人体典型运动生物力学仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体是一个极其复杂的系统,个体差异性、多样性以及活体实验的局限性,使得开展人体生物特性的研究工作十分困难。与此同时,随着经济的不断发展、人民生活水平的不断提高以及医疗条件的不断改善,人们提高自身生命质量的要求更加强烈,如何预防运动损伤的发生,提高神经性和各种骨科疾病中的诊断和处理能力,改善假体植入的效果,成为当前相关领域生物医学研究者的重要研究工作。人体生物力学研究正是从力学的角度来研究人体的生物学相关理论和运动机理,从而为临床医学和康复医学的发展提供有力的理论指导和帮助。
     本文依托国家自然科学基金重点项目“中国力学虚拟人”(项目编号:30530230)和国家自然科学基金重大国际合作研究项目“亚洲人种髋、膝关节特性研究与人工髋、膝关节基本设计”(项目编号:30810103908),建立了标准人体骨肌系统三维几何模型和力学模型,构建标准人体骨肌模型与个性人体骨肌系统间的转换方法,开发一款功能比较完善的人体动力学计算及肌肉力预测软件,对人体典型行为运动进行了运动学和动力学分析,对参与运动的下肢相关肌肉的激活度进行了计算。具体内容包括:
     1)利用冷冻层切图片数据通过医学图像处理技术和逆向工程法建立了标准人体骨骼的三维几何模型,并在其基础上确定了上肢和下肢肌肉的起止点的局部坐标,建立了肌肉作用力线,从而最终建立了人体骨肌系统模型。
     2)规划了个性人体基本参数测量方法(包含运动测量、脚底力测量及肌电测量等),建立了基于关节坐标系的肌肉骨骼间附着点坐标转换方法及骨肌系统缩放方法,从而使标准人体骨肌系统很方便的应用于活体分析。
     3)详细描述并推导了运动学、动力学参数的数值计算方法,并开发了一款多功能人体肌肉力预测软件(包含了两种肌肉力预测方法:基于反向动力学的静态优化算法和基于肌电信号的算法),该软件性能良好,具有很强的可视化功能,能够实时观察三维运动,并以曲线形式发布肌肉力预测结果。目前,该软件已完成软件著作权登记。
     4)对40位自愿者的六种典型行为运动(走、跑、蹲、跪、上下楼梯),无负重或有负重状态,进行运动测量、足底力测量和肌电测量。
     5)利用上述测量结果,计算了六种典型行为运动中,下肢髋、膝和踝关节的关节角,三个关节上所受到的关节力和关节力矩,主要骨骼肌的肌肉激活度,为了解的人体运动以及关节假体设计的不断完善提供科学有效的依据。
     总之,本文建立了人体骨肌系统生物力学模型及相关的实验和计算方法,并对人体典型运动中,下肢运动学、动力学和肌肉激活度进行了计算与分析,模型可以广泛地应用于人体生物力学研究,为亚洲人工关节设计提供了理论基础和有益的信息。
The human body is an extremely complex system, individual differences, diversity and the limitations of in vivo experiments, making the research work about biomechanical characteristics of the human body difficult. At the same time, with the development of economy, the rising standards of people's living and the continuous improvement of medical conditions, their demand to improve quality of life themselves becomes more intense. How to prevent sports injury, improve diagnostic and treatment capacity of the neuromusculoskeletal and orthepedic disease and improve the effects of prostheses, become an important task for biomedical researchers in related fields. Biomechanical study of a human body is to study the theory of human biology and the movement mechanism from a mechanical point of view, so as to provide strong theoretical guidance and help for the development of clinics and rehabilitation.
     This dissertation is based on the key project‘Mechanical virtual human of China’supported by National Natural Science Foundation of China (NSFC, No.30530230) and the key international cooperation research project ‘Research on the properties of hip and knee joints and basic design of artificial joints for Asia race’supported by NSFC (No.30810103908). The three-dimensional (3D) geometrical model and biomechanical model of standard human musculoskeletal system have been established. Then, the transform method from standard human musculoskeletal system to individual human musculoskeletal system has been constructed. The software which includes dynamical calculation and muscle force estimation has been developed. The kinematic and dynamic analyses have been carried out for human typical movement. Also, activations of the related muscles have been calculated during movement. The main contents are listed as following:
     1) The 3D geometrical model of standard human skeleton has been established based on cryosectional image data using medical image processing technology and reverse engineering method. Then, the local coordinates of origin and insertion points of muscles on upper limb and lower limb have been determined. Also, the action force lines of the muscles have been constructed. Finally, the human standard musculoskeletal system has been constructed.
     2) The measurements of basic parameters of individual human, which include motion capture measurement, ground reaction force, EMG measurement and so on, have been constituted. Joint coordinate system (JCS)-based method on coordinate transformation of attachment points between muscle and bone, and the scaling and match method of the musculoskeletal system have been established. Then the standard human musculoskeletal system can be applied to analyze individual easily.
     3) Numerical calculation methods for kinematics and kinetic have been described in detail. A multi-functional software (including two methods: inverse dynamics-based static optimization algorithm and the EMG-based algorithm) for human muscle force estimation have been developed. The performance of this software is good. It is with strong visualization capabilities, can observe real-time three-dimensional motion and show the curve of muscle force which selected. Currently, the software is being software copyright registration.
     4) The motions of 40 volunteers with six typical movements (walking, running, squatting, kneeling, stair climbing), no load or weight-bearing state, have been captured. The ground reaction force and EMG of major muscles in lower limb have been measured synchronously.
     5) By using of the results obtained above, joint angles of hip, knee and ankle, joint forces and joint torques, and activations of main muscles during the six typical movements have been calculated and analyzed. These can help us to understand the human movement of such activities and provide scientific data for prosthesis design.
     In short, this dissertation has stated the human musculoskeletal biomechanical model, and the related experimental and calculated methods established by us. Lower extremity kinematics, kinetics and muscle activations during typical human movement have been calculated and analyzed. The model and methods can be applied to the research of human biomechanics widely. This work can provide a theoretical basis and useful information for the design of Asian artificial joint.
引文
[1].王成焘,中国力学虚拟人[J].医用生物力学2006, 21 (003), 172-178.
    [2]. Delp, S. L.; Loan, J. P.; Hoy, M. G., et al., An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures[J]. IEEE Transactions on Biomedical Engineering 1990, 37 (8), 757-767.
    [3]. Holzbaur, K. R.; Murray, W. M.; Delp, S. L., A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control[J]. Ann Biomed Eng 2005, 33 (6), 829-840.
    [4]. Arnold, E.; Ward, S.; Lieber, R., et al., A Model of the Lower Limb for Analysis of Human Movement[J]. Annals of biomedical engineering 2010, 38 (2), 269-279.
    [5]. Anderson, F.; Pandy, M., A dynamic optimization solution for vertical jumping in three dimensions[J]. Computer methods in biomechanics and biomedical engineering 1999, 2 (3), 201-231.
    [6]. Anderson, F. C.; Pandy, M. G., Dynamic optimization of human walking[J]. Journal of Biomechanical Engineering 2001, 123 (5), 381-390.
    [7]. Garner, B. A.; Pandy, M. G., A Kinematic Model of the Upper Limb Based on the Visible Human Project (VHP) Image Dataset[J]. Comput Methods Biomech Biomed Engin 1999, 2 (2), 107-124.
    [8].徐孟.面向人机工程仿真分析的人体生物力学模型[D].杭州:浙江大学, 2006.
    [9].尚鹏.完整步态下自然股骨与人工髋关节的力学特性研究[D].上海:上海交通大学, 2003.
    [10].杨义勇;华超;王人成, et al.,负重深蹲过程中下肢冗余肌肉力分析[J].清华大学学报(自然科学版) 2004, 44 (011), 1493-1496.
    [11]. White, S.; Yack, H.; Winter, D., A three-dimensional musculoskeletal model for gait analysis. Anatomical variability estimates[J]. Journal of Biomechanics 1989, 22 (8-9), 885.
    [12]. Kepple, T.; Sommer III, H.; Siegel, K., et al., A three-dimensional musculoskeletal database for the lower extremities[J]. Journal of Biomechanics 1997, 31 (1), 77-80.
    [13]. Brand, R.; Crowninshield, R.; Wittstock, C., et al., A model of lower extremity muscular anatomy[J]. Journal of Biomechanical Engineering 1982, 104 (4), 304.
    [14]. Glitsch, U.; Baumann, W., The three-dimensional determination of internal loads in the lower extremity[J]. Journal of Biomechanics 1997, 30 (11-12), 1123-1131.
    [15]. Garner, B.; Pandy, M., The obstacle-set method for representing muscle paths in musculoskeletal models[J]. Computer methods in biomechanics and biomedical engineering 2000, 3 (1), 1-30.
    [16]. Wu, G.; Siegler, S.; Allard, P., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine[J]. Journal of Biomechanics 2002, 35 (4), 543-548.
    [17].张瑞红;金德闻,不同路况下正常步态特征研究[J].清华大学学报(自然科学版) 2000, 40 (008), 77-80.
    [18].王劲松;王令军;王婷, et al.,不同步速下人体步态规律的测量与研究[J].传感器与微系统2008, 27 (009), 43-45.
    [19]. Lelas, J.; Merriman, G.; Riley, P., et al., Predicting peak kinematic and kinetic parameters from gait speed[J]. Gait & posture 2003, 17 (2), 106-112.
    [20].郝智秀;周吉彬;金德闻, et al.,不同足地界面对人体三维步态的影响[J].清华大学学报:(自然科学版) 2006, 46 (008), 1388-1392.
    [21]. Riley, P.; Croce, U.; Casey Kerrigan, D., Propulsive adaptation to changing gait speed[J]. Journal of Biomechanics 2001, 34 (2), 197-202.
    [22]. Powers, C.; Heino, J.; Rao, S., et al., The influence of patellofemoral pain on lower limb loading during gait[J]. Clinical Biomechanics 1999, 14 (10), 722-728.
    [23].胡雪艳;恽晓平;郭忠武, et al.,正常成人步态特征研究[J].中国康复理论与实践2006, 12 (010), 855-857.
    [24].刘建华,偏瘫患者的步态分析和治疗[J].中国康复理论与实践2006, 12 (010), 915-916.
    [25].胡雪艳;江晓峰,偏瘫步态的运动学评定[J].中国康复理论与实践2005, 11 (005), 359-360.
    [26].江晓峰;胡雪艳,双侧痉挛型脑瘫患儿的步态特征分析[J].中国康复理论与实践2009, 15 (001), 65-66.
    [27].许光旭;王彤,偏瘫不对称步态的生物力学研究[J].中国康复医学杂志1995, 10 (003), 97-101.
    [28].励建安,神经疾病的步态分析[J].中国康复医学杂志2005, 20 (004), 304-306.
    [29].廖福元;王珏,帕金森病对步态对称性的影响[J].西安交通大学学报2006, 40 (002), 228-230.
    [30]. Mulholland, S.; Wyss, U., Activities of daily living in non-Western cultures: range of motion requirements for hip and knee joint implants[J]. International Journal of Rehabilitation Research 2001, 24 (3), 191.
    [31]. Hemmerich, A.; Brown, H.; Smith, S., et al., Hip, knee, and ankle kinematics of high range of motion activities of daily living[J]. Journal of Orthopaedic Research 2006, 24 (4), 770-781.
    [32].危小焰;王向前;胡贤豪, et al.,女子举重下蹲式上挺的运动生物力学分析[J].医用生物力学2008, 23 (003), 202-207.
    [33].白雪岭;王洪生;张希安, et al.,男子下蹲式抓举技术动作的生物力学特征分析[J].医用生物力学2008, 23 (002), 116-120.
    [34]. Anderson, F.; Pandy, M., Static and dynamic optimization solutions for gait are practically equivalent[J]. Journal of Biomechanics 2001, 34 (2), 153-161.
    [35]. McLean, S.; Su, A.; Van Den Bogert, A., Development and validation of a 3-D model to predict knee joint loading during dynamic movement[J]. Journal of Biomechanical Engineering 2003, 125, 864.
    [36]. Pandy, M. G., Computer modeling and simulation of human movement[J]. Annual review of biomedical engineering 2001, 3 (1), 245-273.
    [37]. Lloyd, D.; Besier, T., An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo[J]. Journal of Biomechanics 2003, 36 (6), 765-776.
    [38]. Sverdlova, N.; Witzel, U., Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress[J]. Journal of Biomechanics 2010, 43 (3), 387-396.
    [39]. Bergmann, G.; Graichen, F.; Rohlmann, A., Hip joint loading during walking and running, measured in two patients[J]. Journal of Biomechanics 1993, 26 (8), 969-990.
    [40]. Bergmann, G.; Deuretzbacher, G.; Heller, M., et al., Hip contact forces and gait patterns from routine activities[J]. Journal of Biomechanics 2001, 34 (7), 859-871.
    [41]. Kaufman, K.; Kovacevic, N.; Irby, S., et al., Instrumented implant for measuring tibiofemoral forces[J]. Journal of Biomechanics 1996, 29 (5), 667-671.
    [42]. D'Lima, D.; Townsend, C.; Arms, S., et al., An implantable telemetry device to measure intra-articular tibial forces[J]. Journal of Biomechanics 2005, 38 (2), 299-304.
    [43].高士濂,实用解剖学图谱上肢分册. In上海科学技术出版社:上海, 2004.
    [44].高士濂,实用解剖学图谱下肢分册. In上海科学技术出版社:上海, 2004.
    [45]. Zhang, S.; Heng, P.; Liu, Z., et al., The Chinese Visible Human (CVH) datasets incorporate technical and imaging advances on earlier digital humans[J]. Journal of anatomy 2004, 204 (3), 165-173.
    [46]. Horn, B., Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A 1987, 4 (4), 629-642.
    [47].施法中,计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS)[M].北京航空航天大学出版社:北京, 1994; Vol. 1.
    [48]. Tang, G.; Wang, C.-T., A muscle-path-plane method for representing muscle contraction during joint movement[J]. Computer Methods in Biomechanics and Biomedical Engineering 2010, 13 (6), 723-729.
    [49].单大卯.人体下肢肌肉功能模型及其应用的研究[D].上海:上海体育学院, 2003.
    [50]. Nigg, B.; Herzog, W., Biomechanics of the musculo-skeletal system[M]. Wiley New York: 1994.
    [51]. Van Sint Jan, S., Color atlas of skeletal landmark definitions-Guidelines for reproducible manual and virtual palpations. In Churchill-Livingstone-Elsevier: 2007.
    [52].高士濂,实用解剖图谱(上肢分册). In上海:上海科学技术出版社: 2004.
    [53].唐刚;魏高峰;聂文忠, et al.,人体下肢关节坐标系的一种简单定义方法[J].北京生物医学工程2009, 28 (6), 606-609.
    [54]. Schmidt, R.; Disselhorst-Klug, C.; Silny, J., et al., A marker-based measurement procedure for unconstrained wrist and elbow motions[J]. Journal of Biomechanics 1999, 32 (6), 615-621.
    [55]. Meskers, C.; van der Helm, F.; Rozendaal, L., et al., In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression[J]. Journal of Biomechanics 1997, 31 (1), 93-96.
    [56]. Stokdijk, M.; Nagels, J.; Rozing, P., The glenohumeral joint rotation centre in vivo[J]. Journal of Biomechanics 2000, 33 (12), 1629.
    [57]. Cappozzo, A.; Catani, F.; Croce, U., et al., Position and orientation in space of bones during movement: anatomical frame definition and determination[J]. Clinical Biomechanics 1995, 10 (4), 171-178.
    [58]. Cappozzo, A., Gait analysis methodology[J]. Human Movement Science 1984, 3, 27–50.
    [59]. Leardini, A.; Cappozzo, A.; Catani, F., et al., Validation of a functional method for the estimation of hip joint centre location[J]. Journal of Biomechanics 1999, 32 (1), 99-103.
    [60]. Bell, A.; Pedersen, D.; Brand, R., A comparison of the accuracy of several hip center location prediction methods[J]. Journal of Biomechanics 1990, 23 (6), 617.
    [61]. Davis, R.; Ounpuu, S.; Tyburski, D., et al., A gait analysis data collection and reduction technique[J]. Hum Mov Sci 1991, 10 (5), 575–587.
    [62]. Seidel, G.; Marchinda, D.; Dijkers, M., et al., Hip joint center location from palpable bony landmarks—a cadaver study[J]. Journal of Biomechanics 1995, 28 (8), 995-998.
    [63]. Fick, R.; Bardeleben, K., Handbuch der anatomie des menschen[M]. Fischer: 1896.
    [64]. Morris, C., The measurement of the strength of muscle relative to the cross section[J]. Research quarterly 1948, 19 (4), 295.
    [65]. Ikai, M.; Fukunaga, T., Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement[J]. European Journal of Applied Physiology and Occupational Physiology 1968, 26 (1), 26-32.
    [66]. Cutts, A.; Seedhom, B. B., Validity of cadaveric data for muscle physiological cross-sectional area ratios: A comparative study of cadaveric and in-vivo data in human thigh muscles[J]. Clinical Biomechanics 1993, 8 (3), 156-162.
    [67]. An, K. N.; Hui, F. C.; Morrey, B. F., Muscles across the elbow joint: A biomechanical analysis[J]. Journal of Biomechanics 1981, 14 (10), 659-669.
    [68]. Veeger, H. E. J.; Yu, B.; An, K.-N., et al., Parameters for modeling the upper extremity[J]. Journal of Biomechanics 1997, 30 (6), 647-652.
    [69]. Murray, W. M.; Buchanan, T. S.; Delp, S. L., The isometric functional capacity of muscles that cross the elbow[J]. Journal of Biomechanics 2000, 33 (8), 943-952.
    [70]. Winters, J. M.; Woo, S. L.-Y., Multiple Muscle Systems: Biomechanics and Movement Organization[M]. Springer Verlag: New York, 1990.
    [71]. Winby, C. R.; Lloyd, D. G.; Kirk, T. B., Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters[J]. Journal of Biomechanics 2008, 41 (8), 1682-1688.
    [72]. Stokes, I. A. F.; Gardner-Morse, M., Quantitative anatomy of the lumbar musculature[J]. Journal of Biomechanics 1999, 32 (3), 311-316.
    [73]. Wickiewicz, T.; Roy, R.; Powell, P., et al., Muscle architecture of the human lower limb[J]. Clinical Orthopaedics and Related Research 1983, 179, 275.
    [74]. Friederich, J.; Brand, R., Muscle fiber architecture in the human lower limb[J]. Journal of Biomechanics 1990, 23 (1), 91-95.
    [75]. Ward, S.; Eng, C.; Smallwood, L., et al., Are current measurements of lower extremity muscle architecture accurate?[J]. Clinical Orthopaedics and Related Research(R) 2009, 467 (4), 1074-1082.
    [76].张希安;叶铭;王成焘,基于骨肌模型的肌肉力计算方法及其面临的若干问题[J].醫用生物力學 2008, 23 (6), 475-479.
    [77]. Fukashiro, S.; Hay, D. C.; Nagano, A., Biomechanical behavior of muscle-tendon complex during dynamic human movements[J]. Journal of Applied Biomechanics 2006, 22 (2), 131-147.
    [78]. Arnold, A. S.; Salinas, S.; Asakawa, D. J., et al., Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity[J]. Computer Aided Surgery 2000, 5 (2), 108-119.
    [79]. Lafortune, M.; Cavanagh, P.; Sommer, H., et al., Three-dimensional kinematics of the human knee during walking[J]. Journal of Biomechanics 1992, 25 (4), 347-357.
    [80]. Wilson, D.; O'Connor, J., A three-dimensional geometric model of the knee for the study of joint forces in gait[J]. Gait & Posture 1997, 5 (2), 108-115.
    [81]. Peters, A.; Galna, B.; Sangeux, M., et al., Quantification of soft tissue artifact in lower limb human motion analysis: A systematic review[J]. Gait & Posture 2010, 31 (1), 1-8.
    [82]. Cappozzo, A.; Cappello, A.; Croce, U. D., et al., Surface-marker cluster design criteria for 3-D bone movement reconstruction[J]. Biomedical Engineering, IEEE Transactions on 1997, 44 (12), 1165-1174.
    [83]. Hermens, H. J.; Freriks, B., SENIAM 9: European recommendations for surface electromyography, results of the SENIAM project[M]. Roessingh Research and Development: Enschede, 1999.
    [84]. Konrad, P., The ABC of EMG: A practical introduction to kinesiological electromyography[M]. Noraxon Inc.: Scottsdale, AZ, 2005.
    [85]. Jiang, Z. Application of an entropy-assisted optimization model in prediction of agonist and antagonist muscle forces [D]. North Carolina State University, 2007.
    [86]. Cutter, N. C.; Kevorkian, C. G., Handbook of Manual Muscle Testing[M]. 1st ed.; McGraw-Hill/Appleton & Lange: New York, 1999.
    [87].吴剑锋;孙守迁;徐孟, et al.,面向人机仿真的肌肉力预测模型[J].中国机械工程2008, 19 (5), 571-574.
    [88].丁海曙;容观澳;王广志,人体运动信息检测与处理[M].宇航出版社:北京, 1992.
    [89]. Buchanan, T. S.; Lloyd, D. G.; Manal, K., et al., Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command[J]. Journal of Applied Biomechanics 2004, 20 (4), 367-395.
    [90]. Delp, S.; Anderson, F.; Arnold, A., et al., OpenSim: Open-source software to create and analyze dynamic simulations of movement[J]. IEEE Transactions on Biomedical Engineering 2007, 54 (11), 1940-1950.
    [91]. Cappozzo, A.; Catani, F.; Della Croce, U., et al., Position and orientation in space of bones during movement: anatomical frame definition and determination[J]. Clinical Biomechanics 1995, 10 (4), 171-178.
    [92].唐刚;季文婷;李元超, et al.,基于关节坐标系的肌肉骨骼间附着点坐标转换方法[J].医用生物力学2010, 25 (1), 40-44.
    [93]. Carman, A.; Milburn, P., Dynamic coordinate data for describing muscle–tendon paths: a mathematical approach[J]. Journal of Biomechanics 2005, 38 (4), 943-951.
    [94]. Chadwick, J.; Haumann, D.; Parent, R. In Layered construction for deformable animated characters, 1989; ACM New York, NY, USA: 1989; pp 243-252.
    [95]. Grochow, K.; Martin, S.; Hertzmann, A., et al. In Style-based inverse kinematics, 2004; ACM New York, NY, USA: 2004; pp 522-531.
    [96]. Rafi, A., Motion capture and computer art[J]. International Journal of Arts and Technology 2008, 1 (1), 1-12.
    [97]. Winter, D. A., Biomechanics and Motor Control of Human Movement[M]. 3rd ed.; John Wiley & Sons, Inc.: Hoboken, 2005.
    [98]. Cole, G. K.; Nigg, B. M.; Ronsky, J. L., et al., Application of the joint coordinate system to three-dimensional joint attitude and movement representation: A standardization proposal[J]. Journal of Biomechanical Engineering 1993, 115 (4 A), 344-349.
    [99].王成焘,人体生物摩擦学[M].科学出版社: 2008.
    [100]. Erdemir, A.; McLean, S.; Herzog, W., et al., Model-based estimation of muscle forces exerted during movements[J]. Clinical Biomechanics 2007, 22 (2), 131-154.
    [101]. Zajac, F. E., Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[J]. Critical Reviews In Biomedical Engineering 1989, 17 (4), 359-411.
    [102]. Potvin, J. R.; Norman, R. W.; McGill, S. M., Mechanically corrected EMG for the continuous estimation of erector spinae muscle loading during repetitive lifting[J]. European Journal of Applied Physiology 1996, V74 (1), 119-132.
    [103]. Pennestri, E.; Stefanelli, R.; Valentini, P., et al., Virtual musculo-skeletal model for the biomechanical analysis of the upper limb[J]. Journal of Biomechanics 2007, 40 (6), 1350-1361.
    [104]. Eng, C.; Biosci, J.; Physiol, J., et al., 1. Zajac FE: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[J]. Crit Rev Biomed Eng 1989, 17, 359-411.
    [105]. Paiva, J.; Kelencz, C.; Paiva, H., et al., Adaptive wavelet EMG compression based on local optimization of filter banks[J]. Physiological Measurement 2008, 29 (7), 843.
    [106]. Garner, B.; Pandy, M., Musculoskeletal model of the upper limb based on the visible human male dataset[J]. Computer methods in biomechanics and biomedical engineering 2000, 4 (2), 93-126.
    [107]. Buchanan, T. S.; Lloyd, D. G.; Manal, K., et al., Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model[J]. Medicine & Science in Sports & Exercise 2005, 37 (11), 1911-1916.
    [108]. Anderson, F. C.; Pandy, M. G., Static and dynamic optimization solutions for gait are practically equivalent[J]. Journal of Biomechanics 2001, 34 (2), 153-161.
    [109]. Tang, G.; Qian, L.-w.; Wei, G.-f., et al., Development of software for human muscle force estimation[J]. Computer Methods in Biomechanics and Biomedical Engineering 2010, in press.
    [110].刘建华;丸山仁司;胜平纯司,上下台阶方法的生物力学研究[J].中国康复理论与实践2003, 9 (010), 604-605.
    [111]. Andriacchi, T.; Andersson, G.; Fermier, R., et al., A study of lower-limb mechanics during stair-climbing[J]. The Journal of Bone and Joint Surgery 1980, 62 (5), 749.
    [112]. Livingston, L.; Stevenson, J.; Olney, S., Stairclimbing kinematics on stairs of differing dimensions[J]. Archives of physical medicine and rehabilitation 1991, 72 (6), 398.
    [113]. Mian, O.; Thom, J.; Narici, M., et al., Kinematics of stair descent in young and older adults and the impact of exercise training[J]. Gait & posture 2007, 25 (1), 9-17.
    [114]. Protopapadaki, A.; Drechsler, W.; Cramp, M., et al., Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clinical Biomechanics 2007, 22 (2), 203-210.
    [115]. Riener, R.; Rabuffetti, M.; Frigo, C., Stair ascent and descent at different inclinations[J]. Gait & posture 2002, 15 (1), 32-44.
    [116]. Novacheck, T., The biomechanics of running[J]. Gait & posture 1998, 7 (1), 77-95.
    [117]. Hof, A. L., Scaling gait data to body size[J]. Gait & Posture 1996, 4 (3), 222-223.
    [118]. O'Connor, C. M.; Thorpe, S. K.; O'Malley, M. J., et al., Automatic detection of gait events using kinematic data[J]. Gait & Posture 2007, 25 (3), 469-474.
    [119]. Akagi, M.; Nakamura, T.; Matsusue, Y., et al., The Bisurface total knee replacement: a unique design for flexion: four-to-nine-year follow-up study[J]. The Journal of Bone and Joint Surgery 2000, 82 (11), 1626.
    [120]. Yamazaki, J.; Ishigami, S.; Nagashima, M., et al., Hy-Flex II total knee system and range of motion[J]. Archives of orthopaedic and trauma surgery 2002, 122 (3), 156-160.
    [121]. Pyevich, M.; Saltzman, C.; Callaghan, J., et al., Total ankle arthroplasty: a unique design. Two to twelve-year follow-up[J]. The Journal of Bone and Joint Surgery 1998, 80 (10), 1410.
    [122]. Anderson, T.; Montgomery, F.; Carlsson, A., Uncemented STAR total ankle prostheses: three to eight-year follow-up of fifty-one consecutive ankles[J]. The Journal of Bone and Joint Surgery 2003, 85 (7), 1321.
    [123]. Wood, P.; Deakin, S., Total ankle replacement. The results in 200 ankles[J]. The Journal of bone and joint surgery. British volume 2003, 85 (3), 334.
    [124]. Lavcanska, V.; Taylor, N. F.; Schache, A. G., Familiarization to treadmill running in young unimpaired adults[J]. Human Movement Science 2005, 24 (4), 544-557.
    [125]. Kirtley, C.; Whittle, M.; Jefferson, R., Influence of walking speed on gait parameters[J]. Journal of biomedical engineering 1985, 7 (4), 282-288.
    [126]. Giles-Corti, B.; Donovan, R., Relative influences of individual, social environmental, and physical environmental correlates of walking[J]. American Journal of Public Health 2003, 93 (9), 1583.
    [127]. Kadaba, M.; Ramakrishnan, H.; Wootten, M., Measurement of lower extremity kinematics during level walking[J]. Journal of Orthopaedic Research 1990, 8 (3), 383-392.
    [128]. England, S.; Granata, K., The influence of gait speed on local dynamic stability of walking[J]. Gait & posture 2007, 25 (2), 172-178.
    [129].胡雪艳;恽晓平;郭忠武, et al.,正常成人步态特征研究[J].中国康复理论与实践2006, 12 (010), 855-857.
    [130].王洪生;白雪岭;张希安, et al.,人体行走过程中上肢运动仿真及生物力学特征分析[J].上海交通大学学报2009, 43 (008), 1302-1306.
    [131]. Bohannon, R., Comfortable and maximum walking speed of adults aged 20--79 years: reference values and determinants[J]. Age and Ageing 1997, 26 (1), 15.
    [132]. Arampatzis, A.; Brüggemann, G.; Metzler, V., The effect of speed on leg stiffness and joint kinetics in human running[J]. Journal of Biomechanics 1999, 32 (12), 1349-1353.
    [133]. Young, W.; James, R.; Montgomery, I., Is muscle power related to running speed with changes of direction?[J]. The Journal of sports medicine and physical fitness 2002, 42 (3), 282-288.
    [134]. Arendse, R.; Noakes, T.; Azevedo, L., et al., Reduced eccentric loading of the knee with the pose running method[J]. Medicine & Science in Sports & Exercise 2004, 36 (2), 272-277.
    [135]. Heintz, S.; Gutierrez-Farewik, E., Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach[J]. Gait & posture 2007, 26 (2), 279-288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700