复杂电磁环境下的欠定盲源分离技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷达、通信等各种电子设备的广泛使用,形成了时域高度密集、频谱严重混叠的复杂电磁环境。在复杂电磁环境下,接收到的混合信号在时域、频域都是相互交叠的。此外,由于潜在的源信号数目未知而阵元数目有限,混合信号中源的数目往往大于阵元数目。此时,直接对混合信号进行参数估计和信息提取是非常困难的,通常首先需要对混合信号进行分离。本文对复杂电磁环境下的欠定盲分离问题进行了深入研究,充分利用了源信号在时频域上的稀疏性,以及独立性、循环平稳性、周期性等其它统计特性,把欠定盲分离问题转化为适定或超定问题,完成源信号的分离。其主要工作概括如下:
     第二章针对源信号在时频域上存在单源邻域,并且在任意时频点上同时存在的源信号数小于阵元数的情况,提出了基于单源检测和改进的子空间投影的欠定盲分离算法。首先利用特征值分解检测出信号在时频域上的单源邻域,然后通过系统聚类法对单源邻域对应的特征矢量进行聚类分析,从而完成混合矩阵的估计,算法不需要已知源信号的数目并且具有很好的鲁棒性。在估计出混合矩阵的条件下,通过准确地估计出任意时频点上同时存在的源信号数目,改进了基于子空间的源信号分离算法,克服了原有方法设定固定的源数目而导致分离性能降低的不足。仿真结果验证了算法的有效性。
     第三章针对源信号是相互独立的,并且在任意时频邻域内同时存在的源信号数不大于阵元数的情况,提出了基于二阶循环相关和矩阵对角化的欠定盲分离算法。首先计算信号的循环相关矩阵,通过张量正则分解估计出混合矩阵,由于该方法充分利用了源信号的循环平稳特性,当源信号具有不同的循环频率时能够显著提高混合矩阵的估计精度。在估计出混合矩阵后,通过度量协方差矩阵的对角化程度来找出不为零的源信号对应的混合矩阵,从而估计出源信号,该方法充分利用了源信号的独立性,进一步放宽了信号在时频域上的稀疏性条件,只要在任意时频邻域内同时存在的源信号数不超过阵元数就可以完成源信号的分离。仿真结果表明本文算法能够很好地分离出源信号。
     第四章针对源信号的自源时频点与互源时频点不混叠的情况,提出了基于空间时频分布的欠定盲分离算法。首先计算信号的空间时频分布矩阵,并把自源点对应的时频分布矩阵表示成三阶张量的形式,从而把欠定问题转化为超定问题,然后利用联合对角化或张量正则分解估计出混合矩阵和源信号。该算法不要求源信号在时域是稀疏的或相互独立的,仿真结果表明本文算法具有很好的源信号估计性能。
     第五章在单通道条件下分别研究了同步和非同步长码DS-CDMA信号扩频序列的盲估计问题。对于同步的情况,提出了基于ICA和重叠分段的扩频序列盲估计算法,首先对信号进行载波和码片同步得到基带采样信号,然后用ICA方法分别估计出每个用户的扩频序列片段,并通过重叠部分的相关性解决扩频序列片段的次序置换和幅度模糊问题,从而估计出每个用户完整周期的扩频序列,最后推导了该算法的理论性能。对于非同步的情况,提出了基于Complex-ICA和重叠分段的扩频序列盲估计算法,首先通过Complex-ICA和重叠分段估计出每个用户存在频偏的基带扩频波形,然后对每个用户分别进行载波同步和码片同步,从而估计出每个用户的扩频序列。仿真结果验证了算法的有效性。
The extensive use of the radar, communication and other eletronic equipments makes the electromagnetic environment in the war field more and more complex, where large numbers of signals are overlapped in the frequency domain at any same time. In this circumstance the received signal is always non-disjointed in time frequency (TF) domain. Furthermore, in practical field the number of sources is larger than that of sensors sometimes as a result of unknowing the number of the potential sources beforehand and that the number of the sensors is finite. To estimate the parameters and extract the transmitted information from the each interceped signal, the original signals must be separated from the mixtures firstly. The problem of the underdetermined signal blind separation in the complex electromagnetic environment is investigated in this paper. The underdetermined problem is transformed into over or well determined problem by exploiting the sparsity of sources in the TF domain, independence, cyclostationarity, periodicity and other statistic property, and then separate all the original signals. The main contributions are detailed as follows:
     In chapter 2, the underdertemined blind separation algorithm based on single source detection and subspace projection is proposed in the case of that there should be some single-source TF neighborhoods for each source and the number of active sources at any TF point is strictly less than the number of sensors. Fristly, detect the single source neighborhoods by eigenvalue decomposition and then estimate the mixing matrix via clustering the principal eigenvectors of the covariance matrixes corresponding to the single source neighborhoods without knowing the number of original sources. Extract the original signals by the modified subspace algorithm when the mixing matrix has been estimated. Because of the inequality between the assumed number and real number will lead to estimation performance degradation of source signals, to overcome the drawback this paper improve the based-subspace algorithm for extracting the original signals via estimating the number of active sources at any TF point. Simulation results verify the effectiveness of the proposed algorithm.
     In chapter 3, the novel underdertemined blind separation algorithm based on second-order cyclic correlation and covariance matrix diagonalization is proposed in the case of that the sources are independent and the number of active sources in any TF neighborhood does not exceed that of sensors.Fristly, calculate cyclic correlation matrix of the mixtures and stack the cyclic correlation matrices corresponding to different cycle frequencies and time lags into a three order tensor, achieve the estimation of mixing matrix by canonical decomposition. To exploit the cyclostationarity of the sources sufficiently, the proposed method improves the estimation accuracy when the cyclic frequency of the signals are different. Separate the source by measuring the diagonalization degree of the covariance matrix after the mixing matrix has been estimated. This method considers the independence of the sources sufficiently and relaxes the sparsity condition of sources in TF domain further, which allows the number of the active sources in any TF neighborhood simultaneously equals to that of sensors. Simulation results demonstrate that the proposed algorithm performs well.
     In chapter 4, the Underdetermined blind source separation algorithm based on TF distribution is proposed in the case of that the auto-source TF point and cross-source TF point is disjointed. Fristly calculate the spatial TF distribution matrix of the mixture and fold the TFD matrices into a third-order tensor corresponding to the auto-source TF points, then estimate the mixing matrix by tensor canonical decomposition or joint diagonalization. Secondly, transform the underdetermined problem into the over-determined case with knowing the mixing matrix. Finally we obtain the sources by calculating the pseudo-inverse matrix and TF synthesis techniques. It is not necessary that assume the sources are sparse in time domain or independent for the proposed algorithm. The simulations verify the capabilities of the proposed method.
     In chapter 5, the spreading sequences estimation of the synchronous and non synchronous DS-CDMA signal in the case of the single channel is investigated. For synchronous DS-CDMA, the estimation algorithm based on ICA and overlapped segmentation is proposed. Firstly, the baseband samples are obtained with chip period by carrier frequency synchronization and chip timing, and then divide the intact spreading sequences into many overlapped short-time segments so as to recover them in a sequential procedure. Estimate the spreading sequences segments of each user respectively by ICA and then solve the order permutation and amplitude ambiguity by the correlation of the overlap. The intact spreading sequences are estimated by splicing the segments and the closed-form expression that characterizes the estimation performance of the proposed algorithm in theory is obtained. For non-synchronous DS-CDMA, the baseband spreading wave with frequency offset of each user is estimated by the method based on Complex-ICA and overlapped segmentation, and then extract the spreading sequences of each user by carrier frequency synchronization and chip timing. Simulation results verify the effectiveness of the proposed algorithms.
引文
[1] Herault J, Jutten C. Space or time adaptive signal processing by neural network models[C]. AIP Conference Proceedings, 1986, 151: 206-211.
    [2] Pearlmutter B A, Potluru V K. Sparse separation: Principles and tricks[C]. Proceedings of SPIE in ICA, April, 2003, 5102: 1-4.
    [3]何昭水,谢胜利,傅予力.信号的稀疏性分析[J].自然科学进展, 2006, 16(9): 1167-1173.
    [4] Comon P. Independent component analysis, A new concept?[J]. Signal Processing, 1994, 36(3): 287-314.
    [5] Bell A J, Sejnowski T J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution [J]. Neural Computation, 1995, 7(6):1129-1159.
    [6] Cardoso J F.Infomax and maximum likelihood for blind source separation[J]. IEEE Signal Processing Letters, 1997, 4(4):112-114.
    [7] BA P, LC P. A context-sensitive generalization of ICA[C]. International Conference on Neural Information Processing, Hong Kong, September 1996, 613-619.
    [8] Cardoso J F. Blind signal processing: statistical principle[C]. Proceedings of IEEE, 1998, 86(10): 2009-2025.
    [9] Cardoso J F, Laheld B H. Equivariant adaptive source separation[J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017-3030.
    [10] Amari S I, Cichocki A. Adaptive blind signal processing-Neural network approaches [C]. In proceedings of the IEEE, 1998, 86, 2026-2048.
    [11] Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634.
    [12] Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans on Neural Networks, 2005, 16(4): 992-996.
    [13] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations[J]. Signal Process, 2001, 81(11): 2353-2362.
    [14] Bofill P, Zibulevsky M. Blind separation of more sources than mixtures using sparsity of their Short-Time Fourier Transform[C]. Proceedings of ICA 2000: 87-92.
    [15] Khor L C, Woo W L, Dlay S S. Non-Sparse approach to underdetermined blind signal estimation[C]. ICASSP, 2005:309-312.
    [16] Vielva L, Erdogmus, Pantaleon C, et al. Underdetermined blind source separation in a time-varying environment[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), 2002, 3: 3049-3052.
    [17] Li Y Q, Cichocki A, Amari S-I. Analysis of sparse representation and blind source separation[J]. Neural Computation, 2004, 16:1193-1234.
    [18] Tan B H, Yang X Y, Zhang Y J. An underdetermined blind separation algorithm based on fuzzy clustering[C]. The 3rd Intetnational Conference on Innovative Computing Information and Control (ICICIC'08), 2008: 404.
    [19] Sun T Y, Lan L E, Huo C L. Mixing matrix identification for underdetermined blind signal separation: using hough transform and fuzzy k-means clustering[C]. Proceedings of the 2009 IEEE International Conference on System, Man, and Cybernetics San Antonio, TX, USA, October, 2009: 1621-1626.
    [20] He Z S, Cichocki A. K-EVD clustering and its applications to sparse component analysis[J]. Independent Component Analysis and Blind Signal Separation Lecture Notes in Computer Science, 2006, 3889: 90-97.
    [21] Theis F J, Lang E W, Puntonet C G. A geometric algorithm for overcomplete linear ICA[J]. Neurocomputing, 2004, 56: 381-398.
    [22] Theis F J, Puntonet C G, Lang E W. Median-based clustering for underdetermined blind signal processing[J]. IEEE Signal Processing Letters, 2006, 13(2): 96-99.
    [23] Georgiev P, Ralescu A. Clustering on subspace and sparse representation of signals[C]. 48th Midwest Symposium on Circuit and Systems, 2005, 2: 1843-1846.
    [24]谢胜利,谭北海,傅予立.基于平面聚类算法的欠定混叠盲信号分离[J].自然科学进展, 2007, 17(6): 795-800.
    [25] Gowreesunker B V, Tewfik A H. Learning sparse representation using iterative subspace identification[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3055-3065.
    [26] Washizawa Y, Cichocki A. On-Line k-plane clustering learning algorithm for sparse component analysis[C]. in: Proceedings of ICASSP’06, Toulouse, France, 2006: 681-684.
    [27] Nainia F M, Mohimania G H, et al. Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-dimensional subspace clustering[J]. Neurocomputing, 2008, 71: 2330-2343.
    [28] Abrard F, Deville Y. A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources[J]. Signal Processing, 2005, 85:1389-1403.
    [29]刘琨,杜利民,等.基于时频域单源主导区的盲源欠定分离方法[J].中国科学E辑,2008, 38(8): 1284-1301.
    [30] Puigt M, Deville Y. Time-frequency ratio-based blind separation methods for attenuated and time-delayed sources. Mechanical Systems and Signal Processing, 2005, 19(6): 1348-1379.
    [31]肖明,谢胜利,等.基于频域单源区间的具有延迟的欠定盲分离[J].电子学报,2007, 35(12): 2279-2283.
    [32] Li Y Q, Amari S-I, Cichocki A, et al. Underdetermined blind source separation based on sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(2): 423-437.
    [33] Lee Te-Won, Lewicki M S, Girolami M. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE Signal Processing Letters, 1999, 6(4): 87-90.
    [34] Lewicki M S, Sejnowski T J. Learning overcomplete representations[J]. Neural Computation, 2000, 12(2): 337-365.
    [35] Wipf D P, Rao B D. Sparse bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 53(8):2153-2164.
    [36] Amari Shun-ichi. Natural gradient learning for over- and under-complete bases in ICA[J]. Neural Computation 1999, 11:1875-1883.
    [37]谢胜利,何昭水,傅予力.基于稀疏元分析的欠定混叠自适应盲分离方法[J].中国科学E辑, 2007, 37(8): 1086-1098.
    [38] Girolami M. A variational method for learning sparse and overcomplete representations[J]. Neural Computation, 2001, 13:2517-2532.
    [39] Zhong M J, Tang H W, Chen H J. An EM algorithm for learning sparse and overcomplete representations[J]. Neurocomputing, 2004, 57: 469-476.
    [40] Zhang Y Y, Shi X Z, Chen C H. A Gaussian mixture model for underdetermined independent component analysis[J]. Signal Processing, 2006, 86:1538-1549.
    [41] He Z S, Xie S L, Ding S X. Convolutive blind source separation in the frequency domain based on sparse representation[J]. IEEE Transactions on Audio, Speech, and Lauguage Processing, 2007, 15(5): 1551-1563.
    [42] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transcations on Signal Processing, 2006, 54(11): 4311-4322.
    [43] Comon P. Blind identification and source separation in 2×3 underdetermined mixtures[J]. IEEE Trans on Signal Processing, 2004, 52(1): 11-22.
    [44] Ferréol A, Albera L, Chevalier P. Fourth-Order Blind Identification of Underdetermined Mixtures of Sources[J]. IEEE Trans on Signal Processing, 2005, 53(5): 1640-1653.
    [45] Lathauwer L D, Castaing J, Cardoso J F. Four-Order cumulant-based blind identification of underdetermined mixtures[J]. IEEE Trans on Signal Processing, 2007, 55(6): 2965-2973.
    [46] Lathauwer L D, Castaing J. Blind identification of underdetermined mixtures bysimultaneous matrix diagonalization[J]. IEEE Trans on Signal Processing, 2008, 56(3): 1096-1105.
    [47] Karfoul A, Albera L, Birot G. Blind underdetermined mixture identification by joint canonical decomposition of HO cumulants[J]. IEEE Trans on Signal Processing, 2010, 58(2): 638-649.
    [48] Almeida A, Luciani X, Comon P. Blind identification of underdetermined mixtures based on the hexacovariance and higher-order cyclostationarity[C]. 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 2009: 669-672.
    [49] Tichavsky P, Koldovsky Z. Weight adjusted tensor method for blind separation of underdetermined mixtures of nonstationary sources[J]. IEEE Transaction on Signal Processing, 2011, 59(3): 1037-1047.
    [50] Comon P and Rajih M,“Blind identification of complex underdetermined mixtures,”in ICA Conf., Granada, 2004, pp. 105-112.
    [51] Comon P and Rajih M. Blind identification of under-determined mixtures based on the characteristic function. Signal Processing, 2006, 86(9): 2271-2281.
    [52] Luciani X, Almeida A, Comon P. Blind identification of underdetermined mixtures based on the characteristic function: the complex case[J]. IEEE Transaction on Signal Processing, 2011, 59(2): 540-553.
    [53] Mallat S and Zhang Z. Matching pursuits with time-frequency dictionaries[J].IEEE Transaction on Signal Processing, 1993 vol. 41, no. 12, pp. 3397-3415.
    [54] Chen S, Billings S A, and Luo W. Orthogonal least squares methods and their application to non-linear system identification[J]. International Journal of Control, 1989, 50(5): 1873-1896.
    [55] Pati Y C, Rezaiifar R, and Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[C]. In Conference Record of the 27th Asilomar Conference on Signals Systems and Computer, 1993, 1: 40-44.
    [56] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159.
    [57] Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary[J]. Neural Computation, 2001, 13:863-882.
    [58] Donoho D L, Elad M. Maximal sparsity representation via l1 minimization[C]. In Proceedings of National Academy Science, 2003, 100: 2197-2202.
    [59] Takigawa I, Kudo M, Toyama J. Performance analysis of minimum l1-norm solutions for underdetermined source separation[J]. IEEE Transactions on Signal Processing, 2004, 52(3):582-591.
    [60] Bofill P, Monte E. Underdetermined convoluted source reconstruction using LPand SOCP, and a neural approximator of the optimizer[J]. Lecture Notes in Computation Science, 2006, 3889: 569-576.
    [61] Winter S, Sawada H, Makino S. On real and complex valued l1-norm minimization for overcomplete blind source separation[C]. In Proceedings of IEEE Workshop on Application Signal Processing Audio Acoustic(WASPAA), New Paltz, NY, October, 2005: 86-89.
    [62] Winter S, Kellermann W, Sawada H, et al. MAP-based underdetermined blind source separation of convolutive mixture by hierarchical clustering and l1-norm minimization[J]. EURASIP Joural on Advances in Signal Processing, 2007(1), Article ID 24 717.
    [63] Winter S, Sawada H, Araki A, et al. Overcomplete BSS for convolutive mixtures based on hierarchical clustering[C]. In Proceedings of ICA, September, 2004: 652-660.
    [64] He Z S, Xie S L, Ding S X, Cichocki A. Convolutive blind source separation in the frequency domain based on sparse representation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(5): 1551-1564.
    [65] Saab R, Yilmaz ?, McKeown M J. Underdetermined anechoic blind source separation via lq-basis-pursuit with q < 1[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4004-4017.
    [66] Foucart S, Lai M J. Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q≤1[J]. Applied and Computational Harmonic Analysis, 26(3): 395-407.
    [67] Mohimani H, Babaie-Zadeh M, Jutten C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.
    [68] Vincent E. Complex nonconvex lp norm minimization for underdetermined source separation[C]. Proceedings of the 7th International Conference on Independent Component Analysis and Signal Separation, 2007: 430-437.
    [69] Gorodnisky I F, et al. Source localization in magnetoencephalography using an iterative weighted minimum norm algorithm[C]. Proceedings of 26th Asilomar Conference on Circuits, Systems and Computers, 1992, 1: 167-171.
    [70] Gorodnisky I F, et al. A recursive weighted minimum norm algorithm: analysis and application. Pro international conference on ASSP, 1993, 3:108-117.
    [71] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm[J]. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616.
    [72] Rao B. D, et al. An affine scaling methodology for best basis selection. IEEE Transaction on Signal Processing, 1999, 47(1): 187-200.
    [73] Zayyani H, Babaie-Zadeh M and Jutten C. An iterative Bayesian algorithm forsparse component analysis in presence of noise[J]. IEEE Transactions on Signal Processing, 2009, 57(11):4378-4390.
    [74] Fevotte C, Godsill S J, and Wolfe P J. Bayesian approach for blind separation of underdetermined mixtures of sparse sources. In Proc. 5th International Conference on Independent Component Analysis and Blind Source Separation (ICA 2004), Granada, Spain, 2004, pages: 398-405.
    [75] Fevotte C, Godsill S J. A Bayesian approach for blind separation of sparse sources [J]. IEEE Transactions on Signal Processing, 2005,
    [76] Cemgil A T, Fevotte C and Godsill S. Blind separation of sparse sources using variational EM[C]. In Proceedings of 13th European Signal Processing Conference, 2005: 1-4.
    [77] Chami Z E, Pham A D, Serviere C. A new EM algorithm for underdetermined convolutive blind source separation[C]. 17th European Signal Processing Conference, Glasgow, Scotland, August 24-28, 2009, 1457-1461.
    [78] Cemgil A T, Fevotte C and Godsill S. Variational and stochastic inference for Bayesian source separation[J]. Digital Signal Processing, 2007, 17: 891-913.
    [79] Snoussi H, Idier J. Bayesian Blind Separation of Generalized Hyperbolic Processes in Noisy and Underdeterminate Mixtures[J]. IEEE Transactions on Signal Processing, 2006, 54(9):3257-3269.
    [80] Kim S G, Yoo C D. Underdetermined blind source separation based on generalized Gaussian distribution[C]. Proceedings of the 2006 6th IEEE Signal Processing Society Workshop on Machine for Signal Processing, 2006: 103-108.
    [81] Kim S G, Yoo C D.Underdetermined blind source separation based on subspace representation[J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2604-2614.
    [82] Jourjine A, Rickard S, Yilmza ?. Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures[C]. Processing of Internationsl Conference on Acoustics, Speech, and Signal Processing(ICASSP2000),Instanbul, Turkey, June 5-9, 2000, 5: 2985-2988.
    [83] Yilmza ? and Rickard S. Blind separation of speech mixtures via time-frequency masking[J]. IEEE Transactions on Signal Processing, 2004, 52(7):1830-1847.
    [84] Nguyen L-T, Belouchrani A, Abed-Meraim K. Separating more sources than sensors using Time-Frequency distributions[C]. International Symposium on Signal Processing and its Applications (ISSPA), Kuala Lumpur, Malaysia, 13-16 August, 2001: 583-586.
    [85] Nguyen L-T, Belouchrani A, Abed-Meraim K. Separating more sources than sensors using Time-Frequency distributions[J]. EURASIP Journal on Applied Signal Processing, 2005, 17:2828-2847.
    [86] Luo Y, Chambers. A modified underdetermined blind source separation algorithmusing competitive learning[C]. Processings of the 3th International Symposium on Imag and Signal Processing and Analysis, 2003, 2: 966-969.
    [87] Araki S, Sawada H, Mukai R. Underdetermined sparse source separation of convolutive mixtures with observation vector clustering[C]. Proceedings of 2006 IEEE International Symposium on Circuits and Systems, 2006: 1-4.
    [88] Araki S, Sawada H, Mukai R. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors[J]. Signal Processing, 2007, 87: 1833-1847.
    [89] Pedersen S M, Wang D L, Larsen Jan. Two-microphone separation of speech mixtures[J]. IEEE Transactions on Neural Networks, 2008, 19(3): 475-492.
    [90] Sawada H, Araki S, Makino S. A two-stage Frequency-domain blind source separation method for underdetermined convolutive mixtures[C]. 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, October 21-24, 2007: 139-142.
    [91] Sawada H, Araki S, Makino S. Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 19(3): 516-526.
    [92] Reju V G, Koh S N, Soon I Y. Underdetermined convolutive blind source separation via Time-Frequency masking[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(1): 101-116.
    [93] Nesbit A and. Plumbley M D. Oracle estimation of adaptive cosine packet transforms for underdetermined audio source separation. In Proceedings of ICASSP 2008, Las Vegas, NV, U.S.A., 2008: 41-44.
    [94] Dutta M K, Gupta P, Pathak V K. An efficient algorithm for underdetermined blind source separation of audio mixtures[C]. 2009 International Conference on Advances in Recent Technologies in Communication and Computing, 2009: 136-140.
    [95] Duong N Q K, Vincent E, Gribonval R. Under-determined reverberant audio source separation using a full-rank spatial covariance model[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(7): 1830-1840.
    [96] Amod J G A,Aneesh G T A. rdetermined blind source separation using binary Time-Frequency masking with variable frequency resolution[C]. TENCON 2008-2008 IEEE Region 10 Conference, 19-21 Nov. 2008: 1-6.
    [97] Aissa-El-Bey A, Linh-Trung N, et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain[J]. IEEE Transactions on Signal Processing, 2007, 55(3): 897-907.
    [98] Aissa-El-Bey A, Abed-Meraim K, Grenier Y. Blind separation of underdetermined convolutive mixtures using their Time-Frequency representation[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(5): 1540-1550.
    [99] Luo Y H, Wang W W, et al. Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2198-2212.
    [100] Sawada H, Araki S, Mukai R. Blind extraction of dominant target sources using ICA and Time-Frequency masking[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(6): 2165-2173.
    [101] Araki S, Makino S, Blin A. Underdetermined blind separation for speech in real environments with sparseness and ICA[C]. In Proceedings of ICASSP, May 2004: III-881-III-884.
    [102] Anandkumar A J G, Ghost A, Damodaram B T. Underdetermined blind source separation using binary Time-Frequency masking with variable frequency resolution[C]. TENCON 2008-2008 IEEE Region 10 Conference, 19-21 Nov. 2008: 1-6.
    [103] Dezhong Peng, Yong Xiang. Underdetermined blind source separation based on relaxed sparsity condition of sources[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 809-813.
    [104] Daniel S. Benincasa. Simultaneous adaptive co-channel speaker separation, AFRL-IF-RS-TR-1999-162[R]. Rome, NY: Air Force Research Laboratory, Information Directorate, Public Affairs office, 1999.
    [105] Rickard, Scott; et al. System and method for non-square blind source separation under coherent noise by beamforming and time-frequency masking[P]. US Patent, No. 20040158821, 2004.
    [106] Kalhan, et al. Systems and methods for blind source separation of wireless communication signals[P]. US Patent, No.7231227, 2007.
    [107] E.S. Warner, I.K. Proudler. Single-channel blind signal separation of filtered MPSK signals[J]. IEE Proceedings of Radar, Sonar & Navigation, 2003, 150(6): 396-402.
    [108] Gil-Jin Jang, Te-Won Lee, Yung-Hwan Oh. Single channel signal separation using MAP-based subspace decomposition[J]. Electronics Letters, 2003, 39(24): 1766-1767.
    [109] Gil-Jin Jang, Te-Won Lee, Yung-Hwan Oh. Single channel signal separation using maximum likelihood subspace projection[C]. Proceeding of ICA 2003, Nara, Japan, April, 2003, 529-534.
    [110] Bhiksha Raj, Madhusudana V. S. Shashanka, Paris Smaragdis. Latent Dirichlet decomposition for single channel speaker separation[C]. Proceeding of ICASSP’06, Toulouse, France, May, 2006, 5: 821-824.
    [111] Tuomas Virtanen. Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(3): 1066-1074.
    [112] Cédric Févotte, Simon J. Godsill. A Bayesian approach for blind separation of sparse sources[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(6): 2174-2188.
    [113] Harold Szu, Pornchai Chanyagorn, Ivica Kopriva. Sparse coding blind source separation through powerline[J]. Neurocomputing, 2002, 48(1): 1015-1020.
    [114]张秀琦,刘辉,郑建斌,等.信号处理技术在重叠化学信号分析中的应用[J].化学进展, 2002, 14(3): 174-181.
    [115]王逸林,蔡平,许丹丹.应用希尔伯特黄变换的单矢量传感器多目标分辨研究[J].声学技术, 2006, 25(4): 376-380.
    [116] Zou Mouyan, Chai Zhenming, R. Unbehauen. Separation of periodic signals by using an algebraic method[C]. Proceeding of 1991 IEEE International Symposium on Circuits and Systems, Beijing, China, June, 1991, 5: 2427-2430.
    [117] Hao Cheng, Bin Tang, Jingjing Du, et al. Single channel pulse train radar signal separation using algebraic method[C]. Proceeding of IET International Radar Conference 2009, Guilin, China, April, 2009, 382-385.
    [118] Ashwin Rao, Ramdas Kumaresan. Separation of cochannel signals using the parametric constant modulus algorithm[C]. Proceeding of ICASSP’96, Atlanta, Georgia, USA, May, 1996, 5: 2686-2689.
    [119] Burel G, Bouder C. Blind Estimation of the Pseudo-Random Sequence of a Direct Sequence Spread Spectrum Signal[C]. Proceedings of 21st Century Military Communications, Los Angeles, CA, USA, 2000, 2: 967~970.
    [120] Nzéza C N, Gautier R, Burel G. Blind Synchronization and Sequences Identification in CDMA Transmissions[C]. Proceedings of IEEE Military Communications Conference, Nov. 2004, 3: 1384~1390.
    [121] Nzéza C N, Gautier R, Burel G. Parallel Blind Multiuser Synchronization and Sequences Estimation in Multirate CDMA Transmissions [C]. Proceedings of the Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, Oct. 2006: 2157~2161.
    [122] Nzéza C N, Gautier R, Burel G. Blind Multiuser Identification in Multirate CDMA Transmissions: A New Approach [C]. Proceedings of the Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Oct. 2006: 2162~2166.
    [123] Koivisto T, Koivunen V. Blind Despreading of Short-Code DS-CDMA Signals in Asynchronous Multi-user Systems [J]. Signal Processing, 2007, 11(87): 2560~2568.
    [124]王丰华.卫星通信链路侦察关键技术研究[D].长沙:国防科学技术大学博士学位论文,2009.
    [125] Joutsensalo J. Semi-Blind CDMA Code Estimation in the Downlink [C].Proceedings of the 48th IEEE Vehicular Technology Conference, Ottawa, Ont., Canada, May 1998, 2: 1356~1360.
    [126] Haghighat A, Soleymani M R. A MUSIC-based Algorithm for Blind User Identification in Multiuser DS-CDMA [J]. EURASIP, 2005, 5: 649~657.
    [127] Haghighat A, Soleymani M R. A MUSIC-Based Algorithm for Spreading Sequence Discovery in Multiuser DS-CDMA[C]. IEEE 58th Vehicular Technology Conference, Que., Canada, Oct 2003, 2: 978~981.
    [128] Qiu P Y, Huang Z T, Jiang W L. Blind Multiuser Spreading Sequences Estimation Algorithm for the Direct-Sequence Code Division Multiple Access Signals [J]. IET Signal Processing, in press.
    [129]杨小牛,付卫红.盲源分离——理论、应用与展望[J].通信对抗, 2006, (3): 3~10.
    [130]付卫红,杨小牛,刘乃安.基于盲源分离的CDMA多用户检测与伪码估计[J].电子学报, 2008, 36(7): 1319~1323.
    [131]沈雷,复杂环境下扩频信号参数估计和识别[D].杭州:浙江大学博士学位论文,2007.
    [132]王满喜,李宏,陶业荣,陆俊,非周期性DS/CDMA信号PN码序列的盲估计[J],信号处理. 2009, 25(8A): 89~93.
    [133] Sidiropoulos N D, Giannakis G B, Bro R. Deterministic Waveform-Preserving Blind Separation of DS-CDMA Signals using an Antenna Array [C]. Proc. Ninth IEEE SP Workshop on Statistical Signal and Array Processing, Sep. 1998: 304~307.
    [134] Sidiropoulos N D, Giannakis G B, Bro R. Blind PARAFAC Receivers for DS-CDMA Systems [J]. IEEE Trans. on Signal Processing, 2000, 48(3): 810~823.
    [135] Sidiropoulos N D, Bro R. User Separation in DS-CDMA Systems with Unknown Long PN Spreading Codes[C]. Proceedings of the 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications, Annapolis, MD, USA, 1999: 194~197.
    [136] Gabor D. Theory of communication[J]. IEE, 1946, 93: 429-457.
    [137]胡广书.现代信号处理教程[M].清华大学出版社: 2004.
    [138]张贤达.矩阵分析[M].北京:清华大学出版社.
    [139] Gardner W A. Characterization of cyclostationary random signal processes[J]. IEEE Transaction on Information Theory, 1975, IT-21(1): 4-14.
    [140] Gardner W A. Correlation of modulated signals: Part 1-Analog Modulation[J]. IEEE Transaction on Communication, 1987,COM-35(6): 584-594.
    [141] Gardner W A. Correlation of modulated signals: Part 2-Digital Modulation[J]. IEEE Transaction on Communication, 1987,COM-35(6): 595-601.
    [142] Gardner W A. The spectral correlation theory of cyclostationary time-series[J]. Signal Processing, 1986, 11(1): 13-36.
    [143] Gardner W A. Measurement of spectral correlation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1111-1123.
    [144] Gardner W A. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Singal Processing Magazine, 1991, 8(2): 14-36.
    [145] Lathauwer L D. A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization[J]. SIAM J . Matrix Anal. Appl, 2006, 28(3): 642-666.
    [146] Kruskal J B. Three-Way Arrays: Rank and Uniqueness of Trilinear Decompositions, with Application to Arithmetic Complexity and Statistics[J]. Linear Algebra Application, 1977, 18: 95~138.
    [147] Jiang T, Sidiropoulos N D. Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints[J]. IEEE Transactions on Signal Processing, 2004, 52(9): 2625-2636.
    [148] Sidiropoulos N D, Giannakis G B, Bro R. Blind PARAFAC receivers for DS-CDMA systems[J]. IEEE Transactions on Signal Processing, 2000, 48(3): 810-823.
    [149] Nion D, Lathauwer L D. Line search computation of the block factor model for blind multi-user access in wireless communications[C]. Proceedings of SPAWC’06, Cannes, France, July 2-5, 2006.
    [150] Nion D, Lathauwer L D. An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA[J]. Signal Processing, 2008, 88: 749-755.
    [151] Wigner E P. On the quantum correction for thermodynamic equilibrium[J].Phys. Rev. , 1932, 40: 749-759.
    [152] Vill J. Theorie et application de la notation de signal analytique[J]. Cables at Transmision, 1948, 2A: 61-74.
    [153] Cohen L. Time-Frequency Analysis[M]. New Jersey: Prentice Hall, 1995.
    [154] Cohen L. Generalized phase-space distribution functions[J]. Math. Phys., 1966, 7: 781-786.
    [155] Wax M, Kailath T. Detection of Signals by Information Theoretic Criteria [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1985, 33(2): 387-392.
    [156] Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation[J]. IEEE Trans on Signal Processing, 2002, 50(7): 1545-1553.
    [157] Boudreaux-Bartels G F, Parks T W. Time-varying filtering and signal estimation using wigner distribution synthesis techniques[J]. IEEE Transaction on Acoustics, Speech and Signal Processing, 1986, ASSP-34(3): 442-451.
    [158] Francos A, Porat M. Analysis and synthesis of multicomponent signals using positive time-frequency distributions[J]. IEEE Transaction on Signal Processing, 1999, 47: 493-504.
    [159]黄春琳.基于循环平稳特性的低截获概率信号的截获技术研究[D].长沙:国防科学技术大学博士学位论文, 2001.
    [160] Burel G. Detection of Spread Spectrum Transmissions Using Fluctuations of Correlation Estimators[C]. Proceeding of the IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Honolulu, Nov. 2000: B8.2.5.1~B8.2.5.6.
    [161] Burel G, Bouder C, Berder O. Detection of Direct Sequence Spread Spectrum Transmissions without Prior Knowledge [C]. Proc. IEEE Global Telecommunications Conference, San Antonio, 2001: 236~239.
    [162]张天骐,周正中.直扩信号伪码周期的谱检测[J].电波科学学报, 2001, 16(4): 518~521.
    [163] Douglas A. Carrier detection of PSK signals[J]. IEEE Transaction on Communication, March 2001, 49(3): 487-496.
    [164] Mengali U, Morelli M. Data-aided frequency estimation for burst digital transmission[J]. IEEE Transaction on Communication, 1997, 45(1): 23-25.
    [165] Viterbi A J. Nolinear estimation of PSK modilated carrier phase with application to burst digital transmission[J]. IEEE Tranaction on Information, 1983, 29(4): 543-551.
    [166] Gardner F M. A BPSK/QPSK timing-error detector for sampled recovers[J]. IEEE Tranactions on Communications, 1986, 34(5): 423-429.
    [167] Dongmin L. A modified Gardner detector for symbol timing recovery of MPSK signals[J]. IEEE Tranactions on Communications, 2004, 52(10): 1643-1647.
    [168] Tichavsky P, Koldovsky Z, et al. Performance analysis of the Fast-ICA algorithm and Cramér-Rao bounds for linear independent component analysis[J]. IEEE Transaction on Signal Processing, 2006, 54(4): 1189-1203.
    [169] Yang X N, Yao J L, Jiangdong and Zhao Li. Performance analysis of the FastICA algorithm in ICA-based co-channel communication system [C]. Proceedings of the 5th international conference on wirless communication, network and mobile computing, Beijing, China, 2009: 2055-2058.
    [170] Bingham E, Hyv?rinen A. A fast fixed-point algorithm for independent component analysis of complex valued signals[J]. International Journal of Neural Systems, 2000, 10(1): 1-8.
    [171] Douglas S C. Fixed-point algorithms for the blind separation of arbitrary complex-valued non-gaussian signal mixtures[J]. EURASIP Journal on Advanced in Signal Processing, 2007.
    [172] Zarzoso V, Comon P. Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size[J]. IEEE Tranactions on Neural Networks, 2010, 21(2): 248-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700