以金属配合物为模板的无机开放骨架化合物的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以分子筛为代表的无机开放骨架化合物由于具有规则的孔道结构和独特的性能,在催化、吸附、分离和离子交换等领域具有重要应用。除此之外,在电学、磁学、化学传感以及医学方面也有着潜在的应用前景。因此,开发新型的无机开放骨架化合物一直是多孔材料领域的研究热点之一。在合成新型无机开放骨架化合物的过程中引入结构导向剂是必要的。传统的结构导向剂包括碱金属离子、碱土金属离子、有机胺类、季铵盐(碱)、金属配合物、氟离子等。其中金属配合物作为结构导向剂,由于具有刚性、特殊的空间构象(如手性)、大量的氢键位点等特点,成为合成化学中研究的热点。
     本论文以钴(镍)胺配合物为结构导向剂,利用水热/溶剂热的合成方法开展了锗酸镓分子筛、金属氟化物复合物及磷酸盐等开放骨架化合物的合成研究,取得的主要成果如下:
     1.利用外消旋的乙二胺合镍配合物为模板剂,在溶剂热条件下成功地合成出具有新型分子筛结构的锗酸镓[Ni(en)_3][[Ga_2Ge_4O_(12)](GaGeO-CJ63)。GaGeO-CJ63是由TO_4(T=Ge,Ga)四面体之间通过共享顶点形成三维四连接的骨架。其结构完全由三元环构成,沿三个方向上存在交叉的10-元环孔道。在目前已知分子筛结构中,GaGeO-CJ63的骨架密度是第三低的。在该化合物中存在着两种笼:一种为非手性笼、一种为手性笼。手性笼是由外消旋的Ni(en)_32+导向生成的。GaGeO-CJ63锗酸镓被国际分子筛协会命名为JST。
     2.在溶剂热条件下成功地原位合成出以1,2-丙二胺合镍配合物为模板剂,具有新型分子筛结构的锗酸镓GaGeO-CJ64。其结构是由单六元环和双六元环通过spiro-5结构单元连接构成三维四连接骨架。GaGeO-CJ64是第一例具有11-元环交叉孔道的分子筛结构。该化合物具有较低的骨架密度,其无机骨架结构中含有一个新颖的空旷的笼[3~(12)·4~3·6~2·11~6]。
     3.成功地合成出两种金属配合物与氟化锆的复合物[Co(en)_3]_2(Zr_2F_(12))(ZrF_6H_2O)·H_2O和[Co(en)_3](Zr_2F_(11)H_2O),并对其结构及光电性质进行了表征。实验结果表明,这两种复合物均在紫外区显现出光电效应,响应信号位置与其紫外-可见吸收光谱中的钴胺配合物阳离子的一个吸收峰位置相一致。这种特殊的光电现象归因于钴胺配合物阳离子与氟化锆阴离子簇之间发生的协同作用。
     4.在水热条件下,以六氨合钴配合物阳离子为模板剂,合成出一个新颖的双层状磷酸锌[Co(NH_3)_6]3[Zn8(HPO_4)8(PO_4)2](PO_4)(ZnPO-CJ68)。该化合物沿三个方向上具有交叉的八元环孔穴,客体Co(NH_3)_63+阳离子不仅存在于层间而且也存在于层内,且Co(NH_3)_6~(3+)阳离子的构型与层内的8~6孔穴的构型完美匹配,起到了真正模板的作用。
     5.在溶剂热条件下,采用[d,l-Co(en)_3]~(3+)配合物阳离子作为模板剂,合成出一维链状磷酸锌[Co(en)_3][Zn_2(H_2PO_4)(HPO_4)_2Cl_2],它是由无限的阴离子链[Zn_2(H_2PO_4)(HPO_4)_2Cl_2]_n~(3-)构成。该化合物含有由HPO_4和ZnO_3Cl构成的四元环,据我们所知,以磷氧四面体连接两个相邻四元环构成的链的连接方式在磷酸锌中是少见的。同时,以二乙烯三胺合钴配合物阳离子为模板剂,成功地合成出二维层状磷酸铝Co(dien)_2Al_3(PO_4)_4(AlPO-CJ54)。该化合物的铝氧四面体和磷氧四面体严格排列交替连接形成Z字形链,链与链之间连接起来构成阴离子Al_3(PO_4)_4~(3-)的二维层,该层含有四元环和八元环,无序的模板剂存在于层间。
     6.在溶剂热条件下,以二乙烯三胺合镍配合物为模板剂,成功地合成出具有CHA分子筛结构类型的过渡金属掺杂磷酸铝微孔化合物MAPO-CHA(M=Zn,Mg)。其无机骨架结构是由铝(锌、镁)氧四面体和磷氧四面体严格交替排列连接成三维结构,其沿三个方向具有三维8-元环交叉孔道。二乙烯三胺合镍配合物阳离子位于cha笼中,起到平衡骨架负电荷和填充的作用。
Inorganic open-framework materials such as molecular sieves have beenextensively used in many industrial processes such as catalysis, adsorption andseparation, as well as in new applications of electronic, magnetism, chemical sensors,medicine, etc. Therefore, the preparation of new inorganic open-framework materialsis one of the most important fields for the material science. To synthesize newinorganic open-framework materials, the introduction of a structure-directing agent(SDA) is necessary. Conventional SDAs include alkali metal cations, alkaline earthcations, protonated organic amines, quaternary ammonium cations, metal complexescations and fluorine ions. Compared with conventional SDAs, metal complexescations can offer a particular spatial configuration, the wide range of oxidation states,more H-bonds, chiral symmetry and have an unexpected properties with the hostframework through the cooperative behavior, it is a focus at all times in thepreparation of inorganic materials.
     This thesis is focused on the synthesis of a series of open-framework compoundsunder the hydro/solvothermal conditions templated by metal complexes cations. Mainachievements are as follows:
     1. A novel three-dimensional gallogermanate zeolite [Ni(en)_3][Ga_2Ge_4O_(12)](GaGeO-CJ63) has been successfully synthesized under solvothermal condition.GaGeO-CJ63is a strictly4-connected zeolitic structure constructed exclusively bythree-ring building units, and its FD(framework density) is the third lowest among allknown zeolite frameworks. It contains10-ring channels along the three directions.GaGeO-CJ63was synthesized by using racemic [Ni(en)_3]~(2+) cations asstructure-directing agent, and chirality transfer could be clearly observed from chiraltemplates to chiral cages in its framework. GaGeO-CJ63is denoted as JST by theInternational Zeolite Association.
     2. A novel three-dimensional gallogermanate zeolite GaGeO-CJ64has beensuccessfully synthesized in the presence of chiral metal complexes in situ synthesismethod. Its inorganic structure is constructed by s6r(single6-ring), d6r(double6-ring), spiro-5building units. To the best of our knowledge, it is the first zeolite that contains11-ring intersecting channels along three directions. GaGeO-CJ64contains a novelvoid cage [3~(12)·4~3·6~2·11~6].
     3.[Co(en)_3]_2(Zr_2F_(12))(ZrF_6H_2O)·H_2O and [Co(en)_3](Zr_2F_(11)H_2O), two compoundshave been successfully synthesized using different methods. Both compounds existextensive hydrogen bonds. Interestingly, they exhibit unusual photoelectronic effectsin the near-UV region. The fact that the signal of surface photovoltage of eachcompound is coincident with one of the UV/Vis absorption transitions of the cobaltamine complexes. This suggests that cooperative behavior between cobalt aminecomplexes and metal fluoride ions through interactions might be responsible for theseunexpected photoelectric phenomena.
     4. A new zinc phosphate structure [Co(NH_3)6]_3[Zn_8(HPO_4)_8(PO_4)_2](PO_4)(ZnPO-CJ68) with unusual double-sheet layers, has been successfully synthesized,which used cobalt hexaammine as the SDA. The structure of ZnPO-CJ68containsunusual layered host frameworks with interconnecting8-ring apertures along thethickness of the layers as well as in the planes of the layers. As the structural template,the guest cobalt hexaammine complex perfectly fits the shape of the intralayermicropore.
     5. A1D(one dimensional) infinite chain structure[Co(en)_3][Zn_2(H_2PO_4)(HPO_4)_2Cl_2] has been synthesized under hydrothermalcondition templated by [d,l-Co(en)_3]~(3+)cations. It is constructed by a macro anionic[Zn_2(H_2PO_4)(HPO_4)_2Cl_2]_n~(3-)chain involving Zn-centered tetrahedra and P-centeredtetrahedral(ZnO_3Cl, H_2PO_4, HPO_4). It is rare that [Co(en)_3][Zn_2(H_2PO_4)(HPO_4)_2Cl_2]contains4-ring which consists of ZnO3Cl and HPO_4. Each4-ring is connected to forman infinite chain through PO_4tetrahedra. In addition, using cobalt amines cations astemplate, a2D layered Co(dien)2Al_3(PO_4)_4(AlPO-CJ54) has been prepared. Itsinorganic layer is constructed from strict alternation of AlO_4and PO_4tetrahetra toform zigzag ladder-type chains. The connectivity between the chains leads to anionic[Al_3P_4O_(16)]~(3-)layers. These layers only have four-and eight-membered rings. Thedisordered cobalt ammine complexes are located between layers.
     6. Two transition metal containing aluminophosphates MAPO-CHA(M=Zn,Mg)with CHA zeotype have been synthesized under the solvothermal conditions. Thelinkages of AlO_4(MO_4) tetrahedra and PO_4tetrahedra through vertex oxygen atoms form the inorganic framework [M_2Al_4(PO_4)_6]~(2-). It contains8-ring channels along thethree directions. Nickel amine complexes are located in the cha cage to neutralize thenegative charge of the host.
引文
[1] BAERLOCHER C and MCCUSKER L. Database of zeolite structures
    [DB/OL]: http://www.iza-structure.org/databases.
    [2] CRONSTEDT A and VETENSKAPS K. Acadademiens handle stockholm,1756,17:120.
    [3] BARRER R. Synthesis of a zeolitic mineral with chabazite-like sorptiveproperties[J]. Journal of the Chemical Society,1948,127-132.
    [4] BARRER R and DENNY P. Hydrothermal chemistry of the silicates. Part IX.Nitrogenous aluminosilicates[J]. Journal of the Chemical Society,1961,971-982.
    [5] ARGAUER R J and LANDOLT G. Crystalline zeolite ZSM-5and method:United States,3,702,866[P].Nov.14,1972.
    [6] CORMA A, DIAZ-CABANAS M J, JORDA J L, et al. A zeolitic structure(ITQ-34) with connected9-and10-ring channels obtained with phosphoniumcations as structure directing agents[J]. Journal of the American ChemicalSociety,2008,130(49):16482-16483.
    [7] SUN J, BONNEAU C, CANT N á, et al. The ITQ-37mesoporous chiralzeolite[J]. Nature,2009,458(7242):1154-1157.
    [8] CORMA A, D AZ-CABA AS M, JIANG J, et al. Extra-large pore zeolite(ITQ-40) with the lowest framework density containing double four-anddouble three-rings[J]. Proceedings of the National Academy of Sciences,2010,107(32):13997-14002.
    [9] JIANG J, JORDA J L, DIAZ-CABANAS M J, et al. The synthesis of anextra-large-pore zeolite with double three-ring building units and alowframework density[J]. Angewandte Chemie International Edition,2010,49(29):4986-4988.
    [10] SIMANCAS R, DARI D, VELAMAZ N N, et al. Modular organicstructure-directing agents for the synthesis of zeolites[J]. Science,2010,330(6008):1219-1222.
    [11] WAGNER P, ZONES S I, DAVIS M E, et al. SSZ-35and SSZ-44: Two relatedzeolites containing pores circumscribed by ten-and eighteen-memberedrings[J]. Angewandte Chemie International Edition,1999,38(9):1269-1272.
    [12] ELOMARI S, BURTON A, MEDRUD R C, et al. The synthesis,characterization, and structure solution of SSZ-56: An extreme example ofisomer specificity in the structure direction of zeolites[J]. Microporous andMesoporous Materials,2009,118(1-3):325-333.
    [13] BAERLOCHER C, XIE D, MCCUSKER L B, et al. Ordered silicon vacanciesin the framework structure of the zeolite catalyst SSZ-74[J]. Nature Materials,2008,7(8):631-635.
    [14] LOBO R F and DAVIS M E. CIT-1: A new molecular sieve with intersectingpores bounded by10-and12-rings[J]. Journal of the American ChemicalSociety,1995,117(13):3766-3779.
    [15] YOSHIKAWA M, WAGNER P, LOVALLO M, et al. Synthesis,characterization, and structure solution of CIT-5, a new, high-silica,extra-large-pore molecular sieve[J]. The Journal of Physical Chemistry B,1998,102(37):7139-7147.
    [16] CORMA A, CHICA A, GUIL J, et al. Determination of the pore topology ofzeolite IM-5by means of catalytic test reactions and hydrocarbon adsorptionmeasurements[J]. Journal of Catalysis,2000,189(2):382-394.
    [17] HONG S B, MIN H K, SHIN C H, et al. Synthesis, crystal structure,characterization, and catalytic properties of TNU-9[J]. Journal of the AmericanChemical Society,2007,129(35):10870-10885.
    [18] WILSON S T, LOK B M, MESSINA C A, et al. Aluminophosphate molecularsieves: a new class of microporous crystalline inorganic solids[J]. Journal ofthe American Chemical Society,1982,104(4):1146-1147.
    [19] DAVIS M E, SALDARRIAGA C, MONTES C, et al. A molecular sieve witheighteen-membered rings[J]. Nature,1988,331:698-699.
    [20] HUO Q, XU R, LI S, et al. Synthesis and characterization of a novel extralarge ring of aluminophosphate JDF-20[J]. Journal of the Chemical Society,Chemical Communications,1992,(12):875-876.
    [21] YAN W, YU J, XU R, et al.[Al12P13O52]3-[(CH2)6N4H3]3+: An anionicaluminophosphate molecular sieve with br nsted acidity[J]. Chemistry ofMaterials,2000,12(9):2517-2519.
    [22] YU J and XU R. Rich structure chemistry in the aluminophosphate family[J].Accounts of Chemical Research,2003,36(7):481-490.
    [23] YU J and XU R. Insight into the construction of open-frameworkaluminophosphates[J]. Chemical Society Reviews,2006,35(7):593-604.
    [24] FENG P, BU X and STUCKY G D. Hydrothermal syntheses and structuralcharacterization of zeolite analogue compounds based on cobalt phosphate[J].Nature,1997,388(6644):735-741.
    [25] BU X, FENG P and STUCKY G D. Large-cage zeolite structures withmultidimensional12-ring channels[J]. Science,1997,278(5346):2080.
    [26] HARTMANN M and KEVAN L. Transition-metal ions in aluminophosphateand silicoaluminophosphate molecular sieves: location, interaction withadsorbates and catalytic properties[J]. Chemical Reviews,1999,99(3):635-664.
    [27] THOMAS J M, RAJA R, SANKAR G, et al. Molecular-sieve catalysts for theselective oxidation of linear alkanes by molecular oxygen[J]. Nature,1999,398(6724):227-230.
    [28] LI Y X, ZHANG H T, LI Y Z, et al. Hydrothermal synthesis andcharacterization of magnesium substituted aluminophosphate with uniqueintersecting12-membered ring channels in three dimensions[J]. Microporousand Mesoporous Materials,2006,97(1-3):1-8.
    [29] PARISE J B. Preparation and structural characterization of twometallophosphate frameworks clathrating diprotonated ethylenediamine:AlPO4-12(en) and GaPO4-12(en)[J]. Inorganic Chemistry,1985,24(25):4312-4316.
    [30] PARISE J B. Some gallium phosphate frameworks related to the aluminiumphosphate molecular sieves: X-ray structural characterization of {(PriNH3)[Ga4(PO4)4·OH]}·H2O[J]. Journal of the Chemical Society, ChemicalCommunications,1985,(9):606-607.
    [31] PARISE J B. Preparation and structure of a gallium phosphate framework withclathrated isopropylamine[J]. Acta Crystallographica Section C: CrystalStructure Communications,1986,42(2):144-147.
    [32] GUANGDI Y, SHOUHUA F and RUREN X. Crystal structure of thegallophosphate framework: X-ray characterization of Ga9P9O36OH·HNEt3[J].Journal of the Chemical Society, Chemical Communications,1987,(16):1254-1255.
    [33] TIELI W, GUANGDI Y, SHOUHUA F, et al. A novel mixedoctahedral–tetrahedral framework: X-ray characterization of a microporousgallophosphate, Ga2P2O8(OH)H2O·NH4·H2O·0.16PrOH(GaPO4-C7)[J]. Journalof the Chemical Society, Chemical Communications,1989,(14):948-949.
    [34] FENG S, XU X, YANG G, et al. Hydrothermal synthesis and crystal structureof the microporous gallophosphate [NH4]4
    [Ga8P8O32(OH)4(H2O)4]·4H2O·0.64PrOH with an octahedral–tetrahedralframework[J]. Journal of the Chemical Society, Dalton Transactions,1995,(13):2147-2149.
    [35]霍启升.醇体系中无机微孔晶体及包合物的合成与结构[D].长春:吉林大学,1992.
    [36] ESTERMANN M, MCCUSKER L, BAERLOCHER C, et al. A syntheticgallophosphate molecular sieve with a20-tetrahedral-atom pore opening[J].Nature,1991,352(6333):320-323.
    [37] LOISEAU T and F REY G. Oxyfluorinated microporous compounds: VII.Synthesis and crystal structure of ULM-5, a new fluorinated gallophosphateGa16(PO4)14(HPO4)2(OH)2F7,[H3N(CH2)6NH3]4·6H2O with16-membered ringsand both bonding and encapsulated F1[J]. Journal of Solid State Chemistry,1994,111(2):403-415.
    [38] SASSOYE C, LOISEAU T, TAULELLE F, et al. A new open-frameworkfluorinated gallium phosphate with large18-ring channels (MIL-31)[J].Chemical Communications,2000,(11):943-944.
    [39] WALTON R I, MILLANGE F, LOISEAU T, et al. Crystallization of alarge-pore three-dimensional gallium fluorophosphate under mild conditions[J].Angewandte Chemie International Edition,2000,39(24):4552-4555.
    [40] LIN C H, WANG S L and LII K H.[Ga2(DETA)(PO4)2]·2H2O (DETA=Diethylenetriamine): A novel porous gallium phosphate containing24-ringchannels[J]. Journal of the American Chemical Society,2001,123(19):4649-4650.
    [41] YU J, CHEN J and XU R. Formation of single-crystal cobalt-substitutedgallophosphate LTA from an alcoholic system[J]. Microporous Materials,1996,5(5):333-336.
    [42] BOND A D, CHIPPINDALE A M, COWLEY A R, et al. Synthesis andcharacterisation of transition-metal-substituted gallium phosphates with thelaumontite structure[J]. Zeolites,1997,19(5-6):326-333.
    [43] CHIPPINDALE A M, ANDREW D, COWLEY A R, et al. MnGaPO-2:Synthesis and Characterization of [MnGa(PO3OH)2(PO4)][C6N2H14], a NewMicroporous Manganese-Gallium Phosphate[J]. Chemistry of Materials,1997,9(12):2830-2835.
    [44] LIN C H and WANG S L. Chiral metal gallophosphates templated by achiraltriamine: syntheses and characterizations of A [Mn(H2O)2Ga (PO4)2]3and A
    [Zn3Ga(PO4)4]·H2O (A=H3DETA)[J]. Chemistry of Materials,2002,14(1):96-102.
    [45] NENOFF T M, HARRISON W T A, GIER T E, et al. Room-temperaturesynthesis and characterization of new ZnPO and ZnAsO sodalite openframeworks[J]. Journal of the American Chemical Society,1991,113(1):378-379.
    [46] NEERAJ S, NATARAJAN S and RAO C. Isolation of a zinc phosphateprimary building unit,[C6N2H18]2+[Zn(HPO4)(H2PO4)2]2-, and itstransformation to an open-framework phosphate,[C6N2H18]2+[Zn3(H2O)4(HPO4)4]2[J]. Journal of Solid State Chemistry,2000,150(2):417-422.
    [47] HARRISON W T A, BIRCSAK Z and HANNOOMAN L. Syntheses andcrystal structures of two new hydrated rubidium zinc phosphates:RbZn2(HPO4)2(H2PO4)·2H2O, a layered phase containing octahedral andtetrahedral zinc centers, and RbZn(HPO4)(H2PO4)·H2O containingone-dimensional chains of4-rings[J]. Journal of Solid State Chemistry,1997,134(1):148-157.
    [48] KONGSHAUG K O, FJELLV G H and PETTER LILLERUD K. The synthesisand crystal structure of two novel3D open-framework zinc phosphates UiO-21and UiO-22[J]. Microporous and Mesoporous Materials,2000,39(1-2):341-350.
    [49] ZHANG P, WANG Y, ZHU G, et al. Hydrothermal synthesis and crystalstructure of Zn4(PO4)2(HPO4)2·0.5(C10H28N4)·2H2O, a new layered zincphosphate with12-ring cavities[J]. Journal of Solid State Chemistry,2000,154(2):368-374.
    [50] AYI A A, CHOUDHURY A, NATARAJAN S, et al. Transformations oflow-dimensional zinc phosphatesto complex open-framework structures. Part1:zero-dimensional to one-, two-and three-dimensional structures[J]. Journal ofMaterials Chemistry,2001,11(4):1181-1191.
    [51] RODGERS J A and HARRISON W T A.H3N(CH2)6NH3·Zn4(PO4)2(HPO4)2·3H2O: a novel three-dimensional zincphosphate framework containing5-and20-rings[J]. Journal of MaterialsChemistry,2000,10(12):2853-2856.
    [52] YANG G Y and SEVOV S C. Zinc phosphate with gigantic pores of24tetrahedra[J]. Journal of the American Chemical Society,1999,121(36):8389-8390.
    [53] HARRISON W T A, GIER T E, STUCKY G D, et al. NaZnPO4·H2O, anopen-framework sodium zincophosphate with a new chiral tetrahedralframework topology[J]. Chemistry of Materials,1996,8(1):145-151.
    [54] NEERAJ S, NATARAJAN S and RAO C. A novel open-framework zincphosphate with intersecting helical channels[J]. Chemical Communications,1999,(2):165-166.
    [55] WANG Y, YU J, GUO M, et al.[{Zn2(HPO4)4}{Co(dien)2}]·H3O: A zincphosphate with multidirectional intersecting helical channels[J]. AngewandteChemie International Edition,2003,115(34):4223-4226.
    [56] GUILLOU N, GAO Q, NOGUES M, et al. Zeolitic and magnetic properties ofa24-membered ring porous nickel (II) phosphate, VSB-1[J]. Comptes Rendusde l'Académie des Sciences-Series IIC-Chemistry,1999,2(7-8):387-392.
    [57] GUILLOU N, GAO Q, FORSTER P M, et al. Nickel (II) phosphate VSB-5: amagnetic nanoporous hydrogenation catalyst with24-ring tunnels[J].Angewandte Chemie International Edition,2001,40(15):2831-2834.
    [58] GAO Q, GUILLOU N, NOGUES M, et al. Structure and magnetism ofVSB-2,-3, and-4or Ni4(O3P-(CH2)-PO3)2·(H2O) n (n=3,2,0), the firstferromagnetic Nickel (II) diphosphonates: increase of dimensionality andmultiple coordination changes during a quasi topotactic dehydration[J].Chemistry of Materials,1999,11(10):2937-2947.
    [59] GUILLOU N, GAO Q, NOGU S M, et al. Synthesis and ab initiostructuraldetermination of a new pillared nickel diphosphonate: VSB-6orNi5.4(OH,F)4[O3P(CH2)3PO3]2(H2O)1.4·1.2H3O[J]. Solid State Sciences,2002,4(9):1179-1185.
    [60] WILLIAMS I D, YU J, DU H, et al. A metal-rich fluorinated indium phosphate,4[NH3(CH2)3NH3]·3[H3O]·[In9(PO4)6(HPO4)2F16]·3H2O, with14-memberedring channels[J]. Chemistry of Materials,1998,10(3):773-776.
    [61] THIRUMURUGAN A and NATARAJAN S. Synthesis and structure of a newthree-dimensional indium phosphate with16-membered one-dimensionalchannels[J]. Dalton Transactions,2003,(17):3387-3391.
    [62]杜红宾.新型无机微孔晶体的合成与表征[D].长春:吉林大学,1997.
    [63] SOGHOMONIAN V, CHEN Q, HAUSHALTER R C, et al. An inorganicdouble helix: hydrothermal synthesis, structure, and magnetism of chiral
    [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O[J]. Science,1993,259(5101):1596.
    [64] CALIN N, SERRE C and SEVOV S C. VIIIVIV(HPO4)4·enH·H2O: amixed-valence vanadium phosphate with an open framework[J]. Journal ofMaterials Chemistry,2003,13(3):531-534.
    [65] SOGHOMONIAN V, CHEN Q, HAUSHALTER R C, et al. Asquare-pyramidal tetrahedral vanadium phosphate framework solidincorporating propanediammonium dications. The structural characterizationof (H3NCH2CH2CH2NH3)K[(VO)3(PO4)3][J]. Chemistry of Materials,1993,5(11):1595-1597.
    [66] SOGHOMONIAN V, CHEN Q, HAUSHALTER R C, et al. Organicallytemplated open-framework vanadium phosphates: hydrothermal synthesis,structure, and magnetic properties ofH3N(CH2)3NH3[(VO)3(OH)2(H2O)2(PO4)2][J]. Chemistry of Materials,1993,5(12):1690-1691.
    [67] NATARAJAN S, NEERAJ S, CHOUDHURY A, et al. Three-dimensionalopen-framework cobalt (II) phosphates by novel routes[J]. Inorganic Chemistry,2000,39(7):1426-1433.
    [68] KE Y, HE G, LI J, et al. A new mixed divalent metal phosphate with zeolitethomsonite framework topology[J]. New Journal of Chemistry,2001,25(12):1627-1630.
    [69] CHRISTENSEN A N, BAREGES A, NIELSEN R B, et al. Study of formationof cobalt and zinc phosphates in solvothermal synthesis using piperazine and2-methylpiperazine as templating molecules. Structure investigations of
    [C4H8N2H4][(Co0.44(1)Zn0.56(1))2(PO4)(H1.5PO4)2] and of
    [C5N2H14][(Co0.25(3)Zn0.75(3))(HPO4)2][J]. Journal of the Chemical Society,Dalton Transactions,2001,(10):1611-1615.
    [70] LII K H, HUANG Y F, ZIMA V, et al. Syntheses and structures of organicallytemplated iron phosphates[J]. Chemistry of Materials,1998,10(10):2599-2609.
    [71] CAVELLEC M, RIOU D, GREN CHE J M, et al. Hydrothermal synthesis,structure, and magnetic properties of a novel monodimensional ironphosphate:[FeF(HPO4)2·N2C3H12·(H2O)x](x≈0.20)(ULM-14)[J]. InorganicChemistry,1997,36(10):2187-2190.
    [72] CAVELLEC M, GRENECHE J and F REY G. Oxyfluorinated open frameworkcompounds. XVIII Dehydration of single crystals of the iron phosphateULM-12or [Fe4(PO4)4F3(H2O)3, N2C6H14] with an open structure, structuraldetermination and magnetic study of the dehydrated phase (ULM-19)[J].Microporous and Mesoporous Materials,1998,20(1-3):45-52.
    [73] CHIPPINDALE A M, GASLAIN F O M, COWLEY A R, et al. Synthesis andcharacterisation of a layered organically-templated manganesephosphate,[Mn2(HPO4)3]·(NH3(CH2)2NH3)3/2·H2PO4, and its reaction withwater[J]. Journal of Materials Chemistry,2001,11(12):3172-3179.
    [74] KONGSHAUG K O, FJELLV G H and LILLERUD K P. The synthesis andcharacterization of a new manganese phosphate templated by piperazine[J].Journal of Solid State Chemistry,2001,156(1):32-36.
    [75] CHENG J, XU R and YANG G. Synthesis, structure and characterization of anovel germanium dioxide with occluded tetramethylammonium hydroxide[J].Journal of the Chemical Society, Dalton Transactions,1991,(6):1537-1540.
    [76] CHENG J and XU R. Syntheses and characterization of two novel germaniumdioxide frameworks with occluded ethylenediamine (EDA) and1,3-propylenediamine (1,3-PDA)[J]. Journal of the Chemical Society,Chemical Communications,1991,(7):483-485.
    [77] ZHANG H, ZHANG J, ZHENG S, et al.[Ge7O13(OH)2F3]3·Cl-·2[Ni(dien)2]2+:The first chainlike germanate templated by a transition metal complex[J].Inorganic Chemistry,2003,42(21):6595-6597.
    [78] PAN Q, LI J, REN X, et al.
    [Ni(1,2-PDA)3]2(HOCH2CH2CH2NH3)3(H3O)2[Ge7O14X3]3(X=F, OH): A new1D germanate with12-ring hexagonal tubular channels[J]. Chemistry ofMaterials,2008,20(2):370-372.
    [79] PLEVERT J, GENTZ T, GROY T, et al. Layered structures constructed fromnew linkages of Ge7(O,OH,F)19clusters[J]. Chemistry of Materials,2003,15(3):714-718.
    [80] LIU G, ZHANG H, LIN Z, et al. Germanates of1D chains,2D layers, and3Dframeworks built from Ge-O clusters by using metal-complex templates:host-guest symmetry and chirality transfer[J]. Chemistry-An Asian Journal,2007,2(10):1230-1239.
    [81] LI H, EDDAOUDI M, RICHARDSON D, et al. Porous germanates: synthesis,structure, and inclusion properties of Ge7O14.5F2·[(CH3)2NH2]3(H2O)0.86[J].Journal of the American Chemical Society,1998,120(33):8567-8568.
    [82] PLEVERT J, GENTZ T M, LAINE A, et al. A flexible germanate structurecontaining24-ring channels and with very low framework density[J]. Journalof the American Chemical Society,2001,123(50):12706-12707.
    [83] BEITONE L, LOISEAU T and F REY G. Hydrothermal synthesis andstructural characterization of a new organically templated germanate,Ge10O21(OH)·N4C6H21[J]. Inorganic Chemistry,2002,41(15):3962-3966.
    [84] LI H and YAGHI O. Transformation of germanium dioxide to microporousgermanate4-connected nets[J]. Journal of the American Chemical Society,1998,120(40):10569-10570.
    [85] O'KEEFFE M and YAGHI O. Germanate zeolites: contrasting the behavior ofgermanate and silicate structures built from cubic T8O20Units (T=Ge or Si)[J].Chemistry-A European Journal,1999,5:2796-2801.
    [86] CONRADSSON T, DADACHOV M and ZOU X. Synthesis and structure of(Me3N)6[Ge32O64]·(H2O)4.5, a thermally stable novel zeotype with3Dinterconnected12-ring channels[J]. Microporous and Mesoporous Materials,2000,41(1-3):183-191.
    [87] MEDINA M, IGLESIAS M, MONGE M, et al. Cooperative directing effect ofOH anions and polymerized DABCO cations in the formation of theGe16O32(OH)-(C6H12N2H)+(C6H12N2)·1.125H2O zeotype[J]. ChemicalCommunications,2001,(24):2548-2549.
    [88] BU X, FENG P and STUCKY G. Host-guest symmetry and charge matchingin two germanates with intersecting three-dimensional channels[J]. Chemistryof Materials,2000,12(6):1505-1507.
    [89] XU Y, FAN W, ELANGOVAN S P, et al.[Ge9O14(OH)12](C6N2H16)2·H2O: Anovel germanate with Ge O helical chains formed by hydrothermal synthesisthat can separate trans and cis isomers in situ[J]. European Journal of InorganicChemistry,2004,2004(23):4547-4549.
    [90] SUN K, DADACHOV M S, CONRADSSON T, et al. A three-dimensionalopen-framework germanate containing four-, five-and six-coordinatedgermanium[J]. Acta Crystallographica Section C: Crystal StructureCommunications,2000,56(9):1092-1094.
    [91] ATTFIELD M P, AL-EBINI Y, PRITCHARD R G, et al. Synthesis andcharacterization of a novel germanate material containing16-ring channels andtemplated by a simple primary amine[J]. Chemistry of Materials,2007,19(2):316-322.
    [92] ZHOU Y, ZHU H, CHEN Z, et al. A large24-membered-ring germanatezeolite-type open-framework structure with three-dimensional intersectingchannels[J]. Angewandte Chemie International Edition,2001,113(11):2224-2226.
    [93] ZOU X, CONRADSSON T, KLINGSTEDT M, et al. A mesoporousgermanium oxide with crystalline pore walls and its chiral derivative[J]. Nature,2005,437(7059):716-719.
    [94] CHRISTENSEN K E, BONNEAU C, GUSTAFSSON M, et al. Anopen-framework silicogermanate with26-ring channels built fromseven-coordinated (Ge,Si)10(O,OH)28clusters[J]. Journal of the AmericanChemical Society,2008,130(12):3758-3759.
    [95] XU Y, CHENG L and YOU W. Hydrothermal synthesis and structuralcharacterizations of two new germanates with a novel topological frameworkand unusual Ge4(OH)4cubane[J]. Inorganic Chemistry,2006,45(19):7705-7708.
    [96] LI H, EDDAOUDI M and YAGHI O M. An open-framework germanate withpolycubane-like topology[J]. Angewandte Chemie International Edition,1999,38(5):653-655.
    [97] LIN Z E, ZHANG J, ZHENG S T, et al. Syntheses and structures of two new3D open-framework germanates constructed from Ge9O18(OH)4clusters[J].Microporous and Mesoporous Materials,2004,74(1-3):205-211.
    [98] VILLAESCUSA L A, WHEATLEY P S, MORRIS R E, et al. A severelyinterrupted germanate zeolite framework synthesised from isolated doublefour-ring units[J]. Dalton Transactions,2004,(5):820-824.
    [99] CHRISTENSEN K, SHI L, CONRADSSON T, et al. Design ofopen-framework germanates by combining different building units[J]. Journalof the American Chemical Society,2006,128(44):14238-14239.
    [100] TANG L, DADACHOV M and ZOU X. SU-12: A silicon-substituted ASU-16with circular24-rings and templated by a monoamine[J]. Chemistry ofMaterials,2005,17(10):2530-2536.
    [101] SU J, WANG Y, WANG Z, et al. PKU-10: A new3D open-frameworkgermanate with13-ring channels[J]. Inorganic chemistry,2010,49(21):9765-9769.
    [102] BELOKONEVA E I, UVAROVA T G and DEM'YANETS L N. Synthesis andcrystal structure of germanium-bromine-hydrosodaliteNa8[AlGeO4]6(Br1.5(OH)0.5)[J]. Kristallografiya,1986,30:800-801.
    [103] FLEET M. Structures of sodium alumino-germanate sodalites
    [Na8(Al6Ge6O24)A2, A=Cl, Br, I][J]. Acta Crystallographica Section C: CrystalStructure Communications,1989,45(6):843-847.
    [104] WIEBCKE M, SIEGER P, FELSCHE J, et al. Sodium aluminogermanatehydroxosodalite hydrate Na6+x[Al6Ge6O24](OH)x·nH2O (x≈1.6, n≈3.0):Synthesis, phase transitions and dynamical disorder of the hydrogendihydroxide anion, H3O2, in the Cubic high-temperature form[J]. Zeitschriftfur Anorganische und Allgemeine Chemie,1993,619(7):1321-1329.
    [105] DANN S, WELLER M, RAINFORD B, et al. Synthesis, structure, opticalproperties, and magnetism of the manganese chalcogenide beryllosilicate andberyllogermanate sodalites[J]. Inorganic Chemistry,1997,36(23):5278-5283.
    [106] BU X, FENG P, GIER T, et al. Hydrothermal synthesis and structuralcharacterization of zeolite-like structures based on gallium and aluminumgermanates[J]. Journal of the American Chemical Society,1998,120(51):13389-13397.
    [107] CALLERI M and GAZZONI G. The structures of (Sr,Ba)[(Al,Ga)2(Si,Ge)2O8].IV. The crystal structure of the synthetic feldspar BaGa2Ge2O8[J]. ActaCrystallographica Section B: Structural Crystallography and Crystal Chemistry,1976,32(10):2733-2740.
    [108] KROLL H, PHILLIPS M and PENTINGHAUS H. The structures of theordered synthetic feldspars SrGa2Si2O8, BaGa2Si2O8and BaGa2Ge2O8[J]. ActaCrystallographica Section B: Structural Crystallography and Crystal Chemistry,1978,34(2):359-365.
    [109] TORRES-MARTINEZ L M, GARD J and WEST A. Synthesis and structure ofa new family of phases, A2MGe5O12: A=Rb, Cs; M=Be, Mg, Co, Zn[J].Journal of Solid State Chemistry,1984,53(3):354-359.
    [110] KLASKA K H and JARCHOW O. Die Kristallstruktur von Rb2[Ga2Ge3O10],ein Rubidium-Galliumgermanat mit Natrolith-Gerüst[J]. Zeitschrift fürKristallographie,1985,172(3-4):167-174.
    [111] JOHNSON G M, TRIPATHI A and PARISE J B. Novel routes for thepreparation of a range of germanium containing zeolites[J]. Chemistry ofMaterials,1999,11(1):10-12.
    [112] PHILLIPS M W, KROLL H and PENTINGHAUS H. The structures ofsynthetic paracelsian analogs, SrGa2Si2O8and SrGa2Ge2O8[J]. AmericanMineralogist,1975,60:659466.
    [113] BU X, FENG P and STUCKY G. Novel germanate zeolite structures with3-rings[J]. Journal of the American Chemical Society,1998,120(43):11204-11205.
    [114] SU J, WANG Y, WANG Z, et al. PKU-9: An aluminogermanate with a newthree-dimensional zeolite framework constructed from CGS layers and spiro-5Units[J]. Journal of the American Chemical Society,2009,131(17):6080-6081.
    [115] ZHANG H, ZHANG J, ZHENG S, et al.(C4N3H15)[(BO2)2(GeO2)4]: The firstorganically templated3D borogermanate showing1D12-rings, large channels,and a novel zeolite-type framework topology constructed from Ge8O24andB2O7cluster units[J]. Inorganic Chemistry,2005,44(5):1166-1168.
    [116] LI Y and ZOU X. SU-16: A Three-dimensional open-frameworkborogermanate with a novel zeolite topology[J]. Angewandte ChemieInternational Edition,2005,117(13):2048-2051.
    [117] CORMA A, D AZ-CABA AS M J, MART NEZ-TRIGUERO J, et al. Alarge-cavity zeolite with wide pore windows and potential as an oil refiningcatalyst[J]. Nature,2002,418(6897):514-517.
    [118] JIANG J, JORDA J, DIAZ-CABANAS M, et al. The synthesis of anextra-large-pore zeolite with double three-ring building units and a lowframework density[J]. Angewandte Chemie International Edition,2010,122(29):5106-5108.
    [119] TANG L, SHI L, BONNEAU C, et al. A zeolite family with chiral and achiralstructures built from the same building layer[J]. Nature Materials,2008,7(5):381-385.
    [120] TRANCHEMONTAGNE D J, MENDOZA-CORT S J L, O’KEEFFE M, et al.Secondary building units, nets and bonding in the chemistry of metal–organicframeworks[J]. Chemical Society Reviews,2009,38(5):1257-1283.
    [121] LI Q, ZHANG W, MILJANI O, et al. Docking in metal-organicframeworks[J]. Science,2009,325(5942):855.
    [122] BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis ofzeolitic imidazolate frameworks and application to CO2capture[J]. Science,2008,319(5865):939.
    [123] F REY G, MELLOT-DRAZNIEKS C, SERRE C, et al. Crystallizedframeworks with giant pores: Are there limits to the possible?[J]. Accounts ofChemical Research,2005,38(4):217-225.
    [124] BANERJEE R, FURUKAWA H, BRITT D, et al. Control of pore size andfunctionality in isoreticular zeolitic imidazolate frameworks and their carbondioxide selective capture properties[J]. Journal of the American ChemicalSociety,2009,131(11):3875-3877.
    [125] ALKORDI M, LIU Y, LARSEN R, et al. Zeolite-like metal-organicframeworks as platforms for applications: on metalloporphyrin-basedcatalysts[J]. Journal of the American Chemical Society,2008,130(38):12639-12641.
    [126] PHAN A, DOONAN C, URIBE-ROMO F, et al. Synthesis, structure, andcarbon dioxide capture properties of zeolitic imidazolate frameworks[J].Accounts of Chemical Research,2010,43(1):58-67.
    [127] EL-KADERI H M, HUNT J R, MENDOZA-CORTES J L, et al. Designedsynthesis of3D covalent organic frameworks[J]. Science,2007,316(5822):268-272.
    [128] COTE A, EL-KADERI H, FURUKAWA H, et al. Reticular synthesis ofmicroporous and mesoporous2D covalent organic frameworks[J]. Journal ofthe American Chemical Society,2007,129(43):12914-12915.
    [129] URIBE-ROMO F, HUNT J, FURUKAWA H, et al. A crystalline imine-linked3-D porous covalent organic framework[J]. Journal of the American ChemicalSociety,2009,131(13):4570-4571.
    [130] DING X, GUO J, FENG X, et al. Synthesis of metallophthalocyanine covalentorganic frameworks that exhibit high carrier mobility and photoconductivity[J].Angewandte Chemie International Edition,2011,50(6):1289-1293.
    [131] FLACK H D. Chiral and achiral crystal structures[J]. Helvetica Chimica Acta,2003,86(4):905-921.
    [132] FLACK H and BERNARDINELLI G. The use of X-ray crystallography todetermine absolute configuration[J]. Chirality,2008,20(5):681-690.
    [133] BRADSHAW D, CLARIDGE J, CUSSEN E, et al. Design, chirality, andflexibility in nanoporous molecule-based materials[J]. Accounts of ChemicalResearch,2005,38(4):273-282.
    [134] NEWSAM J, TREACY M, KOETSIER W, et al. Structural characterization ofzeolite beta[J]. Proceedings of the Royal Society of London. Series A,Mathematical and Physical Sciences,1988:375-405.
    [135] CHEETHAM A, FJELLVG H, GIER T, et al. Very open microporous materials:from concept to reality[J]. Studies in Surface Science and Catalysis,2001,135:158.
    [136] SONG X, LI Y, GAN L, et al. Heteroatom-stabilized chiral framework ofaluminophosphate molecular sieves[J]. Angewandte Chemie InternationalEdition,2009,48(2):314-317.
    [137] YU J and XU R. Chiral zeolitic materials: structural insights and syntheticchallenges[J]. Journal of Materials Chemistry,2008,18(34):4021-4030.
    [138] LI Y, YU J, WANG Z, et al. Design of chiral zeolite frameworks with specifiedchannels through constrained assembly of atoms[J]. Chemistry of Materials,2005,17(17):4399-4405.
    [139] PEREZ-GARC A L and AMABILINO D B. Spontaneous resolution undersupramolecular control[J]. Chemical Society Reviews,2002,31(6):342-356.
    [140] KENDRICK J, GOURLAY M D, NEUMANN M A, et al. Predictingspontaneous racemate resolution using recent developments in crystal structureprediction[J]. CrystEngComm,2009,11(11):2391-2399.
    [141] FLACK H. Louis Pasteur's discovery of molecular chirality and spontaneousresolution in1848, together with a complete review of his crystallographic andchemical work[J]. Acta Crystallographica Section A: Foundations ofCrystallography,2009,65(5):371-389.
    [142] KONDEPUDI D K, KAUFMAN R J and SINGH N. Chiral symmetrybreaking in sodium chlorate crystallizaton[J]. Science,1990,250(4983):975.
    [143] EZUHARA T, ENDO K and AOYAMA Y. Helical coordination polymers fromachiral components in crystals. Homochiral crystallization, homochiral helixwinding in the solid state, and chirality control by seeding[J]. Journal of theAmerican Chemical Society,1999,121(14):3279-3283.
    [144] CUNDY C S and COX P A. The hydrothermal synthesis of zeolites: Precursors,intermediates and reaction mechanism[J]. Microporous and MesoporousMaterials,2005,82(1-2):1-78.
    [145] LOBO R F, ZONES S I and DAVIS M E. Structure-direction in zeolitesynthesis[J]. Inclusion Chemistry with Zeolites: Nanoscale Materials byDesign,1995:47-78.
    [146] MORGAN K, GAINSFORD G and MILESTONE N. A novel layeredaluminium phosphate [Co(en)3Al3P4O16·3H2O] assembled about a chiral metalcomplex[J]. Journal of the Chemical Society, Chemical Communications,1995,(4):425-426.
    [147] STALDER S and WILKINSON A. Synthesis and characterization of a chiral3D-framework material: d-Co(en)3[H3Ga2P4O16][J]. Chemistry of Materials,1997,9(10):2168-2173.
    [148] WANG Y, YU J, PAN Q, et al. Synthesis and structural characterization of0Dvanadium borophosphate [Co(en)3]2[V3P3BO19][H2PO4]·4H2O and1Dvanadium oxides [Co(en)3][V3O9]·H2O and [Co(dien)2][V3O9]·H2O templatedby cobalt complexes: cooperative organization of the complexes and theinorganic networks[J]. Inorganic Chemistry,2004,43(2):559-565.
    [149] MA Y, LU Y, WANG E, et al. Hydrothermal synthesis and crystal structure of anovel three-dimensional supramolecular network containing cyclic waterhexamers:[Co(en)3]4[P2Mo5O23]2·9H2O (en=ethylenediamine)[J]. Journal ofMolecular Structure,2006,784(1-3):18-23.
    [150] YANG G and SEVOV S.[Co(en)3][B2P3O11(OH)2]: A novel borophosphatetemplated by a transition-metal complex[J]. Inorganic Chemistry,2001,40(10):2214-2215.
    [151] WILLIAMS D, KRUGER J, MCLEROY A, et al. Iridium (III) aminecomplexes as high-stability structure-directing agents for the synthesis of metalphosphates[J]. Chemistry of Materials,1999,11(8):2241-2249.
    [152] CHEN P, LI J, YU J, et al. The synthesis and structure of a chiral1Daluminophosphate chain compound: d-Co (en)3[AlP2O8]·6.5H2O[J]. Journal ofSolid State Chemistry,2005,178(6):1929-1934.
    [153] ZHONG Y, CHEN Y, SUN Y, et al. Co-templated synthesis andcharacterization of two new1D zincophosphates,
    [CoIII(dien)2][Zn(PO4)(HPO4)]·H3BO3and
    [CoIII(dien)2][Zn2(PO4)(HPO4)2]·C2H6O2[J]. CrystEngComm,2005,7(37):237-242.
    [154] GRAY M, JASPER J, WILKINSON A, et al. Synthesis and synchrotronmicrocrystal structure of an aluminophosphate with chiral layers containing
    [Lambda] tris (ethylenediamine) cobalt (III)[J]. Chemistry of Materials,1997,9(4):976-980.
    [155] WANG Y, YU J, SHI Z, et al. Synthesis and characterization of a new layeredgallium phosphate [Co(en)3][Ga3(H2PO4)6(HPO4)3] templated by cobaltcomplex[J]. Journal of Solid State Chemistry,2003,170(1):176-181.
    [156] WANG Y, YU J, DU Y, et al. Two layered gallophosphates assembled about thechiral metal complexes: Co(en)3·Ga3P4O16·5H2O and trans-Co(dien)2·Ga3P4O16·3H2O[J]. Journal of Solid State Chemistry,2004,177(7):2511-2517.
    [157] BRUCE D, WILKINSON A, WHITE M, et al. The synthesis and structure of achiral layered aluminophosphate containing the template Co(tn)33+[J]. Journalof the Chemical Society, Chemical Communications,1995,(20):2059-2060.
    [158] BRUCE D, WILKINSON A, WHITE M, et al. The synthesis andcharacterization of an aluminophosphate with chiral layers;trans-Co(dien)2·Al3P4O16·3H2O[J]. Journal of Solid State Chemistry,1996,125(2):228-233.
    [159] WANG Y, CHEN P, LI J, et al. Chiral layered zincophosphate
    [d-Co(en)3]Zn3(H0.5PO4)2(HPO4)2assembled about d-Co(en)33+complexcations[J]. Inorganic Chemistry,2006,45(12):4764-4768.
    [160] YU J, WANG Y, SHI Z, et al. Hydrothermal synthesis and characterization oftwo new zinc phosphates assembled about a chiral metalcomplex:[CoII(en)3]2[Zn6P8O32H8] and [CoIII(en)3][Zn8P6O24Cl]·2H2O[J].Chemistry of Materials,2001,13(9):2972-2978.
    [161] WANG Y, YU J, LI Y, et al. Chirality transfer from guest chiral metalcomplexes to inorganic framework: The role of hydrogen bonding[J].Chemistry-A European Journal,2003,9(20):5048-5055.
    [162] TULASHIE S K, LORENZ H, HILFERT L, et al. Potential of chiral solventsfor enantioselective crystallization.1. evaluation of thermodynamic effects[J].Crystal Growth and Design,2008,8(9):3408-3414.
    [163] TULASHIE S K, LORENZ H and SEIDEL-MORGENSTERN A. Potential ofchiral solvents for enantioselective crystallization.2. evaluation of kineticeffects[J]. Crystal Growth and Design,2009,9(5):2387-2392.
    [164] MORRIS R E and WEIGEL S J. The synthesis of molecular sieves fromnon-aqueous solvents[J]. Chemical Society Reviews,1997,26(4):309-317.
    [165] ZHANG J, CHEN S, WU T, et al. Homochiral crystallization of microporousframework materials from achiral precursors by chiral catalysis[J]. Journal ofthe American Chemical Society,2008,130(39):12882-12883.
    [166] KACZOROWSKI T, JUSTYNIAK I, LIPI SKA T, et al. Metal complexes ofcinchonine as chiral building blocks: a strategy for the construction ofnanotubular architectures and helical coordination polymers[J]. Journal of theAmerican Chemical Society,2009,131(15):5393-5395.
    [167] ZHANG J, CHEN S and BU X. Nucleotide-catalyzed conversion of racemiczeolite-type zincophosphate into enantioenriched crystals[J]. AngewandteChemie International Edition,2009,48(33):6049-6051.
    [168] WESSELS T, BAERLOCHER C, MCCUSKER L, et al. An ordered form ofthe extra-large-pore zeolite UTD-1: synthesis and structure analysis frompowder diffraction data[J]. Journal of the American Chemical Society,1999,121(26):6242-6247.
    [169] DAVIS M E, SALDARRIAGA C, MONTES C, et al. VPI-5: the firstmolecular sieve with pores larger than10ngstroms[J]. Zeolites,1988,8(5):362-366.
    [170] BEITONE L, HUGUENARD C, GANSM LLER A, et al. Order-disorder in thesuper-sodalite Zn3Al6(PO4)12·4tren,17H2O (MIL-74): a combined XRD-NMRassessment[J]. Journal of the American Chemical Society,2003,125(30):9102-9110.
    [171] PAN Q, LI J, CHRISTENSEN K, et al. A germanate built from a68126cavitycotemplated by an (H2O)16cluster and2-methylpiperazine[J]. AngewandteChemie International Edition,2008,120(41):7986-7989.
    [172] POOJARY M and CLEARFIELD A. Crystal structure of14-ringaluminophosphate AlPO4-8from powder data[J]. Materials Chemistry andPhysics,1993,35(3-4):301-304.
    [173] MERROUCHE A, PATARIN J, KESSLER H, et al. Synthesis andcharacterization of cloverite: a novel gallophosphate molecular sieve withthree-dimensional20-membered ring channels[J]. Zeolites,1992,12(3):226-232.
    [174] BURTON A, ELOMARI S, CHEN C Y, et al. SSZ-53and SSZ-59: two novelextra-large pore zeolites[J]. Chemistry-A European Journal,2003,9(23):5737-5748.
    [175] CORMA A, D AZ-CABA AS M J, JORD J L, et al. High-throughputsynthesis and catalytic properties of a molecular sieve with18-and10-memberrings[J]. Nature,2006,443(7113):842-845.
    [176]唐有祺,桂琳琳.逆向而行——功能体系的分子工程学研究[M].第一版,长沙:湖南科学技术出版社1997.
    [177] O'KEEFFE M and BRESE N. Uninodal4-connected3D nets. I. Nets without3-or4-rings[J]. Acta Crystallographica Section A: Foundations ofCrystallography,1992,48(5):663-669.
    [178] WOODLEY S M, BATTLE P D, GALE J D, et al. The prediction of inorganiccrystal structures using a genetic algorithm and energy minimisation[J].Physical Chemistry Chemical Physics,1999,1(10):2535-2542.
    [179] SCHON J C and JANSEN M. First step towards planning of syntheses insolid-state chemistry: determination of promising structure candidates byglobal optimization[J]. Angewandte Chemie International Edition1996,35(12):1286-1304.
    [180] FREEMAN C, NEWSAM J, LEVINE S, et al. Inorganic crystal structureprediction using simplified potentials and experimental unit cells: applicationto the polymorphs of titanium dioxide[J]. Journal of Materials Chemistry,1993,3(5):531-535.
    [181] PANNETIER J, BASSAS-ALSINA J, RODRIGUEZ-CARVAJAL J, et al.Prediction of crystal structures from crystal chemistry rules by simulatedannealing[J]. Nature,1990,346(6282):343-345.
    [182] SMITH J V. Topochemistry of zeolites and related materials.1. Topology andgeometry[J]. Chemical Reviews,1988,88(1):149-182.
    [183] AKPORIAYE D and PRICE G. Systematic enumeration of zeoliteframeworks[J]. Zeolites,1989,9(1):23-32.
    [184] DEEM M W and NEWSAM J M. Determination of4-connected frameworkcrystal structures by simulated annealing[J]. Nature,1989,342(6247):260-262.
    [185] LI J, YU J, YAN W, et al. Structures and templating effect in the gormation of2D layered aluminophosphates with Al3P4O163-stoichiometry[J]. Chemistry ofMaterials,1999,11(9):2600-2606.
    [186] ZHOU B, LI J Y, YU J H, et al. Systematic enumeration of two-dimensionallayered aluminophosphates with [Al3P4O16]3-stoichiometry[J]. Computers&chemistry,1999,23(6):555-563.
    [1] BRECK D W. Zeolite molecular sieves: structure, chemistry, and use[M].Wiley New York,1973.
    [2] CEJKA J, CORMA A and ZONES S. Zeolites and catalysis: synthesis,reactions and applications[M]. Wiley-VCH,2010.
    [3] BNMNER G and MEIER W. Framework density distribution of zeolite-typetetrahedral nets[J]. Nature,1989,337:146-147.
    [4] CHEETHAM A, FJELLVAG H, GIER T, et al. Very open microporousmaterials: from concept to reality[J]. Studies in Surface Science and Catalysis,2001,135:158.
    [5] ANNEN M, DAVIS M, HIGGINS J, et al. VPI-7-The1st zincosilicatemolecular-sieve containing3-membered T-atom rings[J]. Journal of theChemical Society, Chemical Communications,1991,1175-1176.
    [6] BU X, FENG P and STUCKY G. Novel germanate zeolite structures with3-rings[J]. Journal of the American Chemical Society,1998,120(43):11204-11205.
    [7] LI Y and ZOU X. SU-16: A Three-dimensional open-frameworkborogermanate with a novel zeolite topology[J]. Angewandte ChemieInternational Edition,2005,117(13):2048-2051.
    [8] CORMA A, DIAZ-CABANAS M, JORDA J, et al. High-throughput synthesisand catalytic properties of a molecular sieve with18-and10-member rings[J].Nature,2006,443(7113):842-845.
    [9] SHI L, CHRISTENSEN K, JANSSON K, et al. Synthesis and characterizationof an aluminogermanate SU-46with a zeolite structure[J]. Chemistry ofMaterials,2007,19(24):5973-5979.
    [10] SU J, WANG Y, WANG Z, et al. PKU-9: An aluminogermanate with a newthree-dimensional zeolite framework constructed from CGS layers and spiro-5Units[J]. Journal of the American Chemical Society,2009,131(17):6080-6081.
    [11] CONRADSSON T, DADACHOV M and ZOU X. Synthesis and structure of(Me3N)6[Ge32O64]·(H2O)4.5, a thermally stable novel zeotype with3Dinterconnected12-ring channels[J]. Microporous and Mesoporous Materials,2000,41(1-3):183-191.
    [12] TANG L, SHI L, BONNEAU C, et al. A zeolite family with chiral and achiralstructures built from the same building layer[J]. Nature Materials,2008,7(5):381-385.
    [13] CORMA A, DIAZ-CABANAS M, JORDA J, et al. A zeolitic structure(ITQ-34) with connected9-and10-ring channels obtained with phosphoniumcations as structure directing agents[J]. Journal of the American ChemicalSociety,2008,130(49):16482-16483.
    [14] SUN J, BONNEAU C, CANTIN A, et al. The ITQ-37mesoporous chiralzeolite[J]. Nature,2009,458(7242):1154-1157.
    [15] JIANG J, JORDA J, DIAZ-CABANAS M, et al. The synthesis of anextra-large-pore zeolite with double three-ring building units and a lowframework density[J]. Angewandte Chemie International Edition,2010,122(29):5106-5108.
    [16] BAERLOCHER C, MCCUSKER L B and OLSON D. Atlas of zeoliteframework types[M]. Elsevier Science,2007.
    [17] MORGAN K, GAINSFORD G and MILESTONE N. A novel layeredaluminium phosphate [Co(en)3Al3P4O16·3H2O] assembled about a chiral metalcomplex[J]. Journal of the Chemical Society, Chemical Communications,1995,(4):425-426.
    [18] WANG Y, YU J, GUO M, et al.[{Zn2(HPO4)4}{Co(dien)2}]·H3O: A zincphosphate with multidirectional intersecting helical channels[J]. AngewandteChemie International Edition,2003,115(34):4223-4226.
    [19] LIN Z, ZHANG J, ZHAO J, et al. A germanate framework containing24-ringchannels, Ni-Ge bonds, and chiral [Ni@Ge14O24(OH)3] cluster motifstransferred from chiral metal complexes[J]. Angewandte Chemie InternationalEdition,2005,117(42):7041-7044.
    [20] DELGADO-FRIEDRICHS O and O'KEEFFE M. Identification of andsymmetry computation for crystal nets[J]. Acta Crystallographica Section A:Foundations of Crystallography,2003,59(4):351-360.
    [21] BLATOV V, DELGADO-FRIEDRICHS O, O'KEEFFE M, et al.Three-periodic nets and tilings: natural tilings for nets[J]. ActaCrystallographica Section A: Foundations of Crystallography,2007,63(5):418-425.
    [22] MAYO S L, OLAFSON B D and GODDARD W A. DREIDING: a genericforce field for molecular simulations[J]. The Journal of Physical Chemistry,1990,94(26):8897-8909.
    [23] O'KEEFFE M, PESKOV M, RAMSDEN S, et al. The Reticular ChemistryStructure Resource (RCSR) database of, and symbols for, crystal nets[J].Accounts of Chemical Research,2008,41(12):1782-1789.
    [24] MERLINO S. Lovdarite, K4Na12(Be8Si28O72)·18H2O, a zeolite-like mineral;structural features and OD character[J]. European Journal of Mineralogy,1990,2(6):809.
    [25] LAWTON S L and ROHRBAUGH W J. The framework topology of ZSM-18,a novel zeolite containing rings of three (Si, Al)-O species[J]. Science,1990,247(4948):1319.
    [26] PETERSEN O V, GIESTER G, BRANDST TTER F, et al. Nabesite,Na2BeSi4O10·4H2O, a new mineral species from the Ilímaussaq alkalinecomplex, South Greenland[J]. The Canadian Mineralogist,2002,40(1):173-181.
    [27] CORRELL S, OECKLER O, STOCK N, et al. LixH12x y+z[P12OyN24y]Clz—An oxonitridophosphate with a zeolitelike frameworkstructure composed of3-rings[J]. Angewandte Chemie International Edition,2003,42(30):3549-3552.
    [28] GIUSEPPETTI G, MAZZI F, TADINI C, et al. The revised crystal structure ofRoggianite–Ca2(Be(OH)2Al2Si4O13)·2.5H2O[J]. Neues Jahrbuch fürMineralogie-Monatshefte,1991,7:307-314.
    [29] R HRIG C and GIES H. A new zincosilicate zeolite with nine-ring channels[J].Angewandte Chemie International Edition in English,1995,34(1):63-65.
    [30] PARK S H, DANIELS P and GIES H. RUB-23: a new microporouslithosilicate containing spiro-5building units[J]. Microporous and MesoporousMaterials,2000,37(1-2):129-143.
    [31] ZHENG N, BU X, WANG B, et al. Microporous and photoluminescentchalcogenide zeolite analogs[J]. Science,2002,298(5602):2366.
    [32] MCCUSKER L B, GROSSE-KUNSTLEVE R, BAERLOCHER C, et al.Synthesis optimization and structure analysis of the zincosilicate molecularsieve VPI-9[J]. Microporous Materials,1996,6(5-6):295-309.
    [33] ANNEN M J, DAVIS M E, HIGGINS J B, et al. VPI-7: the first zincosilicatemolecular sieve containing three-membered T-atom rings[J]. Journal of theChemical Society, Chemical Communications,1991,(17):1175-1176.
    [34] WALTER F. Weinebeneite, CaBe3(PO4)2(OH)2·4H2O, a new mineral species;mineral data and crystal structure[J]. European Journal of Mineralogy,1992,4(6):1275.
    [35] JIANG J, JORDA J L, DIAZ-CABANAS M J, et al. The synthesis of anextra-large-pore zeolite with double three-ring building units and alowframework density[J]. Angewandte Chemie International Edition,2010,49(29):4986-4988.
    [36] SEDLMAIER S J, DOEBLINGER M, OECKLER O, et al. An unprecedentedzeolite-like framework topology constructed from cages with3-rings in abarium oxonitridophosphate[J]. Journal of the American Chemical Society,2011.
    [37] HAN Y, LI Y, YU J, et al. A gallogermanate zeolite constructed exclusively bythree-ring building units[J]. Angewandte Chemie International Edition,2011,50(13):3003-3005.
    [1] GR TZEL M. Dye-sensitized solar cells[J]. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,2003,4(2):145-153.
    [2] O'REGAN B and GR TZEL M. A low-cost, high-efficiency solar cell based ondye-sensitized colloidal Ti02films[J]. Nature,1991,353(6346):737-740.
    [3] YAMASE T. Photo-and electrochromism of polyoxometalates and relatedmaterials[J]. Chemical Reviews,1998,98(1):307-326.
    [4] WANG Y and HERRON N. X-ray photoconductive nanocomposites[J].Science,1996,273(5275):632.
    [5] EINAGA Y. Photo-switching magnetic materials[J]. Journal of Photochemistryand Photobiology C: Photochemistry Reviews,2006,7(2-3):69-88.
    [6] FERBER J and LUTHER J. Modeling of photovoltage and photocurrent indye-sensitized titanium dioxide solar cells[J]. The Journal of PhysicalChemistry B,2001,105(21):4895-4903.
    [7] PICHOT F and GREGG B A. The photovoltage-determining mechanism indye-sensitized solar cells[J]. The Journal of Physical Chemistry B,1999,104(1):6-10.
    [8] CAPONE S, MONGELLI S, RELLA R, et al. Gas sensitivity measurements onNO2sensors based on copper(II)tetrakis(n-butylaminocarbonyl)phthalocyanine LB films[J]. Langmuir,1999,15(5):1748-1753.
    [9] GR TZEL M. Perspectives for dye‐sensitized nanocrystalline solar cells[J].Progress in photovoltaics: research and applications,2000,8(1):171-185.
    [10] KRONIK L and SHAPIRA Y. Surface photovoltage spectroscopy ofsemiconductor structures: at the crossroads of physics, chemistry and electricalengineering[J]. Surface and Interface Analysis,2001,31(10):954-965.
    [11] ARULKUMARAN S, SAKAI M, EGAWA T, et al. Improved dccharacteristics of AlGaN/GaN high-electron-mobility transistors onAlN/sapphire templates[J]. Applied Physics Letters,2002,81:1131-1133.
    [12] LIN Y, WANG D, ZHAO Q, et al. A study of quantum confinement propertiesof photogenerated charges in ZnO nanoparticles by surface photovoltagespectroscopy[J]. The Journal of Physical Chemistry B,2004,108(10):3202-3206.
    [13] GR TZEL M. The advent of mesoscopic injection solar cells[J]. Progress inphotovoltaics: research and applications,2006,14(5):429-442.
    [14] CHEN W, YUAN H-M, WANG J-Y, et al. Synthesis, structure, andphotoelectronic effects of a Uranium Zinc Organic coordination polymercontaining infinite metal oxide sheets[J]. Journal of the American ChemicalSociety,2003,125(31):9266-9267.
    [15] DU Y, YANG M, YU J, et al. An unexpected photoelectronic effect from[Co(en)3]2(Zr2F12)(SiF6)·4H2O, a compound containing an H-bonded assemblyof discrete [Co(en)3]3+,(Zr2F12)4-, and (SiF6)2-ions[J]. Angewandte ChemieInternational Edition,2005,117(48):8202-8204.
    [16] DU Y, YU J H, CHEN Y, et al. Mesostructured molecular solid material|Co(en)3|(Zr2F11H2O) with enhanced photoelectronic effect[J]. DaltonTransactions,2009,(34):6736-6740.
    [17] YU J, WANG Y, SHI Z, et al. Hydrothermal synthesis and characterization oftwo new zinc phosphates assembled about a chiral metalcomplex:[CoII(en)3]2[Zn6P8O32H8] and [CoIII(en)3][Zn8P6O24Cl]·2H2O[J].Chemistry of Materials,2001,13(9):2972-2978.
    [18] CHEN P, LI J, DUAN F, et al. Syntheses and characterizations of threelow-dimensional chloride-rich zincophosphates assembled about [d-Co(en)3]3+and [dl-Co(en)3]3+complex cations[J]. Inorganic Chemistry,2007,46(16):6683-6687.
    [19] WANG Y, CHEN P, LI J, et al. Chiral layered zincophosphate[d-Co(en)3]Zn3(H0.5PO4)2(HPO4)2assembled about d-Co(en)33+complexcations[J]. Inorganic Chemistry,2006,45(12):4764-4768.
    [20] WANG Y, YU J, DU Y, et al. Two layered gallophosphates assembled about thechiral metal complexes: Co(en)3·Ga3P4O16·5H2O and trans-Co(dien)2·Ga3P4O16·3H2O[J]. Journal of Solid State Chemistry,2004,177(7):2511-2517.
    [21] WANG Y, YU J, GUO M, et al.[{Zn2(HPO4)4}{Co(dien)2}]·H3O: A zincphosphate with multidirectional intersecting helical channels[J]. AngewandteChemie International Edition,2003,115(34):4223-4226.
    [22] WANG Y, YU J, LI Y, et al. Chirality transfer from guest chiral metalcomplexes to inorganic framework: The role of hydrogen bonding[J].Chemistry-A European Journal,2003,9(20):5048-5055.
    [23] GORESHNIK E, LEBLANC M and MAISONNEUVE V. Tris (2-ethylamino)amine (tren) as template for the elaboration of fluorides: synthesis and crystalstructures of [(C2H4NH3)3NH]·Zr3F16(H2O)],[(C2H4NH3)3N]2·[ZrF6]·[Zr2F12]and [(C2H4NH3)3N]·[TaF7]·F[J]. Journal of Solid State Chemistry,2004,177(11):4023-4030.
    [24] BENTRUP U, FEIST M and KEMNITZ E. Halogenometalates withN-containing organic cations-Structural chemistry and thermal behavior[J].Progress in Solid State Chemistry,1999,27(2-4):75-129.
    [25] J RGENSEN S M. Ueber metalldiaminverbindungen[J]. Journal für PraktischeChemie,1889,39(1):1-26.
    [26] HART R, LEVASON W, PATEL B, et al. Synthesis, properties and crystalstructures of6-,7-and8-coordinate Zr (IV) and Hf (IV) complexes involvingthioether and selenoether ligands[J]. Journal of the Chemical Society, DaltonTransactions,2002,(16):3153-3159.
    [1] CORMA A. From microporous to mesoporous molecular sieve materials andtheir use in catalysis[J]. Chemical Reviews,1997,97(6):2373-2420.
    [2] YU J and XU R. Insight into the construction of open-frameworkaluminophosphates[J]. Chemical Society Reviews,2006,35(7):593-604.
    [3] MURUGAVEL R, CHOUDHURY A, WALAWALKAR M, et al. Metalcomplexes of organophosphate esters and open-framework metal phosphates:synthesis, structure, transformations, and applications[J]. Chemical Reviews,2008,108(9):3549-3655.
    [4] JEONG H K, NAIR S, VOGT T, et al. A highly crystalline layered silicate withthree-dimensionally microporous layers[J]. Nature Materials,2003,2(1):53-58.
    [5] XIONG D, ZHAO J, CHEN H, et al. A borogermanate with three-dimensionalopen-framework layers[J]. Chemistry-A European Journal,2007,13(35):9862-9865.
    [6] DU Y, YU J, WANG Y, et al.[Co(en)3][In3(H2PO4)6(HPO4)3]·H2O: A newlayered indium phosphate templated by cobalt complex[J]. Journal of SolidState Chemistry,2004,177(9):3032-3037.
    [7] YU J, WANG Y, SHI Z, et al. Hydrothermal synthesis and characterization oftwo new zinc phosphates assembled about a chiral metalcomplex:[CoII(en)3]2[Zn6P8O32H8] and [CoIII(en)3][Zn8P6O24Cl]·2H2O[J].Chemistry of Materials,2001,13(9):2972-2978.
    [8] WANG Y, YU J, SHI Z, et al. Synthesis and characterization of a new layeredgallium phosphate [Co(en)3][Ga3(H2PO4)6(HPO4)3] templated by cobaltcomplex[J]. Journal of Solid State Chemistry,2003,170(1):176-181.
    [9] WANG Y, YU J, GUO M, et al.[{Zn2(HPO4)4}{Co(dien)2}]·H3O: A zincphosphate with multidirectional intersecting helical channels[J]. AngewandteChemie International Edition,2003,115(34):4223-4226.
    [10] WANG Y, YU J, DU Y, et al. Two layered gallophosphates assembled about thechiral metal complexes: Co(en)3·Ga3P4O16·5H2O and trans-Co(dien)2·Ga3P4O16·3H2O[J]. Journal of Solid State Chemistry,2004,177(7):2511-2517.
    [11] ZHONG Y, CHEN Y, SUN Y, et al. Co-templated synthesis andcharacterization of two new1D zincophosphates,[CoIII(dien)2][Zn(PO4)(HPO4)]·H3BO3and[CoIII(dien)2][Zn2(PO4)(HPO4)2]·C2H6O2[J]. CrystEngComm,2005,7(37):237-242.
    [12] MORGAN K, GAINSFORD G and MILESTONE N. A novel layeredaluminium phosphate [Co(en)3Al3P4O16·3H2O] assembled about a chiral metalcomplex[J]. Journal of the Chemical Society, Chemical Communications,1995,(4):425-426.
    [13] CHEN P, LI J, DUAN F, et al. Syntheses and characterizations of threelow-dimensional chloride-rich zincophosphates assembled about [d-Co(en)3]3+and [dl-Co(en)3]3+complex cations[J]. Inorganic Chemistry,2007,46(16):6683-6687.
    [14] BRUCE D, WILKINSON A, WHITE M, et al. The synthesis andcharacterization of an aluminophosphate with chiral layers;trans-Co(dien)2·Al3P4O16·3H2O[J]. Journal of Solid State Chemistry,1996,125(2):228-233.
    [15] GRAY M, JASPER J, WILKINSON A, et al. Synthesis and synchrotronmicrocrystal structure of an aluminophosphate with chiral layers containing[Lambda] tris (ethylenediamine) cobalt (III)[J]. Chemistry of Materials,1997,9(4):976-980.
    [16] QIAO J, ZHANG L, LIU L, et al. Solvothermal synthesis and structure of anovel3D zincophosphite|Co(en)3|[Zn4(HPO3)5(H2PO3)] containing helicalchains[J]. Journal of Solid State Chemistry,2008,181(11):2908-2913.
    [17] STALDER S and WILKINSON A. Synthesis and characterization of a chiral3D-framework material: d-Co(en)3[H3Ga2P4O16][J]. Chemistry of Materials,1997,9(10):2168-2173.
    [18] LIN Z, ZHANG J, ZHAO J, et al. A germanate framework containing24-ringchannels, Ni-Ge bonds, and chiral [Ni@Ge14O24(OH)3] cluster motifstransferred from chiral metal complexes[J]. Angewandte Chemie InternationalEdition,2005,117(42):7041-7044.
    [19] ZHANG H, ZHANG J, ZHENG S, et al.[Ge7O13(OH)2F3]3·Cl-·2[Ni(dien)2]2+:The first chainlike germanate templated by a transition metal complex[J].Inorganic Chemistry,2003,42(21):6595-6597.
    [20] PAN Q, CHEN Q, SONG W C, et al. Template-directed synthesis of three newopen-framework metal (II) oxalates using Co (III) complex as template[J].CrystEngComm,2010,12(12):4198-4204.
    [21] PAN Q, LI J, CHEN Q, et al.|Co(en)3|1/3[In(ox)2]·3.5H2O: A zeoliticmetal-organic framework templated by Co(en)3Cl3[J]. Microporous andMesoporous Materials,2010,132(3):453-457.
    [22] PAN Q, LI J, REN X, et al.[Ni(1,2-PDA)3]2(HOCH2CH2CH2NH3)3(H3O)2[Ge7O14X3]3(X=F, OH): A new1D germanate with12-ring hexagonal tubular channels[J]. Chemistry ofMaterials,2008,20(2):370-372.
    [23] WANG Y, YU J, LI Y, et al. Chirality transfer from guest chiral metalcomplexes to inorganic framework: The role of hydrogen bonding[J].Chemistry-A European Journal,2003,9(20):5048-5055.
    [24] WANG Y, CHEN P, LI J, et al. Chiral layered zincophosphate[d-Co(en)3]Zn3(H0.5PO4)2(HPO4)2assembled about d-Co(en)33+complexcations[J]. Inorganic Chemistry,2006,45(12):4764-4768.
    [25] HAN Y, LI Y, YU J, et al. A gallogermanate zeolite constructed exclusively bythree-ring building units[J]. Angewandte Chemie International Edition,2011,50(13):3003-3005.
    [26] CHAVEZ A V, NENOFF T M, HANNOOMAN L, et al. Tetrahedral-networkorgano-zincophosphates: syntheses and structures of (N2C6H14)·Zn(HPO4)2·H2O, H3N(CH2)3NH3·Zn2(HPO4)3, and (N2C6H14)·Zn3(HPO4)4[J].Journal of Solid State Chemistry,1999,147(2):584-591.
    [27] RAO C, NATARAJAN S and NEERAJ S. Exploration of a simple universalroute to the myriad of open-framework metal phosphates[J]. Journal of theAmerican Chemical Society,2000,122(12):2810-2817.
    [28] CHIDAMBARAM D, NEERAJ S, NATARAJAN S, et al. Open-frameworkzinc phosphates synthesized in the presence of structure-directing organicamines[J]. Journal of Solid State Chemistry,1999,147(1):154-169.
    [29] CHOUDHURY A, NATARAJAN S and RAO C. A layered zincphosphate,[C6N4H22][Zn6(PO4)4(HPO4)2], formed by one-dimensional tubes[J].Journal of Solid State Chemistry,2001,157(1):110-116.
    [30] AYI A A, NEERAJ S, CHOUDHURY A, et al. One-dimensional zincphosphates with linear chain structure[J]. Journal of Physics and Chemistry ofSolids,2001,62(8):1481-1491.
    [31] HARRISON W T A and PHILLIPS M L F. Hydrothermal syntheses andsingle-crystal structures of some novel guanidinium-zinc-phosphates[J].Chemistry of Materials,1997,9(8):1837-1846.
    [32] HARRISON W T A, BIRCSAK Z and HANNOOMAN L. Syntheses andcrystal structures of two new hydrated rubidium zinc phosphates:RbZn2(HPO4)2(H2PO4·2H2O, a layered phase containing octahedral andtetrahedral zinc centers, and RbZn(HPO4)(H2PO4)·H2O containingone-dimensional chains of4-rings[J]. Journal of Solid State Chemistry,1997,134(1):148-157.
    [33] REINERT P, LOGAR N Z, PATARIN J, et al. Synthesis and structure of[Zn8(HPO4)8(H2PO4)8]·[(C2H8N)8]·4H2O[J]. European Journal of Solid Stateand Inorganic Chemistry,1998,35(4-5):373-387.
    [34] HARRISON W T A, NENOFF T M, GIER T E, et al. Tetrahedral-atomzincophosphate structures. zinc diethyl phosphate,[Zn(O2P(OC2H5)2)2]x, aone-dimensional inorganic" polymer"[J]. Inorganic Chemistry,1992,31(26):5395-5399.
    [35] FLEITH S, JOSIEN L, SIMON-MASSERON A, et al. Synthesis andcharacterization of the one-dimensional zincophosphateMu-22:[Zn(HPO4)2]8[C5H13N2]8·8H2O[J]. Solid State Sciences,2002,4(1):135-141.
    [1] YU J and XU R. Rich structure chemistry in the aluminophosphate family[J].Accounts of Chemical Research,2003,36(7):481-490.
    [2] YU J and XU R. Insight into the construction of open-frameworkaluminophosphates[J]. Chemical Society Reviews,2006,35(7):593-604.
    [3] THOMAS J M, RAJA R, SANKAR G, et al. Molecular sieve catalysts for theregioselective and shape-selective oxyfunctionalization of alkanes in air[J].Accounts of Chemical Research,2001,34(3):191-200.
    [4] HARTMANN M and KEVAN L. Transition-metal ions in aluminophosphateand silicoaluminophosphate molecular sieves: location, interaction withadsorbates and catalytic properties[J]. Chemical Reviews,1999,99(3):635-664.
    [5] SONG X, LI Y, GAN L, et al. Heteroatom-stabilized chiral framework ofaluminophosphate molecular sieves[J]. Angewandte Chemie InternationalEdition,2009,48(2):314-317.
    [6] THOMAS J, XU Y, CATLOW C, et al. Synthesis and characterization of acatalytically active nickel silicoaluminophosphate catalyst for the conversionof methanol to ethene[J]. Chemistry of Materials,1991,3(4):667-672.
    [7] SHAO L, LI Y, YU J, et al. Divalent-metal-stabilized aluminophosphatesexhibiting a new zeolite framework topology[J]. Inorganic Chemistry,2011,51(1):225-229.
    [8] GUO Y, SONG X, LI J, et al. Syntheses and characterizations ofheteroatom-containing open-framework aluminophosphates[J]. DaltonTransactions,2011,40(36):9289-9294.
    [9] SONG X, LI J, GUO Y, et al. Syntheses and characterizations oftransition-metal-substituted aluminophosphate molecularsieves(C3N2H5)8|[M8Al16P24O96](M=Co, Mn, Zn) with zeotype LAUtopology[J]. Inorganic Chemistry,2008,48(1):198-203.
    [10] MORGAN K, GAINSFORD G and MILESTONE N. A novel layeredaluminium phosphate [Co(en)3Al3P4O16·3H2O] assembled about a chiral metalcomplex[J]. Journal of the Chemical Society, Chemical Communications,1995,(4):425-426.
    [11] BRUCE D, WILKINSON A, WHITE M, et al. The synthesis and structure of achiral layered aluminophosphate containing the template Co(tn)33+[J]. Journalof the Chemical Society, Chemical Communications,1995,(20):2059-2060.
    [12] BRUCE D, WILKINSON A, WHITE M, et al. The synthesis andcharacterization of an aluminophosphate with chiral layers;trans-Co(dien)2·Al3P4O16·3H2O[J]. Journal of Solid State Chemistry,1996,125(2):228-233.
    [13] PAN Q, LI J, CHEN Q, et al.|Co(en)3|1/3[In (ox)2]·3.5H2O: A zeoliticmetal-organic framework templated by Co (en)3Cl3[J]. Microporous andMesoporous Materials,2010.
    [14] QIAO J, ZHANG L, LIU L, et al. Solvothermal synthesis and structure of anovel3D zincophosphite|Co(en)3|[Zn4(HPO3)5(H2PO3)] containing helicalchains[J]. Journal of Solid State Chemistry,2008,181(11):2908-2913.
    [15] WILLIAMS D, KRUGER J, MCLEROY A, et al. Iridium (III) aminecomplexes as high-stability structure-directing agents for the synthesis of metalphosphates[J]. Chemistry of Materials,1999,11(8):2241-2249.
    [16] JASPER J and WILKINSON A. Synthesis of low-dimensionalaluminophosphates from higher dimensional precursors: conversion of[Lambda],[Delta]-Co(en)3[Al3P4O16]·xH2O to the chain compound[Lambda],[Delta]-Co(en)3[AlP2O8]·xH2O[J]. Chemistry of Materials,1998,10(6):1664-1667.
    [17] STALDER S and WILKINSON A. Synthesis and characterization of a chiral3D-framework material: d-Co(en)3[H3Ga2P4O16][J]. Chemistry of Materials,1997,9(10):2168-2173.
    [18] WANG Y, YU J, PAN Q, et al. Synthesis and structural characterization of0Dvanadium borophosphate [Co(en)3]2[V3P3BO19][H2PO4]·4H2O and1Dvanadium oxides [Co(en)3][V3O9]·H2O and [Co(dien)2][V3O9]·H2O templatedby cobalt complexes: cooperative organization of the complexes and theinorganic networks[J]. Inorganic Chemistry,2004,43(2):559-565.
    [19] PAN Q, LI J, REN X, et al.[Ni(1,2-PDA)3]2(HOCH2CH2CH2NH3)3(H3O)2[Ge7O14X3]3(X=F, OH): A new1D germanate with12-ring hexagonal tubular channels[J]. Chemistry ofMaterials,2008,20(2):370-372.
    [20] LIN Z, ZHANG J, ZHAO J, et al. A germanate framework containing24-ringchannels, Ni-Ge bonds, and chiral [Ni@Ge14O24(OH)3] cluster motifstransferred from chiral metal complexes[J]. Angewandte Chemie InternationalEdition,2005,117(42):7041-7044.
    [21] HAN Y, LI Y, YU J, et al. A gallogermanate zeolite constructed exclusively bythree-ring building units[J]. Angewandte Chemie International Edition,2011,50(13):3003-3005.
    [22] ZHONG Y, CHEN Y, SUN Y, et al. Co-templated synthesis andcharacterization of two new1D zincophosphates,[CoIII(dien)2][Zn(PO4)(HPO4)]·H3BO3and[CoIII(dien)2][Zn2(PO4)(HPO4)2]·C2H6O2[J]. CrystEngComm,2005,7(37):237-242.
    [23] GARCIA R, PHILP E F, SLAWIN A M Z, et al. Nickel complexed within anazamacrocycle as a structure directing agent in the crystallization of theframework metalloaluminophosphates STA-6and STA-7[J]. Journal ofMaterials Chemistry,2001,11(5):1421-1427.
    [24] MAPLE M J, PHILP E F, SLAWIN A M Z, et al. Azamacrocycles and theazaoxacryptand4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8]hexacosaneas structure-directing agents in the synthesis of microporousmetalloaluminophosphates[J]. Journal of Materials Chemistry,2000,11(1):98-104.
    [25] DU Y, YANG M, YU J, et al. An unexpected photoelectronic effect from[Co(en)3]2(Zr2F12)(SiF6)·4H2O, a compound containing an H-bonded assemblyof discrete [Co(en)3]3+,(Zr2F12)4-, and (SiF6)2-ions[J]. Angewandte ChemieInternational Edition,2005,117(48):8202-8204.
    [26] DU Y, YU J H, CHEN Y, et al. Mesostructured molecular solid material|Co(en)3|(Zr2F11H2O) with enhanced photoelectronic effect[J]. DaltonTransactions,2009,(34):6736-6740.
    [27] YU J, WANG Y, SHI Z, et al. Hydrothermal synthesis and characterization oftwo new zinc phosphates assembled about a chiral metalcomplex:[CoII(en)3]2[Zn6P8O32H8] and [CoIII(en)3][Zn8P6O24Cl]·2H2O[J].Chemistry of Materials,2001,13(9):2972-2978.
    [28] WANG Y, YU J, GUO M, et al.[{Zn2(HPO4)4}{Co(dien)2}]·H3O: A zincphosphate with multidirectional intersecting helical channels[J]. AngewandteChemie International Edition,2003,115(34):4223-4226.
    [29] GARCIA R, COOMBS T, MAPLE M, et al. Aluminophosphates templated bymetal-amine complexes as catalyst precursors[J]. Studies in Surface Scienceand Catalysis,2004,154:993-1000.
    [30] GARCIA R, SHANNON I, SLAWIN A, et al. Synthesis, structure and thermaltransformations of aluminophosphates containing the nickel complex[Ni(diethylenetriamine)2]2+as a structure directing agent[J]. Microporous andMesoporous Materials,2003,58(2):91-104.
    [31] CHEN P, LI J, XU J, et al. Synthesis, structure and NMR characterization of anew monomeric aluminophosphate [dl-Co(en)3]2[Al(HPO4)2(H1.5PO4)2(H2PO4)2](H3PO4)4containing four different types ofmonophosphates[J]. Solid State Sciences,2009,11(3):622-627.
    [32] CHEN P, LI J, YU J, et al. The synthesis and structure of a chiral1Daluminophosphate chain compound: d-Co (en)3[AlP2O8]·6.5H2O[J]. Journal ofSolid State Chemistry,2005,178(6):1929-1934.
    [33] GRAY M, JASPER J, WILKINSON A, et al. Synthesis and synchrotronmicrocrystal structure of an aluminophosphate with chiral layers containing[Lambda] tris (ethylenediamine) cobalt (III)[J]. Chemistry of Materials,1997,9(4):976-980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700