下的基本生物力学特征和运动表现;(2)比较不同运动鞋对于冲击力(幅度、时频域特征)和人体下肢软组织特性(幅度、时频域和阻尼特征)的影响,以及相应肌群所做出的反应(预激活、后激活和共激活等),进一步量化运动鞋对于响应冲击进而影响下肢肌肉功能的作用;(3)比较不同紧身裤对于冲击力和肌肉活化的影响,特别是人体下肢软组织的力学特性(频率、阻尼等)以及振动传递特性的变化,明确紧身装备与肌肉调节和适应功能之间的相互关系,理解紧身装备能够减少能量消耗、影响肌肉疲劳、最终提高运动表现的内在机理。
     研究方法:选取12名体教专业球类专项男性运动员作为受试者,运动鞋选取国际某知名品牌、鞋中底具备强缓冲性能的篮球鞋作为测试用鞋,并辅以对照鞋。紧身装备选取国际某知名品牌的紧身短裤作为测试紧身装备,同时辅以对照组。每位受试者在自制可调节高度的翻板器上完成包括三种下落高度(30 cm、45 cm和60 cm)和两种下落方式(主动落地反跳:Drop Jump,DJ和被动着地:Passive Landing,PL)的测试。利用红外摄像捕捉系统(Vicon,UK)、测力台(Kistler,Switzerland)、加速度信号分析系统(Biovision,Germany)、肌电图信号分析系统(Biovision)、高速摄像系统(Motion Pro X-4,USA)同步采集下肢三关节(髋、膝、踝)的运动学/动力学、冲击力特征(地面反作用力)、软组织加速度信号(股四头肌和股后肌群)、下肢各主要肌群EMG信号(胫骨前肌:TA、腓肠肌外侧头:LG、股直肌:RF、股外侧肌:VL和股二头肌:BF),并辅以Visual3D、DASYLab等信号分析软件对所获得的数据进行后期处理和解析。
     研究结果:(1)关节的运动学/动力学:篮球鞋组的踝关节角度和紧身裤组的髋关节角度在DJ触地瞬间显著大于控制组;篮球鞋组的踝关节和紧身裤组的髋关节最小/最大角度在45cm和60cm下落时中均显著增加,且踝、髋最小角速度也变小。但无论是篮球鞋还是紧身裤都没有对DJ时离地速度和腾空高度产生影响。且穿着篮球鞋和紧身裤并没有改变关节力矩、关节最大功率和刚度。(2)冲击力特征:DJ中篮球鞋并没有对冲击力峰值、最大负载率、冲击力频率产生影响;但PL时,无论是30cm、45cm还是60cm下落,穿着篮球鞋均能够显著减小冲击力峰值、最大负载率、输入频率和鞋跟加速度的频率(fGRF和fshoe)。同时,与对照鞋相比,高度的改变对于冲击力频率的影响,篮球鞋相对更小。(3)软组织振动特性:穿着紧身裤显著减小两种落地方式下下肢软组织振动的最大振幅以及阻尼,同时在DJ60过程中,紧身裤组股后肌的共振频率显著大于控制组,同时在DJ45、DJ60和PL60时,紧身裤组股四头肌以及股后肌的共振传递性(Hmax)显著小于控制组。(4)肌肉活化特性:无论是预激活、后激活还是缓冲激活,相同高度下,PL各下肢肌肉的活化程度显著小于DJ情况。在DJ时紧身裤显著减小了RF和VL的预激活、后激活和蹬伸激活以及部分高度下BF的后激活和蹬伸激活,同时减小了部分高度下RF、VL和BF预激活的中位频率;而穿着篮球鞋在PL时显著减小了TA和LG的后激活以及部分高度下RF、VL和BF的后激活和缓冲激活,同时影响了PL30、PL60时VL、LG和RF的预激活和后激活的中位频率。
     主要结论:(1)篮球鞋和紧身裤改变了主动落地反跳过程中下肢关节运动学的部分结果(触地角度、最大/最小角度等),但未对力矩变化量、刚度、功率输出、反跳高度等力量输出参数产生显著变化。(2)主动落地反跳时,篮球鞋的介入并没有明显改变冲击力的各种特征参数;相反被动着地时,穿着篮球鞋显著降低了冲击力、负载率和鞋跟加速度的峰值,减小冲击频率,并使得高度因素对于冲击力各项特征的影响更小。提示当人体未完全(或较少)控制着地状态时,运动鞋的重要性就会突显,即:在发挥其缓冲避震功能的同时改变了输入于下肢各软组织振动系统的信号特征,减小冲击传递性,使软组织远离共振区域,达到了本需要通过额外肌肉活化才能达到的减小振动的作用。(3)紧身裤的介入显著减小股四头肌和股后肌群软组织振动的振幅并增加各自的阻尼系数,同时相比改变振动系统的频率,更多情况下紧身裤可以通过衰减系统的共振来达到影响软组织振动特性的目的,避免下肢与反复冲击力产生共振,并有条件地减小肌肉的预激活和后激活,对能量消耗、运动舒适性和预防冲击损伤带来积极的效果。
Objective: During running, jumping and other human movements, lower limb exposure to passive impact can affect on human muscle - skeletal system, but that does not mean the impact force is the fundamental causes of sports injuries. Recent studies have shown that the resonance which is created by the overlapped frequency between that of impact forces (10-20Hz) and the natural frequency of soft tissues (5-65Hz) is an essential cause for soft tissue injury. In this study, drop jumps and passive landings which are two common ways were selected as target movements. The aim of this study was to explore the effect of basketball shoes and compression shorts on impact forces, soft tissue vibrations, muscle activity, and their possible interactions during active landing (drop jump, DJ) and passive landing (PL). Including: (1) to discuss the basic biomechanical characteristics and exercise performance by wearing two different sports equipments during two landing activities. (2) to compare the influence of different shoes (amplitude, time-frequency domain features) and lower limb soft tissue characteristics (amplitude, frequency and damping characteristics of the time) effects, and the corresponding muscle's response (pre- activataion and post- activation and co-activation, etc.), we can further quantify the impact of sports shoes for the response and thus affect the lower limb muscle function. (3) to compare the effect of compression shorts on impact, muscle activation, mechanical properties (frequency, damping, etc.) of soft tissues in lower limb and changes in transfer characteristics of vibration. We also determined the interrelationship between compression apparel and adaptation function of muscle, in order to further comprehend the internal mechanisms for reducing energy consumption, affecting muscle fatigue and ultimately improving the performance by wearing compression equipments.
     Methods: 12 male professional athletes specialized in physical education were selected as subjects. A well-known international brand of basketball shoe was chosen in the testing with strong cushion capacity of shoes. Shoe in control condition (CC) was also arranged. Compression shorts (CS), the products under a well-known international brand, were elected as test equipments, and were also given corresponding control group. Each subject was required to stand on a custom-made device with adjustable height to complete two kinds of drop landings (drop jump and passive landing) from three heights (30 cm, 45 cm and 60 cm). Infrared camera capture system (Vicon, UK), force platform (Kistler, Switzerland), the acceleration signal analysis system (Biovision, Germany), EMG signal analysis system (Biovision), and high-speed camera system (Motion Pro X-4, USA) were synchronously to collected kinematics / dynamics of lower extremity (hip, knee, ankle), impact characteristics (ground reaction force), soft tissue acceleration signal (and the femoral quadriceps muscles), and EMG signals of major muscle groups (tibialis anterior: TA, gastrocnemius lateral head: LG, rectus femoris: RF, vastus lateralis: VL and biceps femoris: BF). Visual3D, DASYLab and other signal analysis software were also applied to process and analyse data.
     Results: (1) Joint kinematics/dynamics: Ankle angle in Bball group and hip angle in CS group were significantly larger than that of CC during the instantaneous moment of touchdown in DJ; minimum / maximum angle of ankle one in Bball group and hip one in CS showed an obvious increase during DJ from 45 cm and 60cm, and the minimum angle velocity of both ankle and hip joint decreased. However, neither Bball nor CS took effects on takeoff velocity and jump heights during DJs. In addition, no significant changes were found in joint torque, maximum power and stiffness of joints while wearing compression shorts and basketball shoes. (2) Characteristics of impact forces: during DJ, peak impact, maximum load rate and impact frequency were not be influenced by basketball shoes. However, during PL from all heights-30cm, 45cm and 60cm, wearing basketball shoes can significantly reduce the peak impact force, the maximum load rate, input frequency and frequency of the acceleration in heel (fGRF and fshoe). Meanwhile, compared with the CC, the effect of height on impact frequency of Bball group is relatively smaller. (3) Characteristics of soft tissue vibration: a significant decrease of maximum amplitude and vibration damping by wearing compression shorts was found in both landing styles. During DJ60, the resonant frequencies of hamstring muscles in CS condition were significantly greater than those in CC. For DJ45, DJ60, and PL60, the resonance transmissibility (Hmax) of both quadriceps femoris and hamstring muscles in CS condition was significantly lower than that in CC. (4) features of muscle activities: whether in pre-activation or post-activation periods, activation of the muscles in lower limb during PL was obviously less than that in DJ situation from the same drop height. During DJ, a significant decrease in EMG pre- / post-activation, as well as median frequency (MF) of the RF, VL, and BF was found in the CS condition. Meanwhile, a significant decrease in EMG post-activation of TA, LG, as well as RF and BF under certain drop heights was found in the Bball condition. Wearing basketball shoes also showed an influence on the MF of the VL, LG and RF during both pre- and post-activation.
     Conclusion: (1) Wearing basketball shoes and compression shorts can change partial kinematics results (touchdown angle, the maximum/minimum angle, etc.) of lower extremity joints during drop jumps. However, no significant differences were found in the strength output parameters, such as the variation of moment, stiffness, power output, and rebound height. (2) During active DJs, characteristic parameters of impact force can't be significantly changed by the intervention of basketball shoes; while in condition of passive landing (PL), wearing basketball shoes can remarkably reduce the peak of impact, loading rate, acceleration and impact frequency, in addition, can minimize the effect of height on characteristic parameters of impact force. Reminder: we can highlight the essentiality of basketball shoes when people can't control the motion of landing completely (or minor). In other words, wearing basketball shoes can alter signal features of soft tissue in lower limbs when exert the functions of buffering and anti-vibration. And with basketball shoes, we can also decline the transmissibility to keep the soft tissue away from the region of resonance. By doing this, effects, like reduced vibration, which should be achieved with extra muscle activations could be realized. (3) The intervention of compression shorts showed a significant decrease in vibration amplitude of quadriceps femoris and hamstring muscles, but an increase in damping factors of them. Compared with changing the frequency of vibration system, wearing compression shorts can affect vibration characteristics of soft-tissue via reducing the resonance of system which can also avoid the resonance between repetitive impacts and lower extremity in more cases, what's more, benefit muscle pre- / post-activation, in order to bring in a positive effect on energy consumption, comfort and prevention of sports injuries.
引文
[1]井兰香,刘宇.篮球运动员8周负重超等长训练后下肢及髋、膝、踝关节动力学和刚度变化[J].中国运动医学杂志, 2010, 29(4): 417-20+29.
    [2]王健,金小刚.表面肌电信号分析及其应用研究[J].中国体育科技, 2000, (08).
    [3]危小焰,彭春政.振动力量训练对肌肉力量的影响研究[J].体育科研, 2004, (04): 53-56.
    [4]相子元.被动反复冲击式肌力增强法之训练效果探讨――以中华台北篮球队为例[C]. 2004.
    [5]傅维杰,刘宇,熊晓洁等.外加弹性紧身装置对田径运动员下肢肌力、疲劳与肌肉活动的影响[J].中国运动医学杂志, 2010, 29(6): 631-35.
    [6]傅维杰,刘宇,魏书涛等.不同落地方式下篮球鞋对冲击力和股四头肌振动的影响[J].体育科研, 2010, 31(6): 32-36+50.
    [7]裘艺,魏文仪.人体冲击生物力学的研究进展和方法评述[J].体育科研, 2005, 26(4): 62-65.
    [8]熊晓洁,刘宇,傅维杰.紧身装置对下肢肌肉功能的影响——肌电图与肌动图的时域和频域分析[C]. 2009;中国浙江金华. p 1.
    [9]熊晓洁,刘宇,傅维杰.紧身装置对肌电图和肌动图的振幅的影响[J].医用生物力学, 2009, 24(S1): 84.
    [10]魏勇,刘宇.肌肉共同收缩研究进展[J].中国体育科技, 2009, 45(5): 54-59.
    [11]刘宇.生物力学在运动控制与协调研究中的应用[J].体育科学, 2010, 30(11): 62-73.
    [12]刘宇,傅维杰.冲击力与软组织振动-运动损伤机制的新认识[J].体育科学, 2009, 29(3): 95-96.
    [13]刘宇,彭千华,田石榴.老年人肌力流失与肌肉疲劳的肌动图研究[J].体育科学, 2007, 27(5): 57-64.
    [14]刘宇,魏勇.运动科学领域的下肢刚度研究[J].上海体育学院学报, 2008, 32(5): 31-35.
    [15]刘强.球棒重量对肌肉活性之影响:适当球棒重量之探讨[J].大专体育学刊, 2003, 5(2): 121-29.
    [16]刘强.被动反复等速肌力训练之神经肌肉适应性[T].台北:国立体育学院教练研究所; 2005.
    [17]卫宏图,陈世益.骨骼肌损伤的治疗研究进展[J].中国运动医学杂志, 2004,(05): 572-76.
    [18]张强,施凤英,刘建新.随机参数结构频率响应函数的分析[J].振动与冲击, 2006, 25(2): 64-66+184-85.
    [19] AAGAARD P, SIMONSEN E B, ANDERSEN J L, et al. Antagonist muscle coactivation during isokinetic knee extension[J]. Scand J Med Sci Sports, 2000, 10(2): 58-67.
    [20] AGUINALDO A L, MAHAR A T. Loading in running shoes with cushioning column systems[J]. J Appl Biomech, 2003, 19(4): 353-60.
    [21] ANDRZEJAK R, SMOLIK R. Effect of vibration on red cell metabolism[J]. Int Arch Occup Environ Health, 1984, 54(4): 303-8.
    [22] BARRACK R L, SKINNER H B, BRUNET M E, et al. Functional performance of the knee after intraarticular anesthesia[J]. Am J Sports Med, 1983, 11(4): 258-61.
    [23] BARRETT J R, TANJI J L, DRAKE C, et al. High- versus low-top shoes for the prevention of ankle sprains in basketball players. A prospective randomized study[J]. Am J Sports Med, 1993, 21(4): 582-5.
    [24] BARRY D T, COLE N M. Muscle sounds are emitted at the resonant frequencies of skeletal muscle[J]. IEEE Trans Biomed Eng, 1990, 37(5): 525-31.
    [25] BASMAJIAN J V, DELUCA C J. Muscle alive: Their functions revealed by electromyography [M]. Baltimore: Williams & Wilkins, 1985.
    [26] BECK T W, HOUSH T J, CRAMER J T, et al. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review[J]. Biomed Eng Online, 2005, 4(1): 67.
    [27] BECK T W, HOUSH T J, JOHNSON G O, et al. Electromyographic instantaneous amplitude and instantaneous mean power frequency patterns across a range of motion during a concentric isokinetic muscle action of the biceps brachii[J]. J Electromyogr Kinesiol, 2006, 16(5): 531-9.
    [28] BOBBERT M F, HUIJING P A, VAN INGEN SCHENAU G J. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping[J]. Med Sci Sports Exerc, 1987, 19(4): 332-8.
    [29] BOBBERT M F, SCHAMHARDT H C, NIGG B M. Calculation of vertical ground reaction force estimates during running from positional data[J]. JBiomech, 1991, 24(12): 1095-105.
    [30] BOBBERT M F, YEADON M R, NIGG B M. Mechanical analysis of the landing phase in heel-toe running[J]. J Biomech, 1992, 25(3): 223-34.
    [31] BOROWSKI L A, YARD E E, FIELDS S K, et al. The epidemiology of US high school basketball injuries, 2005-2007[J]. Am J Sports Med, 2008, 36(12): 2328-35.
    [32] BOSCO C, COLLI R, INTROINI E, et al. Adaptive responses of human skeletal muscle to vibration exposure[J]. Clin Physiol, 1999, 19(2): 183-7.
    [33] BOSCO C, IACOVELLI M, TSARPELA O, et al. Hormonal responses to whole-body vibration in men[J]. Eur J Appl Physiol, 2000, 81(6): 449-54.
    [34] BOYER K A. Soft tissue vibrations and muscle tuning during heel-toe running [T]. Calgary, Alberta: University of Calgary; 2006. 135 p.
    [35] BOYER K A, ANDRIACCHI T P. Changes in running kinematics and kinetics in response to a rockered shoe intervention[J]. Clin Biomech (Bristol, Avon), 2009, 24(10): 872-6.
    [36] BOYER K A, NIGG B M. Muscle activity in the leg is tuned in response to impact force characteristics[J]. J Biomech, 2004, 37(10): 1583-8.
    [37] BOYER K A, NIGG B M. Muscle tuning during running: implications of an un-tuned landing[J]. J Biomech Eng, 2006, 128(6): 815-22.
    [38] BOYER K A, NIGG B M. Soft tissue vibrations within one soft tissue compartment[J]. J Biomech, 2006, 39(4): 645-51.
    [39] BOYER K A, NIGG B M. Changes in muscle activity in response to different impact forces affect soft tissue compartment mechanical properties[J]. J Biomech Eng, 2007, 129(4): 594-602.
    [40] BOYER K A, NIGG B M. Quantification of the input signal for soft tissue vibration during running[J]. J Biomech, 2007, 40(8): 1877-80.
    [41] BRüGGEMAN G P, GOLDMAN J, POTTHAST W. Effects and evaluation of functional footwear [C]. 2008; Leipzig, Germany.
    [42] BRINGARD A, DENIS R, BELLUYE N, et al. Effects of compression tights on calf muscle oxygenation and venous pooling during quiet resting in supine and standing positions[J]. J Sports Med Phys Fitness, 2006, 46(4): 548-54.
    [43] BRINGARD A, PERREY S, BELLUYE N. Aerobic energy cost and sensation responses during submaximal running exercise--positive effects of wearingcompression tights[J]. Int J Sports Med, 2006, 27(5): 373-8.
    [44] BUIATTI E, CECCHINI S, RONCHI O, et al. Relationship between clinical and electromyographic findings and exposure to solvents, in shoe and leather workers[J]. Br J Ind Med, 1978, 35(2): 168-73.
    [45] BURSTROM L. The influence of biodynamic factors on the mechanical impedance of the hand and arm[J]. Int Arch Occup Environ Health, 1997, 69(6): 437-46.
    [46] BUTLER R J, CROWELL H P, 3RD, DAVIS I M. Lower extremity stiffness: implications for performance and injury[J]. Clin Biomech (Bristol, Avon), 2003, 18(6): 511-7.
    [47] CAVANAGH P R. The running shoe book [M]. Mountain view, CA, USA: Anderson World, 1980.
    [48] CAVANAGH P R, LAFORTUNE M A. Ground reaction forces in distance running[J]. J Biomech, 1980, 13(5): 397-406.
    [49] CHALLIS J H, PAIN M T. Soft tissue motion influences skeletal loads during impacts[J]. Exerc Sport Sci Rev, 2008, 36(2): 71-5.
    [50] CHATARD J C, ATLAOUI D, FARJANEL J, et al. Elastic stockings, performance and leg pain recovery in 63-year-old sportsmen[J]. European Journal of Applied Physiology, 2004, 93(3): 347-52.
    [51] CHEN W L, O’CONNOR J J, RADIN E L. A comparison of the gaits of Chinese and Caucasian women with particular reference to their heelstrike transients[J]. Clinical Biomechanics, 2003, 18(3): 207-13.
    [52] CHIU H T, SHIANG T Y. Effects of insoles and additional shock absorption foam on the cushioning properties of sport shoes[J]. J Appl Biomech, 2007, 23(2): 119-27.
    [53] CHRISTINA K A, WHITE S C, GILCHRIST L A. Effect of localized muscle fatigue on vertical groundreact ion forces andankle joint motion during running[J]. Human Movement Science, 2001, 20(3): 257–76.
    [54] CLARKE T E, FREDERICK E C, COOPER L B. Effects of shoe cushioning upon ground reaction forces in running[J]. Int J Sports Med, 1983, 4(4): 247-51.
    [55] CLARKE T E, FREDERICK E C, HAMILL C L. The effects of shoe design parameters on rearfoot control in running[J]. Med Sci Sports Exerc, 1983, 15(5):376-81.
    [56] COLE G K, NIGG B M, VAN DEN BOGERT A J, et al. The clinical biomechanics award paper 1995 Lower extremity joint loading during impact in running[J]. Clin Biomech (Bristol, Avon), 1996, 11(4): 181-93.
    [57] CONWIT R A, STASHUK D, TRACY B, et al. The relationship of motor unit size, firing rate and force[J]. Clin Neurophysiol, 1999, 110(7): 1270-5.
    [58] COZA A, NIGG B M. Compression apparel effects on soft tissue vibrations [M]. University of Michigan, Ann Arbor, MI, USA., 2008.
    [59] COZA A, NIGG B M, FLIRI L. Quantification of soft-tissue vibrations in running: accelerometry versus high-speed motion capture[J]. J Appl Biomech, 2010, 26(3): 367-72.
    [60] CRAMER J T, HOUSH T J, JOHNSON G O, et al. Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions[J]. Muscle Nerve, 2000, 23(12): 1826-31.
    [61] CRAMER J T, HOUSH T J, WEIR J P, et al. Power output, mechanomyographic, and electromyographic responses to maximal, concentric, isokinetic muscle actions in men and women[J]. J Strength Cond Res, 2002, 16(3): 399-408.
    [62] DALY R M, RICH P A, KLEIN R, et al. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: A prospective study in young male gymnasts[J]. J Bone Miner Res, 1999, 14(7): 1222-30.
    [63] DE WIT B, DE CLERCQ D, AERTS P. Biomechanical analysis of the stance phase during barefoot and shod running[J]. J Biomech, 2000, 33(3): 269-78.
    [64] DE WIT B, DE CLERCQ D, LENOIR M. The effect of varying midsole hardness on impact forces and foot motion during foot contact in running[J]. JAB, 1995, 11: 4.
    [65] DEKEL S, WEISSMAN S L. Joint changes after overuse and peak overloading of rabbit knees in vivo[J]. Acta Orthop Scand, 1978, 49(6): 519-28.
    [66] DENOTH J. Load on the locomotor system and modelling[M]. In: NIGG B M, editor. Biomechanics of Running Shoes. Champaign, IL, USA: Human Kinetics; 1986. p 63-116.
    [67] DERRICK T R. The effects of knee contact angle on impact forces and accelerations[J]. Med Sci Sports Exerc, 2004, 36(5): 832-7.
    [68] DERRICK T R, DEREU D, MCLEAN S P. Impacts and kinematic adjustments during an exhaustive run[J]. Med Sci Sports Exerc, 2002, 34(6): 998-1002.
    [69] DERRICK T R, HAMILL J, CALDWELL G E. Energy absorption of impacts during running at various stride lengths[J]. Med Sci Sports Exerc, 1998, 30(1): 128-35.
    [70] DICK R, HERTEL J, AGEL J, et al. Descriptive epidemiology of collegiate men's basketball injuries: National Collegiate Athletic Association Injury Surveillance System, 1988-1989 through 2003-2004[J]. J Athl Train, 2007, 42(2): 194-201.
    [71] DIXON S J, COLLOP A C, BATT M E. Surface effects on ground reaction forces and lower extremity kinematics in running[J]. Med Sci Sports Exerc, 2000, 32(11): 1919-26.
    [72] DIXON S J, COLLOP A C, BATT M E. Compensatory adjustments in lower extremity kinematics in response to a reduced cushioning of the impact interface in heel–toe running[J]. Sports Engineering, 2005, 8(1): 47-55.
    [73] DOAN B K, KWON Y H, NEWTON R U, et al. Evaluation of a lower-body compression garment[J]. J Sports Sci, 2003, 21(8): 601-10.
    [74] DUFFIELD R, CANNON J, KING M. The effects of compression garments on recovery of muscle performance following high-intensity sprint and plyometric exercise[J]. Journal of Science and Medicine in Sport, 2009.
    [75] DUFFIELD R, EDGE J, MERRELLS R, et al. The effects of compression garments on intermittent exercise performance and recovery on consecutive days[J]. Int J Sports Physiol Perform, 2008, 3(4): 454-68.
    [76] DUFFIELD R, PORTUS M. Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players[J]. Br J Sports Med, 2007, 41(7): 409-14.
    [77] DUPUIS H, JANSEN G. Immediate effects of vibration transmitted to the hand [M]. Amsterdam: Elsevier, 1981, 76–86 p.
    [78] EBERSOLE K T, MALEK D M. Fatigue and the electromechanical efficiency of the vastus medialis and vastus lateralis muscles[J]. J Athl Train, 2008, 43(2): 152-6.
    [79] EBERSOLE K T, O'CONNOR K M, WIER A P. Mechanomyographic and electromyographic responses to repeated concentric muscle actions of thequadriceps femoris[J]. J Electromyogr Kinesiol, 2006, 16(2): 149-57.
    [80] EBERSOLE K T, SABIN M J, HAGGARD H A. Patellofemoral pain and the mechanomyographic responses of the vastus lateralis and vastus medialis muscles[J]. Electromyogr Clin Neurophysiol, 2009, 49(1): 9-17.
    [81] EISENHARDT J R, COOK D, PREGLER I, et al. Changes in temporal gait characteristics and pressure distribution for bare feet versus various heel heights[J]. Gait & Posture, 1996, 4(4): 280-86.
    [82] EPSTEIN M, HERZOG W. Theoretical models of skeletal muscle: biological and mathematical considerations: Wiley, 1998.
    [83] EVEN-TZUR N, WEISZ E, HIRSCH-FALK Y, et al. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies[J]. Biomed Mater Eng, 2006, 16(5): 289-99.
    [84] FARLEY C T, HOUDIJK H H, VAN STRIEN C, et al. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses[J]. J Appl Physiol, 1998, 85(3): 1044-55.
    [85] FERRIS D P, LIANG K, FARLEY C T. Runners adjust leg stiffness for their first step on a new running surface[J]. Journal of Biomechanics, 1999, 32(8): 787-94.
    [86] FERRIS D P, LOUIE M, FARLEY C T. Running in the real world: adjusting leg stiffness for different surfaces[J]. Proc Biol Sci, 1998, 265(1400): 989-94.
    [87] FRAZOR R A, ALBRECHT D G, GEISLER W S, et al. Visual cortex neurons of monkeys and cats: temporal dynamics of the spatial frequency response function[J]. J Neurophysiol, 2004, 91(6): 2607-27.
    [88] FREDERICK E C. Physiological and ergonomics factors in running shoe design[J]. Appl Ergon, 1984, 15(4): 281-7.
    [89] FREDERICK E C. Biomechanical consequences of sport shoe design[J]. Exerc Sport Sci Rev, 1986, 14: 375-400.
    [90] FREDERICK E C. Kinematically mediated effects of sport shoe design: a review[J]. J Sports Sci, 1986, 4(3): 169-84.
    [91] FREDERICK E C, HAGY J L. Factors affecting peak vertical ground reaction forces in running[J]. Int J of Sport Biomech, 1986, 2: 41–49.
    [92] FREDERICK E C, HAGY J L, MANN R A. The prediction of vertical impact force during running[J]. Journal of Biomechanics, 1981, 14(7): 498.
    [93] FRIESENBICHLER B, STIRLING L M, FEDEROLF P, et al. Tissue vibration in prolonged running[J]. J Biomech, 2011, 44(1): 116-20.
    [94] GANDHI D B, PALMAR J R, LEWIS B, et al. Clinical comparison of elastic support for venous disease of the lower limb[J]. Postgrad Med J, 1987, 60(703): 349-52.
    [95] GARDNER JR L I, DZIADOS J E, JONES B H, et al. Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole[J]. American Journal of Public Health, 1988, 78(12): 1563.
    [96] GARG D P, ROSS M A. Vertical mode human body vibration transmissibility[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1976, 6: 102-12.
    [97] GERRITSEN K G, VAN DEN BOGERT A J, NIGG B M. Direct dynamics simulation of the impact phase in heel-toe running[J]. J Biomech, 1995, 28(6): 661-8.
    [98] GRIMSTON S K, WILLOWS N D, HANLEY D A. Mechanical loading regime and its relationship to bone mineral density in children[J]. Med Sci Sports Exerc, 1993, 25(11): 1203-10.
    [99] GROSS T S, NELSON R C. The shock attenuation role of the ankle during landing from a vertical jump [M]. North Reading, MA: Converse, Inc., 1987.
    [100] GROSS T S, NELSON R C. The shock attenuation role of the ankle during landing from a vertical jump[J]. Med Sci Sports Exerc, 1988, 20(5): 506-14.
    [101] GRUBER K, DENOTH J, STUESSI E, et al. The wobbling mass model[J]. Biomechanics, 1987: 1095-9.
    [102] GRUBER K, RUDER H, DENOTH J, et al. A comparative study of impact dynamics: wobbling mass model versus rigid body models[J]. J Biomech, 1998, 31(5): 439-44.
    [103] GUSTAFSON R P. The effect of compression shorts on time to fatigue[J]. Clinical Kinesiology, 1998.
    [104] HAMILL J, BATES B T, KNUTZEN K M, et al. Variations in ground reaction force parameters at different running speeds[J]. Human Movement Science, 1983, 2: 47–56.
    [105] HARDIN E C, VAN DEN BOGERT A J, HAMILL J. Kinematic adaptations during running: effects of footwear, surface, and duration[J]. Med Sci SportsExerc, 2004, 36(5): 838-44.
    [106] HARMAN E A, ROSENSTEIN M T, FRYKMAN P N, et al. The effects of
    arms and countermovement on vertical jumping[J]. Med Sci Sports Exerc, 1990,
    22(6): 825-33.
    [107] HARRIS C M, CREDE C. Shock and vibrations handbook[J]. McGraw Hill,
    New York, USA, 1996.
    [108] HARRIS C S, SHOENBERGER R W. Effects of frequency of vibration on
    human performance[J]. J Eng Psychol, 1966, 5(1): 1-15.
    [109] HEINONEN A, KANNUS P, SIEVANEN H, et al. Randomised controlled trial
    of effect of high-impact exercise on selected risk factors for osteoporotic
    fractures[J]. Lancet, 1996, 348(9038): 1343-7.
    [110] HENNIG E M, VALIANT G A, LIU Q. Biomechanical variables and the
    perception of cushioning for running in various types of footwear[J]. J Appl
    Biomech, 1996, 12: 143-50.
    [111] HERMENS H J, FERIKS B, MERLETTI R, et al. European Recommendations
    for Surface Electromyography[J]. The Netherlands: Roessingh Research and
    Development, 1999: 43-45.
    [112] HERZOG J A. Deep vein thrombosis in the rehabilitation client: diagnostic
    tools, prevention, and treatment modalities[J]. Rehabil Nurs, 1993, 18(1): 8-11.
    [113] HERZOG W. Muscle[M]. In: NIGG B M, HERZOG W, editors. Biomechanics
    of the musculo-skeletal system: Wiley; 1999.
    [114] HIGGINS T, NAUGHTON G A, BURGESS D. Effects of wearing
    compression garments on physiological and performance measures in a
    simulated game-specific circuit for netball[J]. J Sci Med Sport, 2009, 12(1):
    223-6.
    [115] HINZ B, MENZEL G, BL THNER R, et al. Transfer functions as a basis for the
    verification of models–variability and restraints[J]. Clinical Biomechanics,
    2001, 16: 93-100.
    [116] HOHMANN E, W RTLER K, IMHOFF A B. MR imaging of the hip and knee
    before and after marathon running[J]. The American Journal of Sports
    Medicine, 2004, 32(1): 55.
    [117] HORITA T, ISHIKO T. Relationships between muscle lactate accumulation and
    surface EMG activities during isokinetic contractions in man[J]. Eur J ApplPhysiol Occup Physiol, 1987, 56(1): 18-23.
    [118] HORITA T, KOMI P V, NICOL C, et al. Interaction between pre-landing activities and stiffness regulation of the knee joint musculoskeletal system in the drop jump: implications to performance[J]. Eur J Appl Physiol, 2002, 88(1-2): 76-84.
    [119] HOUGHTON L A, DAWSON B, MALONEY S K. Effects of wearing compression garments on thermoregulation during simulated team sport activity in temperate environmental conditions[J]. J Sci Med Sport, 2009, 12(2): 303-9.
    [120] HUNTER J P, MARSHALL R N, MCNAIR P J. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration[J]. Journal of Applied Biomechanics, 2005, 21(1): 31-43.
    [121] HUNTER L Y, TORGAN C. Dismounts in gymnastics: should scoring be reevaluated?[J]. Am J Sports Med, 1983, 11(4): 208-10.
    [122] JORGENSEN U. Body load in heel-strike running: the effect of a firm heel counter[J]. Am J Sports Med, 1990, 18(2): 177-81.
    [123] KERDOK A E, BIEWENER A A, MCMAHON T A, et al. Energetics and mechanics of human running on surfaces of different stiffnesses[J]. J Appl Physiol, 2002, 92(2): 469-78.
    [124] KITAZAKI S, GRIFFIN M J. A data correction method for surface measurement of vibration on the human body[J]. J Biomech, 1995, 28(7): 885-90.
    [125] KOMI P V, BOSCO C. Utilization of stored elastic energy in leg extensor muscles by men and women[J]. Med Sci Sports, 1978, 10(4): 261-5.
    [126] KOMI P V, VIITASALO J T. Changes in motor unit activity and metabolism in human skeletal muscle during and after repeated eccentric and concentric contractions[J]. Acta physiologica Scandinavica, 1977, 100(2): 246-54.
    [127] KONRADSEN L, HANSEN E M, SONDERGAARD L. Long distance running and osteoarthrosis[J]. Am J Sports Med, 1990, 18(4): 379-81.
    [128] KRAEMER W J, BUSH J A, BAUER J A, et al. Influence of compression garments on vertical jump performance in NCAA Division I volleyball players[J]. J Strength Cond Res, 1996, 10(3): 180-83.
    [129] KRAEMER W J, BUSH J A, NEWTON R U, et al. Influence of a compressivegarment on repetitive power output production before and after different types of muscle fatigue[J]. Sports Med, Training and Rehab, 1998, 8(2): 163-84.
    [130] KRAEMER W J, BUSH J A, TRIPLETT MCBRIDE N T, et al. Compression Garment: Influence on Muscle Fatigue[J]. J Strength Cond Res, 1998, 12(4): 211-15.
    [131] KRAEMER W J, BUSH J A, WICKHAM R B, et al. Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise[J]. J Orthop Sports Phys Ther, 2001, 31(6): 282-90.
    [132] KRAEMER W J, FLANAGAN S D, COMSTOCK B A, et al. Effects of a whole body compression garment on markers of recovery after a heavy resistance workout in men and women[J]. J Strength Cond Res, 2010, 24(3): 804-14.
    [133] KRAEMER W J, VOLEK J S, BUSH J A, et al. Influence of compression hosiery on physiological responses to standing fatigue in women[J]. Med Sci Sports Exerc, 2000, 32(11): 1849-58.
    [134] KUSTER M S, GROB K, KUSTER M, et al. The benefits of wearing a compression sleeve after ACL reconstruction[J]. Med Sci Sports Exerc, 1999, 31(3): 368-71.
    [135] LAFORTUNE M A, HENNIG E M. Contribution of angular motion and gravity to tibial acceleration[J]. Med Sci Sports Exerc, 1991, 23(3): 360-3.
    [136] LAFORTUNE M A, HENNIG E M, LAKE M J. Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness[J]. J Biomech, 1996, 29(12): 1523-9.
    [137] LAFORTUNE M A, LAKE M J, HENNIG E M. Differential shock transmission response of the human body to impact severity and lower limb posture[J]. J Biomech, 1996, 29(12): 1531-7.
    [138] LANE N E, BLOCH D A, JONES H H, et al. Long-distance running, bone density, and osteoarthritis[J]. JAMA, 1986, 255(9): 1147-51.
    [139] LARIVIERE C, GRAVEL D, ARSENAULT A B, et al. Muscle recovery from a short fatigue test and consequence on the reliability of EMG indices of fatigue[J]. Eur J Appl Physiol, 2003, 89(2): 171-6.
    [140] LAWRENCE R K, 3RD, KERNOZEK T W, MILLER E J, et al. Influences of hip external rotation strength on knee mechanics during single-leg droplandings in females[J]. Clin Biomech (Bristol, Avon), 2008, 23(6): 806-13.
    [141] LEMM R. Passive forces during sport activities [T]. Zürich, Switzerland: ETH Zürich; 1979.
    [142] LI Y. Clothing comfort and compression therapy[M]. In: LI Y, DAI X Q, editors. Biomechanical engineering of textiles and clothing. Abington: Woodhead Publishing Limited; 2006.
    [143] LIEBERMAN D E, VENKADESAN M, WERBEL W A, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners[J]. Nature, 2010, 463(7280): 531-5.
    [144] LIU S Y, CHEN W C, SHIANG T Y. Effect of jump performance on different compression garments [C]. 2009 July 14-18, 2008; Limerick, Ireland.
    [145] LIU W, NIGG B M. A mechanical model to determine the influence of masses and mass distribution on the impact force during running[J]. J Biomech, 2000, 33(2): 219-24.
    [146] MATON B, THINEY G, DANG S, et al. Human muscle fatigue and elastic compressive stockings[J]. Eur J Appl Physiol, 2006, 97(4): 432-42.
    [147] MATSUMOTO Y, GRIFFIN M J. Dynamic response of the standing human body exposed to vertical vibration: influence of posture and vibration magnitude[J]. Journal of sound and vibration, 1998, 212(1): 85-107.
    [148] MATSUMOTO Y, GRIFFIN M J. Effect of phase on human responses to vertical whole-body vibration and shock-analystical investigation[J]. Journal of SoundandVibration, 2002, 250(5): 813-34.
    [149] MCBRIDE J M, PORCARI J P, SCHEUNKE M D. Effect of vibration during fatiguing resistance exercise on subsequent muscle activity during maximal voluntary isometric contractions[J]. J Strength Cond Res, 2004, 18(4): 777-81.
    [150] MCCLAY I S, ROBINSON J R, ANDRIACCHI T P, et al. A Profile of Ground Reaction Forces in Professional Basketball[J]. J Appl Biomech, 1994, 10: 222-36.
    [151] MCLEOD K J, RUBIN C T. Frequency specific modulation of bone adaptation by induced electric fields[J]. J Theor Biol, 1990, 145(3): 385-96.
    [152] MCMAHON T A. The role of compliance in mammalian running gaits[J]. J Exp Biol, 1985, 115: 263-82.
    [153] MCMAHON T A, CHENG G C. The mechanics of running: how does stiffnesscouple with speed?[J]. J Biomech, 1990, 23 Suppl 1: 65-78.
    [154] MICHEL F I, KALIN X, METZGER A, et al. [The functional sport shoe parameter "torsion" within running shoe research--a literature review][J]. Sportverletz Sportschaden, 2009, 23(4): 197-205.
    [155] MILANI T L, HENNIG E M, LAFORTUNE M A. Perceptual and biomechanical variables for running in identical shoe constructions with varying midsole hardness[J]. Clin Biomech (Bristol, Avon), 1997, 12(5): 294-300.
    [156] MIYAMOTO N, HIRATA K, MITSUKAWA N, et al. Effect of pressure intensity of graduated elastic compression stocking on muscle fatigue following calf-raise exercise[J]. J Electromyogr Kinesiol, 2011, 21(2): 249-54.
    [157] MONTGOMERY P G, PYNE D B, COX A J, et al. Muscle damage, inflammation, and recovery interventions during a 3-day basketball tournament[J]. Eur J Sport Sci, 2008, 8(5): 241 - 50
    [158] MUKSIAN R, NASH C D, JR. A model for the response of seated humans to sinusoidal displacements of the seat[J]. J Biomech, 1974, 7(3): 209-15.
    [159] NATIONAL RESEARCH COUNCIL AND INSTITUTE OF MEDICINE. Musculoskeletal Disorders and the Workplace: Low Back and Upper Extremities[M]. In: EDUCATION C O B A S S A, editor. Panel on Musculoskeletal Disorders and the Workplace. Washington, D.C., USA: National Academy Press; 2001.
    [160] NECKING L E, DAHLIN L B, FRIDEN J, et al. Vibration-induced muscle injury. An experimental model and preliminary findings[J]. J Hand Surg Br, 1992, 17(3): 270-4.
    [161] NICHOLS D L, SANBORN C F, BONNICK S L, et al. The effects of gymnastics training on bone mineral density[J]. Med Sci Sports Exerc, 1994, 26(10): 1220-5.
    [162] NICKOLS-RICHARDSON S M, O'CONNOR P J, SHAPSES S A, et al. Longitudinal bone mineral density changes in female child artistic gymnasts[J]. J Bone Miner Res, 1999, 14(6): 994-1002.
    [163] NIGAM S P, MALIK M. A study on a vibratory model of a human body[J]. J Biomech Eng, 1987, 109(2): 148-53.
    [164] NIGG B, HINTZEN S, FERBER R. Effect of an unstable shoe construction onlower extremity gait characteristics[J]. Clin Biomech (Bristol, Avon), 2006, 21(1): 82-8.
    [165] NIGG B M. Load on the locomotor system from a biomechanical point of view[M]. In: NIGG B M, editor. Biomechanische Aspekte zu Sportplatzbelagen. Zurich, Switzerland: Juris Verlag; 1978. p 11-17.
    [166] NIGG B M. Impact forces in running[J]. Curr Opin Orthop, 1997, 8(6): 43-47.
    [167] NIGG B M. The role of impact forces and foot pronation: a new paradigm[J]. Clin J Sport Med, 2001, 11(1): 2-9.
    [168] NIGG B M. Impact forces, soft-tissue vibrations, and muscle tuning [M]. Calgary, Alberta, Canada: Topline Printing Inc., 2011.
    [169] NIGG B M, ANTON M. Energy aspects for elastic and viscous shoe soles and playing surfaces[J]. Med Sci Sports Exerc, 1995, 27(1): 92-7.
    [170] NIGG B M, BAHLSEN H A, LUETHI S M, et al. The influence of running velocity and midsole hardness on external impact forces in heel-toe running[J]. J Biomech, 1987, 20(10): 951-9.
    [171] NIGG B M, DENOTH J, NEUKOMM P A. Quantifying the load on the human body: Problems and some possible solution [M]. Baltimore: University Park Press, 1981, 1041-52 p.
    [172] NIGG B M, HERZOG W, READ L J. Effect of viscoelastic shoe insoles on vertical impact forces in heel-toe running[J]. Am J Sports Med, 1988, 16(1): 70-6.
    [173] NIGG B M, LIU W. The effect of muscle stiffness and damping on simulated impact force peaks during running[J]. J Biomech, 1999, 32(8): 849-56.
    [174] NIGG B M, SEGESSER B. Biomechanical and orthopedic concepts in sport shoe construction[J]. Med Sci Sports Exerc, 1992, 24(5): 595-602.
    [175] NIGG B M, STEFANYSHYN D, COLE G, et al. The effect of material characteristics of shoe soles on muscle activation and energy aspects during running[J]. J Biomech, 2003, 36(4): 569-75.
    [176] NIGG B M, WAKELING J M. Impact forces and muscle tuning: a new paradigm[J]. Exerc Sport Sci Rev, 2001, 29(1): 37-41.
    [177] NIGG B M, YEADON M R. Biomechanical aspects of playing surfaces[J]. J Sports Sci, 1987, 5(2): 117-45.
    [178] NILSSON J, TESCH P, THORSTENSSON A. Fatigue and EMG of repeatedfast voluntary contractions in man[J]. Acta Physiol Scand, 1977, 101(2): 194-8.
    [179] NOOTHETI P K, CADAG K M, MAGPANTAY A, et al. Efficacy of graduated compression stockings for an additional 3 weeks after sclerotherapy treatment of reticular and telangiectatic leg veins[J]. Dermatol Surg, 2009, 35(1): 53-7; discussion 57-8.
    [180] O'CONNOR J A, LANYON L E, MACFIE H. The influence of strain rate on adaptive bone remodelling[J]. J Biomech, 1982, 15(10): 767-81.
    [181] ORIZIO C. Sound myogram and EMG cross-spectrum during exhausting isometric contractions in humans[J]. J Electromyogr Kinesiol, 1992, 2(3): 141-49.
    [182] ORIZIO C, SOLOMONOW M, BARATTA R, et al. Influence of motor units recruitment and firing rate on the soundmyogram and EMG characteristics in cat gastrocnemius[J]. Journal of Electromyography and Kinesiology, 1993, 2: 232–41.
    [183] PAIN M T, CHALLIS J H. The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings[J]. J Biomech, 2006, 39(1): 119-24.
    [184] PAIN M T G, CHALLIS J H. Soft tissue motion during impacts: their potential contribution to energy dissipation[J]. J Appl Biomech, 2002, 18: 231–42.
    [185] PARK H S, MARTIN B J. Contribution of the tonic vibration reflex to muscle stress and muscle fatigue[J]. Scand J Work Environ Health, 1993, 19(1): 35-42.
    [186] PERLAU R, FRANK C, FICK G. The effect of elastic bandages on human knee proprioception in the uninjured population[J]. The American Journal of Sports Medicine, 1995, 23(2): 251-5.
    [187] PETERS R, SMITH N, LAUDER M. The effects of adidas powerweb compression shorts on muscle oscillation and drop jump performance [C]. 2009 July 14-18, 2008; Limerick, Ireland.
    [188] POTTHAST W, NIEHOFF A, BRAUNSTEIN B, et al. Changes in morphology and function of toe flexor muscles are related to training footwear [C]. 2005; Cleveland, OH, USA.
    [189] POTVIN J R, BENT L R. A validation of techniques using surface EMG signals from dynamic contractions to quantify muscle fatigue during repetitive tasks[J]. J Electromyogr Kinesiol, 1997, 7(2): 131-9.
    [190] RADIN E L, PARKER H G, PUGH J W, et al. Response of joints to impact loading. 3. Relationship between trabecular microfractures and cartilage degeneration[J]. J Biomech, 1973, 6(1): 51-7.
    [191] RANDALL J M, MATTHEWS R T, STILES M A. Resonant frequencies of standing humans[J]. Ergonomics, 1997, 40(9): 879-86.
    [192] RICARD M D, SCHULTIES S S, SARET J J. Effects of High-Top and Low-Top Shoes on Ankle Inversion[J]. J Athl Train, 2000, 35(1): 38-43.
    [193] RICCARDELLI E, PETTRONE F A. Gymnastics injuries: The Virginia experience 1982-83[J]. Technique, 1984, 2: 16-18.
    [194] RIKLI R E, MCMANIS B G. Effects of exercise on bone mineral content in postmenopausal women[J]. Res Q Exerc Sport, 1990, 61(3): 243-9.
    [195] RILEY P O, PAOLINI G, DELLA CROCE U, et al. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects[J]. Gait Posture, 2007, 26(1): 17-24.
    [196] RITTWEGER J, SCHIESSL H, FELSENBERG D. Oxygen uptake during whole-body vibration exercise: comparison with squatting as a slow voluntary movement[J]. European Journal of Applied Physiology, 2001, 86(2): 169-73.
    [197] RUAN M, LI L. Approach run increases preactivation and eccentric phases muscle activity during drop jumps from different drop heights[J]. J Electromyogr Kinesiol, 2010, 20(5): 932-8.
    [198] RUBIN C, XU G, JUDEX S. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli[J]. FASEB J, 2001, 15(12): 2225-9.
    [199] RUSSO C R, LAURETANI F, BANDINELLI S, et al. High-frequency vibration training increases muscle power in postmenopausal women[J]. Arch Phys Med Rehabil, 2003, 84(12): 1854-7.
    [200] SATO K, HEISE G D, POSTON B, et al. The effect of compression tights and duration of testing on continuous jumping mechanical power [C]. 2008; Seoul, Korea. p 324.
    [201] SCANLAN A T, DASCOMBE B J, REABURN P R, et al. The effects of wearing lower-body compression garments during endurance cycling[J]. Int J Sports Physiol Perform, 2008, 3(4): 424-38.
    [202] SCERPELLA T A, DAVENPORT M, MORGANTI C M, et al. Dose relatedassociation of impact activity and bone mineral density in pre-pubertal girls[J]. Calcif Tissue Int, 2003, 72(1): 24-31.
    [203] SEIDEL H, GRIFFIN M J. Modelling the response of the spinal system to whole-body vibration and repeated shock[J]. Clinical Biomechanics, 2001, 16: 3-7.
    [204] SERINK M T, NACHEMSON A, HANSSON G. The effect of impact loading on rabbit knee joints[J]. Acta Orthop Scand, 1977, 48(3): 250-62.
    [205] SHIANG H. Effects of Insoles and Additional Shock Absorption Foam on the Cushioning Properties of Sport Shoes[J]. Journal of Applied Biomechanics, 2007, 23(2).
    [206] SHIMEGI S, YANAGITA M, OKANO H, et al. Physical exercise increases bone mineral density in postmenopausal women[J]. Endocr J, 1994, 41(1): 49-56.
    [207] SHORTEN M R, WINSLOW D S. Spectral analysis of impact shock during running[J]. JAB, 1992, 8: 4.
    [208] SHULTZ S J, SCHMITZ R J, NGUYEN A D, et al. Joint laxity is related to lower extremity energetics during a drop jump landing[J]. Med Sci Sports Exerc, 2010, 42(4): 771-80.
    [209] SMITH S D. The effects of whole-body vibration on human biodynamic response[J]. J Gravit Physiol, 1995, 2(1): P96-9.
    [210] SPERLICH B, HAEGELE M, ACHTZEHN S, et al. Different types of compression clothing do not increase sub-maximal and maximal endurance performance in well-trained athletes[J]. J Sports Sci, 2010, 28(6): 609-14.
    [211] STEFANYSHYN D J, NIGG B M. Dynamic angular stiffness of the ankle joint during running and sprinting[J]. Journal of Applied Biomechanics, 1998, 14(3): 292-99.
    [212] TARATA M T. Mechanomyography versus electromyography, in monitoring the muscular fatigue[J]. Biomed Eng Online, 2003, 2: 3.
    [213] TIAN S L, LIU Y, LI L, et al. Mechanomyography is more sensitive than EMG in detecting age-related sarcopenia[J]. J Biomech, 2010, 43(3): 551-6.
    [214] TORVINEN S, KANNU P, SIEVANEN H, et al. Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study[J]. Clin Physiol Funct Imaging, 2002, 22(2): 145-52.
    [215] TRENELL M I, ROONEY K B, SUE C M, et al. Compression garments and recovery from eccentric exercise: a 31P-MRS study[J]. JSSM, 2006, 5(1): 106-14.
    [216] VALIANT G A, CAVANAGH P R. A study of landing from a jump: Implications for the design of a basketball shoe [M]. Champaign, IL: Human Kinetics, 1993, 112-16 p.
    [217] VAN MECHELEN W, HLOBIL H, KEMPER H C. Incidence, severity, aetiology and prevention of sports injuries. A review of concepts[J]. Sports Med, 1992, 14(2): 82-99.
    [218] VERDEJO R, MILLS N J. Heel-shoe interactions and the durability of EVA foam running-shoe midsoles[J]. J Biomech, 2004, 37(9): 1379-86.
    [219] VERHAGEN E A, VAN DER BEEK A J, VAN MECHELEN W. The effect of tape, braces and shoes on ankle range of motion[J]. Sports Med., 2001, 31(9): 667-77.
    [220] VON GIERKE H E. Biodynamic models and their applications[J]. The Journal of the Acoustical Society of America, 1971, 50: 1397.
    [221] VON GIERKE H E, BRAMMER A J. Effects of shock and vibration on humans[M]. In: C.M. H, PIERSOL A G, editors. Harris' Shock and Vibration Handbook. McGraw Hill, New York; 2002.
    [222] VON TSCHARNER V, GOEPFERT B, NIGG B M. Changes in EMG signals for the muscle tibialis anterior while running barefoot or with shoes resolved by non-linearly scaled wavelets[J]. J Biomech, 2003, 36(8): 1169-76.
    [223] WAKELING J M. Motor units are recruited in a task-dependent fashion during locomotion[J]. J Exp Biol, 2004, 207(Pt 22): 3883-90.
    [224] WAKELING J M. Spectral properties of the surface EMG can characterize motor unit recruitment strategies[J]. J Appl Physiol, 2008, 105(5): 1676-7; discussion 75.
    [225] WAKELING J M, HORN T. Neuromechanics of muscle synergies during cycling[J]. J Neurophysiol, 2009, 101(2): 843-54.
    [226] WAKELING J M, KAYA M, TEMPLE G K, et al. Determining patterns of motor recruitment during locomotion[J]. J Exp Biol, 2002, 205(Pt 3): 359-69.
    [227] WAKELING J M, LIPHARDT A M, NIGG B M. Muscle activity reduces soft-tissue resonance at heel-strike during walking[J]. J Biomech, 2003, 36(12):1761-9.
    [228] WAKELING J M, NIGG B M. Modification of soft tissue vibrations in the leg by muscular activity[J]. J Appl Physiol, 2001, 90(2): 412-20.
    [229] WAKELING J M, NIGG B M. Soft-tissue vibrations in the quadriceps measured with skin mounted transducers[J]. J Biomech, 2001, 34(4): 539-43.
    [230] WAKELING J M, NIGG B M, ROZITIS A I. Muscle activity damps the soft tissue resonance that occurs in response to pulsed and continuous vibrations[J]. J Appl Physiol, 2002, 93(3): 1093-103.
    [231] WAKELING J M, PASCUAL S A, NIGG B M. Altering muscle activity in the lower extremities by running with different shoes[J]. Med Sci Sports Exerc, 2002, 34(9): 1529-32.
    [232] WAKELING J M, ROZITIS A I. Spectral properties of myoelectric signals from different motor units in the leg extensor muscles[J]. J Exp Biol, 2004, 207(Pt 14): 2519-28.
    [233] WAKELING J M, UEHLI K, ROZITIS A I. Muscle fibre recruitment can respond to the mechanics of the muscle contraction[J]. J R Soc Interface, 2006, 3(9): 533-44.
    [234] WAKELING J M, VON TSCHARNER V, NIGG B M, et al. Muscle activity in the leg is tuned in response to ground reaction forces[J]. J Appl Physiol, 2001, 91(3): 1307-17.
    [235] WALLACE L, SLATTERY K, COUTTS A. Compression garments: do they influence athletic performance and recovery[J]. Sports Coach, 2006, 28(4): 38-39.
    [236] WFSGI. Official international handbook - annual report 2009[M]. World Federation of the Sporting Goods Industry; 2009.
    [237] WINTER D A. Biomechanics and motor control of human movement: John Wiley & Sons Inc, 2009.
    [238] WOROBETS J, WONNAP B, LUO G, et al. The influence of elastic athletic apparel on hip joint mechanics and ground reaction impulses during a sprint start [C]. 2009; Cape Town, South Africa.
    [239] WRIGHT I C, NEPTUNE R R, VAN DEN BOGERT A J, et al. Passive regulation of impact forces in heel-toe running[J]. Clin Biomech (Bristol, Avon), 1998, 13(7): 521-31.
    [240] WU G, SIEGLER S, ALLARD P, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics[J]. J Biomech, 2002, 35(4): 543-8.
    [241] YAMAZAKI T, GEN-NO H, KAMIJO Y, et al. A new device to estimate VO2 during incline walking by accelerometry and barometry[J]. Med Sci Sports Exerc, 2009, 41(12): 2213-9.
    [242] YEADON M R, KING M A, FORRESTER S E, et al. The need for muscle co-contraction prior to a landing[J]. J Biomech, 2010, 43(2): 364-9.
    [243] YUE Z, MESTER J. A model analysis of internal loads, energetics, and effects of wobbling mass during the whole-body vibration[J]. J Biomech, 2002, 35(5): 639-47.
    [244] ZHANG H, VRAHAS M S, BARATTA R V, et al. Damage to rabbit femoral articular cartilage following direct impacts of uniform stresses: an in vitro study[J]. Clin Biomech (Bristol, Avon), 1999, 14(8): 543-8.
    [245] ZHANG S, CLOWERS K, KOHSTALL C, et al. Effects of Various Midsole Densities of Basketball Shoes on Impact Attenuation During Landing Activities[J]. JAB, 2005, 21: 1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700