多载波补码相位编码雷达的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于OFDM技术的多载波补码相位编码(MCPC)高分辨雷达具有图钉型模糊函数、控制简单、生成便利和易与现代通信系统兼容等优点,已成为高分辨力雷达技术和雷达通信双功能电子系统的重要发展方向和研究热点。本文将MCPC技术和宽带极化雷达技术相结合,设计了同时极化频率捷变MCPC雷达系统,着重对MCPC雷达的波形设计、功率放大器非线性效应补偿、宽带频率调制IQ不平衡补偿几项关键技术进行了深入系统的研究,具体研究内容和主要成果包括:
     1.结合过采样技术,通过改变调制序列来动态调整载波间隔的方式,设计了改进型MCPC雷达信号产生方案和具有多普勒免疫的信号检测方法。理论分析和仿真结果表明:与传统的MCPC雷达相比,本文所设计的MCPC雷达具有更高的距离分辨力、多普勒容忍度和载波间相位噪声互干扰免疫能力,并消除了DC offset对探测性能的影响。
     2.利用MCPC雷达信号具有可以实现目标散射矩阵同时测量的特点,结合频率捷变技术设计了同时极化频率捷变MCPC雷达系统,大大提高了系统抗有源干扰的能力。研制了频率捷变频率合成器,为同时极化频率捷变MCPC雷达系统研制奠定了技术基础。
     3.通过优化MCPC雷达信号各载波权重因子来实现信号低峰均比(PMEPR)和低自相关函数旁瓣。优化结果表明:通过加权优化的MCPC脉冲串,PMEPR可降低至66.9%,主旁瓣比提高5dB。提出利用单个MCPC雷达信号脉冲连续发射两次的信号结构和回波信号自相关信息来提取参数,实现对功率放大器的非线性效应的实时补偿。该补偿方法不仅使非线性补偿过程免受多普勒和噪声影响,且保留了信号中的多普勒信息。
     4.通过将MCPC雷达信号频带细分,并利用雷达回波信号与原发射信号的互相关函数来提取IQ不平衡参数实现对宽带频率调制IQ不平衡时域补偿。补偿过程中,利用MCPC信号间的相关特性去除噪声影响,并采用MCPC信号间的非相关性简化由频带细分增加的计算量。分析和仿真结果表明所提出的补偿方法在宽带和低信噪比的情况下,能有效地实现IQ不平衡度补偿。
Multi-carrier Complementary Phase-coded (MCPC) radar signal which is based on Or-thogonal Frequency Division Multiplexing (OFDM) technique exhibits thumbtack ambigu-ity function. It is easy to be controlled, generated and compatible with modern communica-tion systems. By combining MCPC technique and wideband polarization radar technique, a simultaneous polarization frequency agility MCPC radar system is designed, and of which key techniques are intensive researched including MCPC radar signal waveform design, power amplifier nonlinear effects compensation and wideband frequency-dependent IQ im-balance compensation. The main work and contributions of this dissertation are listed as follows.
     1. An improved way to generate MCPC radar signal and a Doppler resisted signal de-tection method are proposed by combining oversampling technique. The proposed approach improved MCPC radar performance by modifying modulation sequences to adjust subcarrier spacing dynamically. Theory analysis and simulation results show that the proposed MCPC radar system has higher delay resolution, Doppler tolarence and immune to Foreign Contri-bution (FC) of phase noise between carriers, and the influences of DC offset are eliminated.
     2. By combining frequency agility technique and MCPC radar technique which is very suitable for simultaneous scattering matrix measurement technique implementation, a si-multaneous polarization frequency agility MCPC radar system is designed. Both these tech-niques improve system immunity to active jamming greatly. A frequency aigilty frequency synthesizer is designed and manufactured, which provides technique foundation for simul-taneous polarization frequency agility MCPC radar system implementation.
     3. By optimizing MCPC radar signal frequency weights, low signal Peak-to-Mean En-velope Power Ratio (PMEPR) and low auto-correlation sidelobe are realized. The optimiza-tion result shows that PMEPR of MCPC radar signal pulse train can be reduced to 66.7%, while mainlobe to sidelobe ratio can increase by 5dB. The signal structure of double trans-mitting single MCPC pulse and radar echoes self-correlation method are used for power amplifier nonlinear parameters extraction and compensation. The proposed approach can separate nonlinear effects and Doppler influence. The compensation procedures are immune to Doppler and noise. And the Doppler information can be reserved.
     4. By subdividing frequency spectrum and extracting IQ imbalance parameters from the cross-correlaiton function of radar echoes and original transmitted signal, a time domain IQ compensation approach is proposed for frequency-dependent IQ imbalance in wideband scenarios. In the compensation procedures, MCPC signal correlation properties are used for noise elimination and uncorrelated properties between MCPC signals are used to simplify calculation which increases with frequcny spectrum subdivision. Analysis and simulation results show that the proposed approach can compensate IQ imbalance effectively in wide-band and low Signal-to-Noise Ratio (SNR) scenarios.
引文
[1]D. Lowe, X. Huang. Ultra-Wideband MB-OFDM Channel Estimation with Complemen-tary Codes. International Symposium on Communications and Information Technologies, 2006:623-628
    [2]L. Jichao, K. Guixia, L. Shan, Z. Ping. Preamble Design Based on Complete Comple-mentary Sets for Random Access in MIMO-OFDM Systems. IEEE Wireless Communi-cations and Networking Conference,2007:858-862
    [3]D. Lowe, H. Xiaojing. Complementary Channel Estimation and Synchronization for OFDM. The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications,2007:23-23
    [4]C. Hsiao-Hwa, Y. Jun-Feng, N. Suehiro. A Multicarrier CDMA Architecture Based on Orthogonal Complementary Codes for New Generations of Wideband Wireless Commu-nications. IEEE Communications Magazine,2001,39:126-135
    [5]M. E. Magana, L. Huaping. A Multi-carrier CDMA System Design Based on Orthogonal Complementary Codes. IEEE Vehicular Technology Conference,2003,2:1374-1378
    [6]T. Kojima, M. Aono. On a Convoluted-Time and Code Division Multiple Access Com-munication System Using Complete Complementary Codes. International Workshop on Signal Design and Its Applications in Communications,2007:30-33
    [7]K. Wakasugi, S. Fukao. Sidelobe Properties of a Complementary Code Used in MST Radar Observations. IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23:57-59
    [8]R. F. Woodman. High-altitude Resolution Stratospheric Measurement with Arecibo 430MHz Radar. Radio Science,1980,15(2):417-422
    [9]G. Schmidt, R. Ruster, P. Czechowsky. Complementary code and digital filtering for de-tection of weak VHF radar signals from the mesosphere. IEEE Transaction on Geosci. Electronics.1979, GE-17(4):154-161
    [10]A. Mudukutore, V. Chandrasekar, R. J. Keeler. Weather Radars with Pulse Compression using Complementary Codes:Simulation and Evaluation. International Symposium in Geoscience and Remote Sensing,1996,1:574-576
    [11]牟善祥.频率步进高距离分辨力雷达的关键技术研究.南京:南京理工大学,2000:4-5
    [12]Levanon N. Multicarrier Radar Signals-pulse Train and CW. In Proceeding of the IEEE International Radar Conference,2002:707-720
    [13]Levanon N. Multifrequency complementary phase-coded radar signal. IEE Proceed-ings-Radar, Sonar and Navigation 2000,147:276-284
    [14]Sverdlik M N, Levanon N. Family of multicarrier bi-phase radar signals represented by ternary arrays. IEEE Transactions on Aerospace and Electronic Systems,2006,42(3): 933-952
    [15]Levanon N, Mozeson E. Radar Signals. New York:Wiley,2004:327-371
    [16]顾村锋,缪晨,侯志,吴文.多载波补偿相位编码雷达信号的子载波加权优化.探测与控制学报,2008,30(4):56-60
    [17]陈永光,李修和,沈阳.组网雷达作战能力分析与评估.北京:国防工业出版社,2006:5-6
    [18]B. J. Donnet, I. D. Longstaff. Combining MIMO Radar with OFDM Communications. European Radar Conference,2006:37-40
    [19]G. Lellouch, H. Nikookar. On the Capability of a Radar Network to Support Communi-cations.2007:1-5
    [20]Dmitriy Garmatyuk, Jonathan Schuerger, Y. T. Morton, et al. Feasibility study of a mul-ti-carrier dual-use imaging radar and communication system. European Radar Confer-ence,2007:194-197
    [21]Shu Haining. Wireless Sensor Network Lifetime Analysis and Energy Efficient Tech-niques:[Ph.D's Dissertation]. Arlington, USA:University of Texas,2007
    [22]余志锋,徐爱杰,雷根生.C4KISR-美军指挥自动化系统的最新发展.火力与指挥控制,2007,32(3):5-7
    [23]丁锋,杨健,余志锋.美军C4KISR系统的体系结构及发展展望.电光与控制,2005,12(1):1-4
    [24]梁萧.过载波相位编码雷达的研究.哈尔滨:哈尔滨工业大学,2006
    [25]顾陈,张劲东,朱晓华.基于OFDM的多载波调制雷达系统信号处理及检测.电子与信息学报,31(6),2009:1298-1300
    [26]Franken G E A, Nikookar H, P van Genderen. Doppler Tolerance of OFDM-coded Ra-dar Signals. Proceedings of the 3rd European Radar Conference,2006:108-111
    [27]Mozeson E, Levanon N. Multicarrier Radar Signals with Low Peak-to-Mean Envelope Power Ratio. IEE Proceedings-Radar, Sonar and Navigation.2003,150(2):71-77
    [28]Jiao Y Z, Liu X J, Wang X A. A Novel Tone Reservation Scheme with Fast Conver-gence for PAPR Reduction in OFDM Systems. IEEE Conference on Consumer Commu-nications and Networking,2008:398-402
    [29]J Hyun-Bae, N Hyung-Suk, S Dong-Joon, et al. Multi-Stage TR Scheme for PAPR Re-duction in OFDM Signals. IEEE Transactions on Broadcasting,2009,55:300-304
    [30]Krongold B S, Jones D L. An active-set approach for OFDM PAR reduction via tone reservation. IEEE Transactions on Signal Processing,2004,52:495-509
    [31]Reisi N, Ahmadian M. Reducing the Complexity of Tone Injection Scheme by Subop-timum Algorithms. ISECS International Colloquium on Computing, Communication, Control, and Management,2008:27-31
    [32]Mizutani K, Ohta M, Ueda Y, Yamashita K, A PAPR reduction of OFDM signal using neural networks with tone injection scheme.6th International Conference on Information, Communications & Signal Processing,2007:1-5
    [33]H Seung Hee, J M Cioffi, L Jae Hong. Tone injection with hexagonal constellation for peak-to-average power ratio reduction in OFDM. IEEE Communications Letters,2006, 10:646-648
    [34]T Wattanasuwakull, W Benjapolakul. PAPR Reduction for OFDM Transmission by us-ing a method of Tone Reservation and Tone Injection. Fifth International Conference on Information, Communications and Signal Processing,2005:273-277
    [35]Yang L, Soo K K, Siu Y M, et al. A Low Complexity Selected Mapping Scheme by Use of Time Domain Sequence Superposition Technique for PAPR Reduction in OFDM Sys-tem. IEEE Transactions on Broadcasting,2008,54:821-824
    [36]S Y Le Goff, K Boon Kien, Tsimenidis C C, et al. A novel selected mapping technique for PAPR reduction in OFDM systems. IEEE Transactions on Communications,2008,56: 1775-1779
    [37]S Suyama, N Nomura, H Suzuki, et al. Subcarrier Phase Hopping MIMO-OFDM Transmission Employing Enhanced Selected Mapping for PAPR Reduction. IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications,2006: 1-5
    [38]Bauml R W, Fischer R F H, Huber J B, Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters,1996,32:2056-2057
    [39]J Yuzhong, W Xin'an, X Ying, et al. A Novel PAPR Reduction Technique by Sampling Partial Transmit Sequences.5th International Conference on Wireless Communications, Networking and Mobile Computing,2009:1-3
    [40]Tian Y-f, Ding R-h, Yao X-a, et al. PAPR Reduction of OFDM Signals Using Modified Partial Transmit Sequences.2nd International Congress on Image and Signal Processing, 2009:1-4
    [41]Sharma P K, Nagaria R K, Sharma T N. PAPR Reduction for OFDM Scheme by New Partial Transmit Sequence Technique in Wireless Communication Systems. First Interna-tional Conference on Computational Intelligence, Communication Systems and Net-works,2009:114-118
    [42]Lu G, Wu P, C Carlemalm-Logothetis, Peak-to-average Power Ratio Reduction in OFDM Based on Transformation of Partial Transmit Sequences. Electronics Letters, 2006,42:105-106
    [43]Saleh A. Frequency-Independent and Frequency-Dependent Nonlinear Models of TWT Amplifiers, IEEE Transactions on Communications,1981,29:1715-17
    [44]刘辉.射频功率放人器线性化技术研究.西安:西安电子科技大学,2005.75-100.
    [45]杨建涛,高俊,王柏杉等.基于LUT的射频预失真技术.海军工程大学学报,2009,21(4):78-81
    [46]鲍景富,黄金福,齐家红.一种模拟预失真技术的宽带功率放大器的研究.微波学报,2009,25(4):66-68
    [47]He Z Y, Ge J H, Geng S J, et al. An improved look-up table predistortion technique for HPA with memory effects in OFDM systems, IEEE Transactions on Broadcasting,2006, 52:87-91
    [48]Morgan D R, Ma Z X, Kim J, et al. A Generalized Memory Polynomial Model for Dig-ital Predistortion of RF Power Amplifiers. IEEE Transactions on Signal Processing,2006, 54:3852-3860
    [49]施龙飞.雷达极化抗干扰技术研究.长沙:国防科学技术大学,2007:25-40
    [50]乔晓林,宋立众,谢新华.极化编码脉压雷达信号的相关检测.系统工程与电子技术,2003,25(5):550-553
    [51]宋立众,蒋明,孟宪德,乔晓林.极化捷变LFM脉冲压缩信号的相关检测.哈尔滨商业大学学报(自然科学版),2004,20(6):671-674
    [52]D. Giuli, M. Fossi, L. Fecheris. Radar target scattering matrix measurement through or-thogonal signals. IEE Proceedings-F,1993,140(4):233-242
    [53]D. Giuli, L. Fecheris. Simultaneous scattering matrix measurement through signal cod-ing. IEEE International Conference,1990:258-262
    [54]W. L. Cameron, L. K. Lenng. Feature motivated polarization scattering matrix decom-position. IEEE International Conference on Radar,1990
    [55]S. R. Cloude, E. Pottier. A review of target decomposition theorems in radar polarimetry. IEEE GRS,1996,34(2):498-517
    [56]P. A. Ingwersen and W. Z. Lemnios. Radar for Ballistic Missile Defense Research. Lin- coln Laboratory Journal,2000,12(2):245-266
    [57]E. C. Freeeman, et al. MIT Lincoln Laboratory:Technology in the National Inter-est(Lincoln Laboratory, Lexington, Mass.),1995:83
    [58]E. L. Christensen, J. Dall. EMISAR:a Dual2Frequency, Polarimeric Airborne SAR. Geoscience and Remote Sensing Symposium,2002. IGARSS 2002, IEEE International, 2002,3:1711-1713
    [59]E. L. Christensen, N. Skou, J, Dall. EMISAR:an Absolutely Calibrated Polarimetric L-and C-band SAR. IEEE Transation on Geoscience and Remote Sensing,1998,36(6): 1852-1865
    [60]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社,1999
    [61]Tubbax, B Come, L Van der Perre, et al. Compensation of IQ imbalance and Phase Noise in OFDM Systems. IEEE Transactions on Wireless Communications,2005,4: 872-877
    [62]Alireza Tarighat, Rahim Bagheri, Ali H. Sayed.Compensation Schemes and Perform-ance nalysis of IQ Imbalances in OFDM Receivers. IEEE Transactions on Signal Proc-essing,53(8),2005:3257-3268
    [63]F Horlin, A Bourdoux, L Van der Perre. Low-Complexity EM-based Joint Acquisition of the Carrier Frequency Offset and IQ Imbalance. IEEE Transactions on Wireless Communications,2008,7:2212-2220
    [64]M Windisch, G. Fettweis. Performance Degradation Due to I/Q Imbalance in Mul-ti-Carrier Direct Conversion Receivers:A Theoretical Analysis. IEEE International Con-ference on Communications,2006:257-262
    [65]P Kiss, V Prodanov. One-tap Wideband I/Q Compensation for Zero-IF Filters. IEEE Transactions on Circuits and Systems I:Regular Papers,2004,51:1062-1074
    [66]Schenk Tim. RF Imperfections in High-rate Wireless Systems:Impact and Digital Compensation. Netherlands:Springer,2008
    [67]GU Cunfeng, LAW Choi Look, WU Wen.Improved Way to Generate Multicarrier Complementary Phase-coded (MCPC) Radar Signal with Higher Resolution and Immu-nity. Chinese Journal of Electronics. (To be published)
    [68]Bekkadal F. Novel radar technology and applications.17th International Conference on Applied Electromagnetics and Communications,2003:6-12
    [69]丁鹭飞,耿富录,陈建春.雷达原理.北京:电子工业出版社,2009.8-10
    [70]尹长川,罗涛,乐光新.多载波宽带无线通信技术.北京:北京邮电大学出版社. 2004:18-19
    [71]George N. Saddik, Rahul S. Singh, Elliott R. Brown. Ultra-Wideband Multifunctional Communications/Radar System. IEEE Transactions on Microwave Theory and Tech-niques,2007,55(7):1431-1437
    [72]Ghavami M, Michael L B, Kohno R. Ultra-wideband Signals and Systems in Commu-nication Engineering. Chichester, England:John Wiley & Sons Ltd press,2004.205-207
    [73]Jichao L, Guixia K, Shan L, Ping Z. Preamble Design Based on Complete Complemen-tary Sets for Random Access in MIMO-OFDM Systems. WCNC 2007,2007:858-862
    [74]Lowe D, H Xiaojing Complementary Channel Estimation and Synchronization for OFDM. The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications,2007:23-23
    [75]Dobre O A, Y Yu-Dong. An Adaptive Data Transmission Scheme for OFDM Systems. Vehicular Technology Conference,2002,3:1398-1403
    [76]R Viswanathan, P K Varshney. Distributed Detection with Multiple Sensors I. Funda-mentals. Proceedings of the IEEE,1997,85:54-63
    [77]R Schubert, M Schlingelhof, H Cramer. Accurate Positioning for Vehicular Safety Ap-plications-The SAFESPOT Approach. Vehicular Technology Conference,2007: 2506-2510
    [78]Sayed A H, Tarighat A, Khajehnouri N. Network-based Wireless Location:Challenges Faced in Developing Techniques for Accurate Wireless Location Information. IEEE Sig-nal Processing Magazine,2005,22:24-40
    [79]潘健,刘博,毛二可.自适应接收极化处理的方法与实现.现代雷达,2004,26(1):53-55
    [80]董胜奎,秦丽君.旋转场铁氧体变极化器.现代雷达,2007,4:76-78
    [81]张玉册.自适应捷变频方式下雷达抗干扰性能评估.中国雷达,2004,1:11-14
    [82]罗群,倪嘉骊,范国平.雷达系统分析与建模.电子工业出版社,2005
    [83]张英浩,吴文.Ka波段双极化直接检波式全功率辐射计研究.兵工学报,2009,30(1):375-379
    [84]Ana Garc'ia Armada, Miguel Calvo. Phase Noise and Sub-Carrier Spacing Effects on the Performance of an OFDM Communication System. IEEE COMMUNICATIONS LETTERS.1998,2(1):11-13
    [85]Engels Mark. Wireless OFDM systems:how to make them work?. Kluwer Academic Publishers,2002:132-133
    [86]Yanxin Yan, Masayuki Tomisawa, Yi Gong, et al. Joint Timing and Frequency Synchro- nization for IEEE 802.16 OFDM Systems. Mobile WiMAX Symposium of IEEE,2007: 17-21
    [87]Maxim IC. Application note 3853. Maxim Integrated Products,2006
    [88]R O'Neill, Lopes L B. Envelope variations and spectral splatter in clipped multicarrier signals. PIMRC'95 1995,1:71-75
    [89]L Xiaodong, L J Cimini, Jr. Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters,1998,2:131-133
    [90]J Armstrong. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters,2002,38:246-247
    [91]GU Cunfeng, LAW Choi Look, WU Wen. Time Domain IQ Imbalance Compensation for Wideband Wireless Systems. IEEE Communications Letters,2010,14(6) (To be published)
    [92]白居宪.直接数字频率合成.西安:西安交通大学出版社,2007
    [93]Anolog Devices Inc. A Technical Tutorial on Digital Signal Synthesis. Anolog Devices Inc.1999
    [94]王建新.直接数字频率合成技术及其应用研究.南京:南京理工大学,1999
    [95]Dean Banerjee. PLL Performance, Simulation, and Design. National Semiconductor Corporation,2006
    [96]白居宪.低噪声频率合成.西安:西安交通大学出版社,1995
    [97]Roland E Best. Phase-locked Loops Design, Simulation, and Applicationsn. McGraw-Hill Professional,2003
    [98]郭德淳,杨文革,费元春.快速捷变频率合成器的研制.兵工学报,2003,24(2):277-279
    [99]Analog Device Incorporation. AD9858 datasheet.www.analog.com,2009:27-27
    [100]Z-Comunications Incorporation. V585ME30 datasheet.http://www.zcomm.com, 2009:1-1
    [101]A. W. Rihaczek, Principle of High Resolution Radar. New York:McGramhill,1969
    [102]K. Ruttenberg, et al. High Range Resolution by Means of Pulse to Pulse Frequency Shifting. EASCON Record,1968:47-51
    [103]C. E. Cook, et al. Matching Filtering Pulse Compression and Waveform Design. Ra-dar System,1968,3:107-116
    [104]C. E. Cook, et al. Matching Filtering Pulse Compression and Waveform Design. Ra-dar System,1968,3:124-133
    [105]T. H. Einstein. Generation of High Resolution Radar Range Profile and Range Pro- file Autocorrelaiton Function Using Stepped Frequency Pulse Train. Project Report, MIT Lexington, Lincoln Laboratory. Octorber,1984
    [106]J. C. Huang. Ambiguity Function of the Stepped Frequency Radar [Master's Thesis]. Monterey, CA.:Naval Postgraduate School,1994
    [107]A. Paulose. High Radar Range Resolution with the Stepped Frequency Waveform: [Master's Thesis]. Monterey, CA.:Naval Postgraduate School,1994
    [108]Analog Device Incorporation. ADF4153 datasheet. Analog Device Incorporatio, 2007
    [109]Analog Device Incorporation. AD797 datasheet. Analog Device Incorporatio,2007
    [110]Altera Incorporation. EP1C3T144C8 datasheet. Altera Incorporation,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700