火电机组协调控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火电单元机组协调控制系统具有多变量、强耦合、大迟延、强非线性等特性,常规机炉协调控制策略远远不能满足电网对机组的要求,因此研究适合于大型火电机组先进协调控制方案,对机组的安全经济稳定运行至关重要。考虑到模型预测控制可以有效的解决变量间的耦合问题,本文针对一个330MW燃煤单元机组的两输入两输出模型,设计了多变量广义预测控制器,并与传统的PID控制器进行比较,采用Matlab进行编程仿真,仿真结果表明广义预测控制有效地解决了变量间的耦合,并在大范围工况变化情况下能够取得满意的控制效果。
The coordinated control system for fossil-fired boiler-turbine unit is usually featured by multi-variable, strong couple, large delay, nonlinear characteristics, the conventional control strategy can not meet the requirement of the grid, thus the study for effective advanced control scheme is essential for the economic and stable operation of the unit. Given the fact that model predictive control can effectively solve the couple between variables, this paper designs a multivariable generalized predictive controller (GPC) for a 330MW boiler-turbine unit model with two inputs and two outputs. The stimulation result is compared with the traditional PID controller's using Matlab programming. The results show that GPC gets a good performance under different power conditions.
引文
[1]沈炯,陈来九.基于智能解耦的协调控制系统参数整定[J].中国电机工程学报,1993,13(4):14-19.
    [2]沈炯,陈来九.单元机组负荷控制系统的在线自整定[J].中国电机工程学报,1994,14(2):13-19.
    [3]Liu H B, Li S Y Chai T Y. Intelligent decoupling control of Power Plant main steam pressure and power output [J]. Electrical Power and Energy System,2003,25:809-819.
    [4]Chen K W, Asok R. Robust Wide-Range Control of Steam-Electric Power Plants[J].IEEE Transactions on Control Systems Technology,1997,5(1):74-88.
    [5]Lu S, Hogg B W.Predictive coordinated control for power-plants steam pressure and power output[J]. Control eng.1997,5 (1):79-84.
    [6]Katebi, M.R. and Johnson, M.A. Predictive control design for large-scale systems, Automatica,1997,33(3), pp421-425.
    [7]Ordys, A.W., and Kock, P. Constrained predictive control for multivariable systems with application to power systems. International Journal of Robust Nonlinear Control, 1999,9, pp.781-797.
    [8]Xiang-Jie Liu, Felipe Lara-Rosano and C.W. Chan. Neurofuzzy Network Modelling and Control of Steam Pressure in 300MW Steam-Boiler System. Engineering Applications of Artificial Intelligence, Vol.16, no.5,431-440.2003.
    [9]Xiang-Jie Liu and C.W. Chan. Neuro-fuzzy generalized predictive control of boiler steam temperature. IEEE Trans. Energy Conversion, Vol.21, no.4, December, pp.900-908,2006.
    [10]Jin S. Heo, Kwang Y. Lee, and Raul Garduno-Ramirez, "Multiobjective Control of Power Plants Using Particle Swarm Optimization Techniques," IEEE Tran. Energy Conversion. Vol.21, no.2,552-561, June,2006.
    [11]Un-chul Moon and Kwang Y. Lee, "A boiler-turbine system control using a fuzzy auto-regressive moving average model," IEEE Tran. Energy Conversion. Vol.18, no.l, March,2003.
    [12]T. Moelbak, "Advanced control of superheater steam temperatures-an evaluation based on practical applications," Control Engineering Practice, vol.7. no.7, pp.1-10,1999.
    [13]X.J. Liu et.al. An Energy Saving Control for Combined Cycle Power Plant by Supervisory Predictive Scheme. European Control Conference 2007, Kos, Greece,2-5 July,2007.
    [14]BolkeW, Sasiadek J, Wisniewski T.Linearization of non-linear MIMO model of large Power Plant station[C]. Proceedings of American Control Conference,2000,4435-4436.
    [15]Bolek W, SasiadekJ, Wisniewski T. Adaptive back Stepping control of a power plant station model[C].IFAC 15th Triennial World Congress,2002.1650-1655.
    [16]陈彦桥,刘吉臻,谭文.模糊多模型控制及其对500MW单元机组协调控制系统的仿真研究[J].中国电机工程学报,2003,23(10):199-203.
    [17]Ben-Abdennour A and Lee K Y. An Autonomous Control System for Boiler-Turbine Units[J].IEEE Transaction on Energy Conversion,1996,11 (2):401-406.
    [18]Beheshti M.T.H and Rezaee M.M. A New Hybrid Boiler Master Controller[C].Proceedings of American Control Conference, Anchorage, AK,2002, 2070-2075.
    [19]Harnold chi-Li-M, Lee K Y.Free-model based neural networks for a boiler-turbine Plant[C]. Power Engineering Society Winter Meeting, PA, USA,2000,1140-1144.
    [20]Alturki F A, Abdennour A B.Neuro-fuzzy Control of a steam boiler-turbine unit[C].Proceedings of International Conference on Control Applications, Hawaii, USA, 1999,1050-1055.
    [21]李益国,沈炯,吕震中.火电单元机组负荷模糊内模控制及其仿真研究[J].中国电机工程学报,2002,22(4):90-93.
    [22]Dimeo R D, Lee K Y.The use of a genetic algorithm in Power Plant control system design[C].Proceedings of 34th IEEE Conference on Decision and Control, New Orieans,LA,1995,737-742.
    [23]张栾英,孙万云.火电厂过程控制.北京:中国电力出版社,2000.
    [24]张玉铎,王满稼.热工自动控制系统.水利电力出版社,1987.
    [25]张法文.直流单元机组自动调节系统.水利电力出版社,1986.
    [26]金以慧,方崇智,过程控制,清华大学出版社,1993年.
    [27]郑昶,曹在基.DEB协调控制系统[J].动力工程,1989.9(4):1-8.
    [28]刘吉臻.协调控制与给水全程控制[M].北京,中国电力出版社,1995.
    [29]王淼婺.火电单元机组协调控制对AGC的适应性分析.中国电力,1999,6:31-35.
    [30]D. W. Clarke, C. Mohtadi, and P. S. Tuffs, "Generalized predictive control," Automatica, vol.23, no.2, pp.137-160,1987.
    [31]边立秀,周俊霞.热工控制系统.中国电力出版社,2002.
    [32]张建华,董菲,侯国莲.基于神经网络预测控制的单元机组协调控制策略研究[J].动力工程.2006,26(3):392-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700