Internet中资源分配和拥塞控制若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前Internet进行资源分配和拥塞控制的时候,通常做如下假设:Internet是面向无连接的分组交换网络,提供尽力传递的网络服务,当分组丢失概率与流速率无关时TCP端到端的拥塞控制机制能够保证网络收敛到平稳状态,获得有效率而且公平的资源分配。但是,上述假设条件并非在所有的网络情形下都满足。在网络中,的确存在着一些情形,即当分组丢失概率与流速率相关时,TCP难以收敛到平稳状态;也存在着新的技术方式,诸如光突发交换不再使用传统的Internet分组交换工作方式来实施网络资源的分配。
     论文工作围绕上述两个方面的若干问题展开。一方面,研究了在分组丢失概率与流速率相关的两种网络情形下TCP的拥塞控制特性;另一方面,研究了在光突发交换网络中信道优化调度问题。这些问题不同于以往的资源分配和拥塞控制问题,对传统的以带宽为目标的资源分配和拥塞控制机制提出了挑战。本论文对上述问题进行了深入探讨,并给出确实可行的技术解决方案。论文的主要贡献包括以下三点。
     研究了TCP在交换结构中的拥塞控制性能。指出在交换结构的环境中,TCP拥塞控制存在着不同寻常的新问题:单靠传统的TCP/队列管理机制无法兼顾资源分配的有效性和公平性。分析了丢尾和丢头队列管理机制与TCP配合进行拥塞控制失效的原因。提出把交换结构的仲裁机制和对输入缓存的队列管理结合起来的基本思想,并给出一种简单的启发式公平仲裁和随机提前丢头算法,通过不均匀地仲裁分组转发和随机地提前丢弃队头分组来兼顾资源分配的有效性和公平性。仿真结果表明算法确实有效。
     研究了TCP在光突发交换网络中的拥塞控制性能。指出在光突发交换网络中,TCP吞吐量存在着极大的不公平性,原因在于光突发交换网络中突发丢失特性与TCP速率回退机制的相互作用,即不同速率的流经历不同概率的突发丢失,速率小的流总是比速率大的流经历更多的突发丢失,而突发丢失常常使TCP由于超时而进入慢启动,从而加重流之间的吞吐量差异。分析TCP进入超时慢启动的原因。给出突发丢失的数学模型解释TCP吞吐量的不公平性。分析偏置时间对流速率的控制作用,提出一种自适应偏置时间算法,根据流的当前速率动态地设置偏置时间,让速率大的流具有小的偏置时间,仿真实验结果表明算法达到预期目标。
     研究了光突发交换网络的信道优化调度。发现离线调度的OBS-GS算法的信道利用率甚至劣于LAUC算法。提出一种以信道利用率为优化目标的信道优化调度算法,将信道调度问题转换为图的着色问题来求解。将这个问题描述为整数线性规划形式,利用间隔图的优良特性可在多项式时间内求解。给出可适用于任意波长个数的信道优化调度问题的通用的等效图论描述形式。讨论了对短突发的性能歧视。数学分析给出提出的优化算法所带来的信道利用率增益的上下限。
Generally we consider resource allocation and congestion control issues in the Internet assuming that it is a connectionless, packet-switched network with best effort service; and TCP end-to-end congestion control mechanism makes the Internet converge to steady state with effective and fair resource allocation assuming that packet loss probability is not a function of flow rates. However, in no all scenarios of network do assumptions above come into existence. On the one hand, there indeed exist some network situations where packet loss probability is a function of flow rates and it is difficult for TCP to converge to steady state. On the other hand, some new network technologies, for optical burst switching (OBS) as an example, use different ways to allocate network resources from those used in packet-switched network like Internet.
    In this dissertation several problems involved the two hands are studied. For the first hand TCP congestion control performance in two network situations where packet loss probability is a function of flow rates is studied. For the second hand the channel scheduling problem in OBS network is discussed. These problems are quite different from those existing, thus the traditional resource assignment and congestion control mechanism, in which link bandwidth and buffer space in routers are viewed as the target resources, will be challenged. In this dissertation the problems above are looked into, and relevant technology solutions are carried out. The contributions are three-fold as following.
    The first contribution is that TCP performance in the input-queued switch is studied for the first time. It is found that the TCP congestion control performance in the input-queued switch is different from traditional one, and that it is impossible to achieve efficiency and fairness among TCP flows at the same time only by queue management. The reasons why drop tail and drop front queue management mechanisms do not work are analyzed. The queue management and switching arbitrating must be in conjunction, and a scheme, which combines heuristic fair arbitrating (AFS) and queue management mechanism of early drop front randomly (rEDF), is proposed. In proposed scheme, switch arbitration strategy of hFS unevenly allows input ports to transfer packets to output ports while packets at head of any other input ports involved in conflicts have to be dropped by the policy of rEDF with a probability. Simulation results prove that the proposed scheme can achieve better tradeoff between throughput and fairness. The second contribution discusses TCP congestion control performance in OBS network. It is found that significant throughput unfairness exists among TCP flows that share the OBS network through edge nodes. The cause is that the interaction of burst dropping and TCP transmitting rates back-off mechanism. In other words, in OBS network flows with different rates undergo different burst dropping probability, i.e., a TCP flow with a lower rate will undergo more burst dropping than one with a higher rate, and burst dropping always makes TCP enter slow start due to retransmission timeout, which worsen throughput difference between flows with different rates. The reasons why TCP does retransmission timeouts are analyzed. Burst dropping models are proposed to explain TCP throughput unfairness. It is observed that offset time will be a good choice to control TCP fairness, and then an adaptive offset time scheduling (AOS) algorithm is proposed. AOS assigns bursts offset time value adaptive to flow rate, i.e., makes a burst with shorter offset time for the recent flow rate increasing. The simulation results show that the fairness can be significantly improved by proposed AOS scheme.
    For the third contribution, the optimization problem about channel scheduling in OBS network is studied. It is found that for the channel utilization the offline OBS-GS algorithm is even worse than online LAUC algorithm. An optimal scheduling scheme is proposed to maximum channel utilization. The problem of optimum channel scheduling is mapped to a problem of colouring graph, which is formulated as an integer linear programming problem solvable in polynomial time by making use of interval graph good characteristics. Discrimination to smaller burst and the alleviation with adjusted weight are discussed. Analysis results present the minimal low bound and maximal bound of channel utilization of proposed schemes.
引文
[1] Qiao C, Yoo M. Optical Burst Switching (OBS) -A New Paradigm for an Optical Internet [J].High Speed Networks, 1999, V8 (1): 69-85
    [2] Larry L. Peterson and Bruce S. D. Computer Networks: A Systems Approach, Second Edition [M]. Morgan Kaufman, Publishers, Inc. 2000
    [3] Braden B., Clark D., and Crowcroft J., et al. Recommendations on Queue Management and Congestion Avoidance in the Internet [S]. IETF RFC2309, 1998
    [4] Floyd S. and Jacobson V. Random Early Detection Gateways for Congestion Avoidance [J].IEEE/ACM Transactions on Networking, 1993, V1 (4): 393-413
    [5] Floyd S. and et al. References on RED (Random Early Detection) Queue Management [EB/OL],http://www.aciri.ort/floyd/red.html
    [6] Feng W. C., Kandlur D., Saha D., and et al. A Self-Configuring RED Gateway [C]. IEEE INFOCOM 1999:1320-1328
    [7] Ott T. J., Lakshman T. V., and Wong L. H. SRED: Stabilized RED [C]. IEEE INFOCOM 1999:1347-1355
    [8] Feng W. C., D. D. Kandlurz, and Saha D., et al. BLUE: A New Class of Active Queue Management Algorithms [R]. Technical Report CSE-TR-383-99, University of Michigan, Apr 1999
    [9] Lin D. and Morris R. Dynamics of Random Early Detection [C]. Proc. of ACM SIGCOMM 1997, V27 (4): 123-137
    [10] Floyd S. and Fall K., Router Mechanisms to Support End-to-End Congestion Control [R]. LBL Technical report, February 1997
    [11] Pan Rong, Prabhakar B., and Psounis K. CHOKe A Stateless Active Queue Management Scheme for Approximating Fair Bandwidth Allocation [C]. IEEE INFOCOM 2000:942-951
    [12] Wydrowski B., and M. Zukerman. GREEN: An Active Queue Management Algorithm for a Self Managed Internet [C]. Proc. of ICC 2002, V4; 2368-2372
    [13] Ramakrishnan K., and Floyd S. A Proposal to Add Explicit Congestion Notification (ECN) to IP [S]. IETF RFC2481, 1999
    [14] Floyd S. TCP and Explicit Congestion Notification [J]. ACM Computer Communication Review, 1995, V24 (5): 8-23
    [15] 章淼,吴建平,林闯.互联网端到端拥塞控制研究综述[J].软件学报,2002,V13(3):354-363
    [16] Hollot C.V., Misra V., and Towsley D., et al. On Designing Improved Controllers for AQM Routers Supporting TCP Flows [J]. IEEE INFOCOM 2001:1727-1734
    [17] Kunniyur S., and Srikant R. Analysis and Design of an Adaptive Virtual Queue (AVQ) Algorithm for Active Queue Management [J]. ACM Computer Communication Review, 2001, V31 (4): 125-134
    [18] Athuraliya S., Low S., and Li V., et al. REM: Active Queue Management [J]. IEEE Network Magazine, 2001, 15 (3): 48-53
    [19] Ryu S., Ryu B., and Jeong M., et al. PI-PD Controller for Adaptive and Robust Active Queue Management for Internet Congestion Control [J]. Simulation, 2005, V81 (6): 433-459
    [20] Postel J. Transmission Control Protocol [S]. IETF RFC 793, 1981
    [21] Nagle J. Congestion Control in IP/TCP Internetworks [S]. IETF RFC 896, 1984
    [22] Allman M., Paxson V., and Stevens M. TCP Congestion Control [S]. IETF RFC 2581, 1999
    [23] Floyd S. Congestion Control Principles [S]. IETF RFC2914,2000
    [24] Floyd S. and Fall K. Promoting the Use of End-to-End Congestion Control in the Internet [J]. IEEE/ACM Transactions on Networking, 1999, V7 (4): 458-472
    [25] Fall K., and Floyd S. Simulation Based Comparison of Tahoe, Reno, and SACK TCP [J]. Computer Communication Review, 1996, V26 (3): 7-21
    [26] Floyd S. On the Evolution of End-to-End Congestion Control in the Internet: An Idiosyncratic View [C]. Scaling Phenomena in Communication Networks, IMA workshop, Oct. 1999
    [27] Jacobson V. Congestion Avoidance and Control [C]. Proc. of ACM SIGCOMM 1988: 314-329
    [28] Chiu D., and Jain R. Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks [J]. Computer Networks and ISDN Systems, 1989, V17 (1): 1-14
    [29] Jacobsen V. Berkeley TCP Evolution from 4.5-Tahoe to 4.5-Reno [C]. Proc. of the Eighteenth Internet Engineering Task force, University of British Columbia, Vancouver, B.C., 1990
    [30] Allman M., and Paxson V. On Estimating End-to-End Network Path Properties. Proc. of ACM SIGCOMM 1999: 229-240
    [31] Paxson V., Allman P. Computing TCP's Retransmission Timer [S]. IETF RFC2988,2000 [32] NS2, The Network Simulator, http://www.isi.edu/nsnam/ns
    [33] Stevens W. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms [S]. IETF RFC2001, 1997
    [34] Yu X., Qiao C, and Liu Y., et al. Performance Evaluation of TCP Implementation in OBS Networks [EB/OL]. www.cse.buffalo.edu/tech-reports/2005-15.pdf
    [35] Mathis M., Mahdavi J., and Floyd S., et al. TCP Selective Acknowledgement Options [S]. IETF RFC 2018,1996
    [36] Qiao C. and Yoo M. Choices, Features and Issues in Optical Burst Switching [J]. Optical Network Magazine, 2000, V1(2): 37-44
    [37] Turner J.S. Terabit Burst Switching [J]. Journal of High Speed Networks, 1999, V8 (1): 5-16
    [38] Gauger C. M. Dimensioning of FDL Buffers for Optical Burst Switching Nodes. Proc. SPIE Optical Network Design and Modeling (ONDM 2002)
    [39] Hong D., Poppe F., and Reynier J., et al. The Impact of Burstification on TCP Throughput in Optical Burst Switching Networks [A].ITC2003
    [40] Xiong Y., Vanderhoute M., and Cankaya H.C. Control Architecture in Optical Burst Switched WDM Networks [J]. IEEE Journal on Selected Areas in Communications, 2000, V18 (10): 1838-1854
    [41] Chaskar H.M., Verma S., and Ravikanth R. A Framework to Support IP over WDM Using Optical Burst Switching [A]. Proc.Optical Networks Workshop 2000.
    [42] Verma S., Chaskar H., and Ravikanth R. Optical Burst Switching: A Viable Solution for Terabit IP Backbone [J]. IEEE Network, 2000, V14 (6): 48-53
    [43] Vokkarane V. M. Design and Analysis of Architectures and Protocols for Optical Burst Switching Networks [D]. PH.D dissertation, the University of Texas at DalIas,2004
    [44] Qiao C. Labeled Optical Burst Switching for IP-over-WDM Integration [J]. IEEE Communications Magazine, 2000, V38 (9): 104-114
    [45] Baldine I., Rouskas G.N., and Perros H.G., et al. Jumpstart: A Just-in-Time Signaling Architecture for WDM Burst-Switched Networks [J]. IEEE Communications Magazine, 2002, V40 (2): 82-89
    [46] Jun Kyun Choi, and et. al. Extension of Gsmp for Optical Burst Switching [S]. IETF draft-choi-gsmp-optical-extension-00.txt, 2000
    [47] Thodime G.P.V., Vokkarane V. M., and Jue J. P. Dynamic Congestion-based Load Balanced Routing in Optical Burst Switched Networks [C]. Proc. of GLOBECOM 2003, V5: 2694-2698
    [48] Li J., Mohan G., and Chua K. C. Load Balancing Using Adaptive Alternate Routing in IP-over-WDM Optical Burst Switching Networks [A]. Proc. of SPIE OptiComm 2003: 337-345
    [49] Chen B. and Wang J. Hybrid Switching and p-Routing for Optical Burst Switching Networks [J]. IEEE Journal on Selected Areas in Communications, 2003, V21 (7): 1071-1080
    [50] Li J. and Qiao C. Schedule Burst Proactively for Optical Burst Switching Networks [C].Proc. of GLOBECOM, 2003: 2787-2791
    [51] Battestilli T. L. Optical Burst Switching: a Survey [EB/OL], http://citeseer.ist.psu.edu/590134.html
    [52] Cao X., Li J., and Chen Y., et al. TCP/IP Packets Assembly over Optical Burst Switching Network. Proc. of GLOBECOM, 2002, V3: 2808-2812
    [53] Morato D., Aracil J., and Diez L.A.,et al. On Linear Prediction of Internet Traffic for Packet and Burst Switching Networks [C], Proc. of International Conference on Computer Communications and Networks (ICCCN), 2001: 138-143
    [54] Yu X., Chen Y., and Qiao C. A Study of Traffic Statistics of Assembled Burst Traffic in Optical Burst Switched Networks [C]. Proc. of SPIE Optical Networking and Communication Conference (OptiComm) 2002: 149-159
    [55] Yu X., Chen Y., and Qiao C. Performance Evaluation of Optical Burst Switching with Assembled Burst Traffic Input [C]. Proc. of IEEE GLOBECOM, 2002, V3: 2318-2322
    [56] Izal M., and Aracil J.On the Influence of Self-Similarity on Optical Burst Switching Traffic [C]. Proc. of GLOBECOM, 2002, V3: 2308-2312
    [57] Ge A., Callegati F., and Tamil L. On Optical Burst Switching and Self-Similar Traffic [J]. IEEE Communications Letters, 2000, V4 (3):98-100
    [58] Stevenson D., Baldine I., and et.al. Just in Time Signaling Definition (Jumpstart) [R]. Jumpstart, an NSA funded project, January 2002
    [59] Kozlovski E., Dueser M., and de Miguel I., et al. Analysis of Burst Scheduling for Dynamic Wavelength Assignment in Optical Burst Switched Networks [A]. Proccedings of 2001 IEEE LEOS (Lasers and Electro-Optics Society) Annual Meeting, 2001, V1: 161-162
    [60] Padhye J., Firoiu V., and Towsley D, et al. Modeling TCP Reno Performance: A Simple Model and Its Empirical Validation [C]. Proc. of SIGCOMM 1998
    [61] Karol M., Hluchyj M., and Morgan. Input versus Output Queueing on a Space Division Switch [J]. IEEE Trans. Communication, 1987, V35: 1343-1356
    [62] Floyd S. A Report on Some Recent Developments in TCP Congestion Control [J]. IEEE Communication Magazine, 2001, V39 (4): 84-90
    [63] Zhang X., Bhuyan L. N. Deficit Round-Robin Scheduling for Input-queued Switches [J]. IEEE Journal on Selected areas in Communications, 2003, V21 (4): 584-594
    [64] Ni N. and Bhuyan L. N. Fair Scheduling and Queue Management in Internet Routers [C]. IEEE INFOCOM 2002
    [65] Marsan M. A., Giaccone P., and Leonardi E., et al. Local Scheduling Policies in Networks of Packet Switches with Input Queues[C]. IEEE INFOCOM 2003, V2:1397-1405
    [66] Mekkittikul A. and Mckeown N. A Practical Scheduling Algorithm to Achieve 100% Throughput in Input-queued Switches [C]. IEEE INFOCOM 1998, V2 (3):792-799
    [67] 熊庆旭,输入排队结构交换机分组调度研究[J].通信学报2005,26(6):118-129
    [68] Mckeown N., Mekkittikul A., and Anantharam V., et al. Achieving 100% Throughput in an Input Queued Switch [J]. IEEE Transactions on Communications, 1999, V47 (8): 1260-1267
    [69] Tamir Y., Frazier G. High-performance Multi-queue Buffers for VLSI Communication Switches [C]. Proc. of the 15th Int. Symp. on Computer Architecture, ACM SIGARCH 1988, V16 (2): 345-354
    [70] Nong G.and Hamdi M. On the Provision of Quality-of-Service Guarantees for Input Queued Switches [J]. IEEE Communication Magazine, 2000, V38 (12): 62-69
    [71] Sarkar S. Optimum Scheduling and Memory Management in Input Queued Switches with Finite Queue Space [J]. IEEE Transactions on Information Theory, 2004, V50 (12): 3197-3220
    [72] Gupta P. Scheduling in Input Queued Switches: A Survey [EB/OL]. 1996, unpublished manuscript, http://klamath.stanford.edu/_pankaj/research.html
    [73] Zheng H. Y., Zhao Y. X., Chen C. J. Design and Implementation of Switches in Network Simulator (ns2) [C]. Proc. of ICICIC2006, V1: 721-724
    [74] Jain R. The Art of Computer Systems Peformance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. John Wiley & Sons, New York, 1991
    [75] Lakshman T. V., Neidhardt A., and Ott T. The Drop from Front Strategy in TCP over ATM and Its Interworking with Other Control Features[C]. IEEE INFOCOM 1996:1242-1250
    [76] Fomenkov M., Keys K., Moore D., and Claffy K. Longitudinal Study of Internet Traffic from 1998-2003 [EB/OL]. http://www.caida.org/outreach/papers/2003/nlanr/nlanr_overview.pdf
    [77] Detti A., Listanti M. Impact of Segments Aggregation on TCP Reno Flows in Optical Burst Switching Network [C]. IEEE INFOCOM 2002, V3:1805-1812
    [78] Gowda S., Shenai R. K., and Sivalingam K., et al. Performance Evaluation of TCP over Optical Burst Switched (OBS) WDM Networks [C]. Proc. of ICC 2003, V2:11-13.
    [79] Yu X., Qiao C., and Liu Y. TCP Implementation and False Time Out Detection in OBS Network [C]. IEEE INFOCOM 2004, V2:774-784
    [80] Cao X., Qiao C. Assembling TCP╱IP Packets in Optical Burst Switched Networks [C]. Proc. of GLOBECOM 2002:2808-2812
    [81] Zhang Q., and et al. Retransmission in Optical Burst Switched Networks and TCP Implementations [R]. The University of Texas at Dallas Technical Report, UTDCS-32-04
    [82] Luo J, Zhang Z, and Qiu S, et al. ROBS: a Novel Architecture of Reliable Optical BurstSwitching with Congestion Control [C]. In Proc. of SPIE V5626 (SPIE, Belingham, WA, 2005): 440-447
    [83] Wang S. Y. Using TCP Congestion Control to Improve the Performance of Optical Burst Switched Networks [C]. Proc. of ICC 2003
    [84] Yao S., Xue F., and Mukherjee B., et al. Electrical Ingress Buffering and Traffic Aggregation for Optical Packet Switching and thier Effect on TCP-Level Performance in Optical Mesh Networks [J]. IEEE Comminications Magazine, 2002, V40 (9): 67-72
    [85] He J, Chan S. H. G. TCP and UDP Performance for Internet over Optical Packet-Switched Networks [C]. Proc. of ICC 2003: 1350-1354
    [86] Bruyeron R., Hemon B., and Zhang L. Experimentations with TCP Selective Acknowledgment [J]. Computer Communication Review, 1998, V28 (2): 54-77
    [87] Jiao S., Wu H., and Lin J. T. Degradation of TCP Performance over OBS Network: Analysis and Improvement [C]. COIN2005
    [88] Yoo M. and Qiao C. Supporting Multiple Classes of Services in IP over WDM Networks. Proc. of GLOBECOM 1999: 1023-1027
    [89] Yoo M., Qiao C, and Dixit S. QOS Performance of Optical Burst Switching in IP-over-WDM Networks [J]. IEEE Journal on selected areas in communications, 2000, V18 (10): 2062-2071
    [90] Stoica I., Shenker S., and Zhang H. Core-Stateless Fair Queueing: Achieving Approximately Fair Bandwidth Allocations in High Speed Networks [C]. Proc. of SIGCOMM 1998
    [91] Li J., Qiao C, and Xu J., et al. Maximizing Throughput for Optical Burst Switching Networks [C]. IEEE INFOCOM 2004, V3: 1853-1863
    [92] Li J., and Qiao C. Recent Progress in the Scheduling Algorithms in Optical Burst Switched Networks. [J]. Journal of Optical networking, 2004, V3 (4): 229-241
    [93] Xu, J., Qiao C, and Li J, et al. Efficient Channel Scheduling Algorithms in Optical Burst Switched Networks [C]. IEEE INFOCOM 2003, V3: 2268-2278
    [94] Detti A., Eramo V. and Listanti M. Performance Evaluation of a New Technique for IP Support in a WDM Optical Network: Optical Composite Burst Switching (OCBS) [J]. Journal of Lightwave Tech 2002, V20 (2): 154-165
    [95] Vokkarane V., Jue, J.P. and Sitaraman S. Burst Segmentation: an Approach for Reducing Packet Loss in Optical Burst Switched Networks [C]. Proc.of IEEE ICC 2002, V5: 2675-2677
    [96] Tan S. K., Mohan G. and Chua K. C. Burst Rescheduling with Wavelength and Last-hop FDL Reassignment in WDM Optical Burst Switching Networks [C]. Proc. of IEEE ICC 2003, V2: 1448-1452
    [97] Farahmand F and Jue J. P. Look-ahead Window Contention Resolution in Optical Burst Switched Networks [C]. Proc. of ICC 2003
    [98] Li H. Performance of the Implementation of a Pipeline Buffering System in Optical Burst Switching Networks [A]. Proc. Of GLOBECOM 2003
    [99] Charcranoon S., Ei-Bawab T. S., and Cankaya H. C, et al. Group-Scheduling for Optical B urstSwitched (OBS) Networks [C]. Proc. of GLOBECOM 2003: 2747-2749
    [100] Golumbic M. C. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980
    [101] Bomze M., Budinich M., and Pardalos P.M., et al. The Maximum Clique Problem [M]. Handbook of Combinatorial Optimization, V4. Kluwer Academic Publishers, Boston, MA, 1999
    [102] West D.B.Introduction to Graph Theory,Second Edition[M](影印).北京:机械工业出版社,2002
    [103] Yannakakis M. and Gavril F. The Maximum k-Colorable Subgraph Problem for Chordal Graphs [J]. Inform. Process. Lett. 1987, V24:135-137
    [104] Carlislie M and Lloyd E. On the k-Coloring of Intervals [J]. Discrete Applied Mathematics 1995, V59:227-235
    [105] 马仲蕃.线性整数规划的数学基础[M].北京:科学出版社,1995:147-147
    [106] Grotschel M., Lovasz L., and Schrijver A. The Ellipsoid Method and its Consequences in Combinatorial Optimization [J]. Combinatorica, 1981, V1: 169-197
    [107] Grotschel M., Lovasz L., and Schrijver A. Polynomial Algorithms for Perfect Graphs [A]. In Topics on Perfect Graphs, 1984, V88 of North-Holland Math. Stud: 327-356
    [108] Balas E., Ceria S., and Comuejols G., et al. Polyhedral Methods for the Maximum Clique Problem [R]. Technical report, Graduate school of industrial administration, Carnegie Mellon University, February 1994
    [109] Bela Bollobas. Random Graphs, Second Edition. Cambridge University Press, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700