多发多收雷达GMTI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共置天线多发多收(Multiple Input Multiple Output,MIMO)雷达综合利用多相位中心和多频资源,获得更大的虚拟孔径和更高的系统自由度,在地面运动目标指示(Ground Moving Target Indication,GMTI)、参数估计等方面表现出明显优势。通过对MIMO雷达接收回波的多通道、多维联合处理,有利于获得更强的抑制杂波和抗干扰能力,能够解决传统雷达GMTI存在的慢速运动目标检测困难、最小可检测速度(Minimum Detectable Velocity,MDV)和测速范围之间相互制约、盲速目标无法检测等难题,提高目标检测和参数估计性能。
     本文以共置天线MIMO雷达GMTI为研究对象。在研究确定频分正交信号满足MIMO-GMTI雷达指标要求的基础上,围绕机载PD体制MIMO-GMTI中的空-时-频自适应处理(Space-Time-Frequency Adaptive Processing,STFAP)及其降维方法、基于STFAP的多频融合检测和参数估计、以及星载SAR体制MIMO-GMTI中的多频顺轨干涉(Along Track Interferometry,ATI)信号模型、多频联合检测性能分析和解测速模糊等关键问题开展研究。主要工作安排如下:
     第二章研究MIMO-GMTI雷达正交信号设计。基于两类正交信号——同频编码正交信号和频分正交信号,首先针对MIMO雷达发射分集的特点,提出综合积分旁瓣比(Integrated Sidelobe Ratio,ISLR)的指标定义,将综合ISLR定义为自相关旁瓣能量和所有正交信号互相关能量之和与脉压函数主瓣内的积分能量的比值;然后,从理论上证明同频编码正交信号的综合ISLR接近0dB,无法满足MIMO-GMTI雷达系统需求,而频分正交信号的互相关能量近似为0,几乎不会对综合ISLR产生影响;最后,基于两类正交信号的杂波和成像仿真进一步验证理论分析结果,从而选择频分正交信号作为MIMO-GMTI雷达系统的发射信号。
     第三章建立了基于频分信号的MIMO雷达STFAP信号模型。首先,在分析杂波特性的基础上,阐述STAP抑制杂波的基本原理;然后,研究杂波抑制性能的评价准则,包括:输出信号杂波噪声比(Signal to Clutter plus Noise Ratio,SCNR)、恒虚警检测概率、MDV和最大无模糊速度等;最后,在分析频分正交信号解盲速原理的基础上,建立STFAP信号模型。基于STFAP的杂波抑制性能仿真结果验证了MIMO雷达在提高杂波抑制性能、缓解MDV和盲速相互制约、增加可测速范围和提高GMTI性能等方面具有优势。
     第四章研究基于STFAP的MIMO雷达SCAN-GMTI技术。首先,在仿真分析不同方位角杂波特性基本一致的基础上,采用STFAP技术实现SCAN-GMTI杂波抑制;针对STFAP运算量较大的缺点,建立了STFAP降维处理的统一框架,提出时空级联STFAP降维方法和STFAP M-Capon降维方法,结合实际工程应用指出基于子阵级的STFAP 3-Capon法更具有实际意义,为解决STFAP降维问题提供了思路;最后,研究MIMO雷达多频融合检测和参数估计问题,提出了基于STFAP的多频融合检测方法,推导了基于STFAP的运动目标参数估计的CRB,仿真结果验证了MIMO雷达STFAP提高目标检测和估计性能的优势。
     第五章基于星载SAR系统,重点研究单基线两发两收SAR-ATI信号处理方法。首先,从ATI工作原理和信号模型出发,论证两发两收SAR-ATI联合检测和估计的可行性,推导不同载频杂波和目标ATI干涉相位相加后的统计分布;然后,以相位检测子分布为出发点,分析了两发两收SAR-ATI联合检测性能和相位-幅度二级检测性能,提出先融合后检测的方法改善MDV,先检测后融合的方法改善盲速,并通过信号处理仿真实验验证了双频ATI联合检测改善盲速和MDV的优势;最后,研究双频解测速模糊方法,根据干涉相位所处区间不同,分三种情况对模糊数分别进行求解,通过不同情况示例分析,验证了解模糊方法的有效性。将多频与多基线技术相结合,本章研究成果可推广至任意多发多收GMTI系统。
MIMO radar with co-located antennas, which utilizes the techniques of multi-channel and multi-frequency, and provides larger virtual aperture and more system freedoms, has evident advantages in GMTI and parameter estimation. Through the multi-channel and multi-dimensional joint processing of the received echoes, MIMO radar is able to provide more capability in clutter suppression and interference rejection, and solving the GMTI problems in traditional radar, such as slowly moving target detection, the restriction between MDV and velocity range, blind velocity target detection, and so on, which can improve the performance of target detection and parameter estimation.
     This paper takes GMTI in MIMO radar with co-located antennas as the research object. On the basis of studying and determining the orthogonal signal form suitable to MIMO-GMTI radar, the following issues are studied in the paper: the key problems in MIMO-GMTI of airborne PD system, such as Space-Time-Frequency Adaptive Processing (STFAP), reduced dimension STFAP, multi-frequency fusion detection and parameter estimation based on STFAP, and the key problems in MIMO-GMTI of spaceborne SAR system, such as multi-frequency ATI signal model, performance analysis of multi-frequency combined detection and a deblurring method of velocity measurement. The detailed work of this paper is as follows:
     Orthogonal signal design for MIMO-GMTI radar is studied in chapter 2. Based on two types of orthogonal signals-orthogonal coding signals with the same frequency band and orthogonal frequency division signals, firstly, the definition of the synthetic ISLR index is proposed according to the transmission diversity characteristic of MIMO radar, which is defined as the ratio of the sum of the integrated energy of all autocorrelation side lobes and all the cross-correlation energy to the integrated energy of the main lobe in the pulse compression function. Secondly, it is theoretically demonstrated that the synthetic ISLR of orthogonal coding signals with the same frequency band is close to 0dB, which can not satisfy the demand of MIMO-GMTI radar system, whereas the cross-correlation energy of orthogonal frequency division signals is nearly 0, which hardly affects the synthetic ISLR. Finally, the results of clutter and imaging simulation using two types of orthogonal signals verify the validity of the theoretical conclusions. Therefore, the orthogonal frequency division signals are selected as the trasmitted signals for MIMO-GMTI radar.
     The STFAP signal model of MIMO radar is established in chapter 3. Firstly, on the basis of clutter characteristics analysis, the basic principles of suppressing clutter through STAP are described. Secondly, the evaluation criteria for the performance of clutter suppression is studied, including output SCNR, CFAR detection probability, MDV, maximum unambiguous velocity, and so on. Finally, the simulation results of clutter suppression through STFAP demonstrate that MIMO radar is effective in improving the performance of clutter suppression, MDV, blind velocity, velocity range and GMTI.
     The technique of SCAN-GMTI in MIMO radar based on STFAP is studied in chapter 4. Firstly, on the basis of simulation analysis of clutter characteriscs for each azimuth viewing direction, STFAP technique is adopted to achieve clutter suppression for SCAN-GMTI. Secondly, the unified framework of reduced dimension STFAP is established. The time-space cascade reduced dimension STFAP and the STFAP M-Capon reduced dimension method are proposed. It is presented that the STFAP 3-Capon method based on subarrays has practical meaning for engineering application, which provide some suggestions for implementation of reduced dimension STFAP. Finally, multi-frequency fusion detection and parameter estimation for MIMO radar is studied. The method of multi-frequency fusion detection is proposed based on STFAP. The CRB for moving target parameter estimation is deduced based on STFAP. Simulation results demonstrate that MIMO radar STFAP has evident advantages in improving the performance of target detection and parameter estimation.
     Based on spaceborne SAR system, the single-baseline signal processing of dual-frequency SAR-ATI with two transmit antennas and two receive antennas is studied in chapter 5. Firstly, according to the working principle and signal model of ATI, the feasibility of combined detection and estimation for dual-frequency SAR-ATI is demonstrated, the statistical distribution of summation of dual-frequency ATI phases for clutter and target is deduced. Secondly, Starting with the distribution of ATI phase, the performance of combined detection and two-step detection with phase and amplitude for dual-frequency SAR-ATI are analyzed, the method of fusion detection is proposed to improve MDV, and the method of detection and fusion is proposed to improve blind velocity, simulation results demonstrate that the combined detection for dual-frequency ATI is effective in improving MDV and blind velocity. Finally, a deblurring method of velocity measurement with dual-frequency is studied. According to different interferometric phase values, three situations are considered to deblur velocity measurement, and the validity of the method is validated through example analysis. Combining the technique of multi-frequency with the technique of multi-baseline, the research findings of this paper can be extended to any MIMO-GMTI system.
引文
[1] John N. Entzminger, JR. Charles, A. Fowler, and William J. Kenneally. JointSTARS and GMTI: Past, Present and Future [J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 748-761.
    [2] Robert Popp, Harold Maney, and Jon Jones. Multi-Platform GMTI Tracking for Surveillance and Reconnaissance Coalition Environments [C]. IEEE Proceedings of Aerospace Conference, 2001: 1925-1934.
    [3] Richard J. Dunn, Price T. Bingham, and Charles A. Fowler. Ground Moving Target Indicator Radar [R]. USA: Northrop Grumman, 2004: 1-23.
    [4] U.S. Air Force. JSTARS Joint Surveillance and Target Attack Radar System, USA [EB/OL]. http://www.airforce-technology.com/project/jstars/, 2007.
    [5]铭瑞编译.美国E-8C JSTARS系统[EB/OL]. http://www.people.com.cn/GB/junshi/1079/2353903.html, 2004.
    [6]周荫清,洪信镇.联合监视目标攻击雷达系统[J].遥测遥控, 1995, 16(1): 1-7.
    [7]苏嘉鹏, MC2A:21世纪预警机中的明星[EB/OL]. http://www.airforceworld.com/others/E-10_Multi-Sensor_Command_and_Control_Aircraft_AWACS_USAF.htm, 2003.
    [8] Breit H, Eineder M, Holzner J, et al. Traffic Monitoring using SRTM Along-Track Interferometry [C]. Proc. of the IEEE IGARSS 2003, July 2003: 1187-1189.
    [9] Steffen Suchandt, Michael Eineder, Helko Breit, Hartmut Runge. Analysis of Ground Moving Objects using SRTM/X-SAR Data [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, (61): 209-224.
    [10] Shen Chiu. Performance of Radarsat2 SAR-GMTI Processors at High SAR Resolutions [R]. Defence R&D Canada: Defence Research Establishment Ottawa, Technical Report DREO TR 2000-093, Nov. 2000.
    [11] Shen Chiu. A Simulation Study of Multi-Channel Radarsat-2 GMTI [R]. Defence R&D Canada-Ottawa: Technical Memorandum DRDC Ottawa TM 2006-209, Nov. 2006.
    [12] Moreira A, Krieger G, Hajnsek I, et al. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR interferometry [C]. Proc. of the IEEE IGARSS 2004, Sept. 2004: 1000-1003.
    [13] Krieger G, Moreira A, Hajnsek I, et al. A Tandem TerraSAR-X Configuration for Single-Pass SAR Interferometry [C]. RADAR 2004-International Coference on Radar Systems, 2004.
    [14] Donald B. Marron, Acting Director. Alternatives for Military Space Radar [R]. Congress of The United States, A CBO Study. Jan. 2007.
    [15]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社, 2000.
    [16]张增辉.天基雷达空时自适应杂波抑制技术[D].国防科学技术大学博士学位论文, 2008.
    [17] Richard Klemm, Space-Time Adaptive Processing principles and applications [M], IEE Radar, Sonar, Navigation and Avionics 9, London: IEE Press, 1998.
    [18]蔡斌.分布式星载InSAR与SAR-GMTI信号处理研究[D].国防科学技术大学博士学位论文, 2009.
    [19]梁甸农,蔡斌,王敏,董臻.星载SAR-GMTI研究进展[J].国防科技大学学报,2009, 31(4): 87-92.
    [20]罗守贵,金林.机载预警雷达的发展趋势分析[J].现代雷达, 2008, 30(12): 1-5.
    [21] Rabideau D J, Parker P A. Ubiquitous MIMO Multifunction Digital Array Radar…and the Role of Time-Energy Management in Radar [R]. Lexington, Massachusetts: Project Report DAR-4, Lincoln Laboratory, Massachusetts Institute of Technology, 2004.
    [22] Bliss D W, Forsythe K W. Multiple-Input Multiple-Output (MIMO) Radar and Imaging: Degress of Freedom and Resolution [C]. The 37th Asilomar Conference on Signals, Systems and Computers, 2003: 54-59.
    [23]戴喜增,许稼,彭应宁,王永良. MIMO-VSAR及其一种优化的阵列配置[J].电子学报, 2008, 36(12): 2394-2399.
    [24] Joachim H.G. Ender. Along-Track Array Processing for MIMO-SAR/MTI. Coference of EUSAR 2008, Friedrichshafen, Germany, June, 2008: 67-69.
    [25] Nikolaus Lehmann, Some Contributions on MIMO Radar [D]. Doctor Dissertation of New Jersey Institute of Technology, Jan, 2007.
    [26]田润澜,常硕,王德功.一种新型体制雷达——MIMO雷达[J].中国雷达, 2008, (1): 4-8.
    [27] Hai Deng. Polyphase Code Design for Orthogonal Netted Radar Systems [J], IEEE Transactions on Signal Processing, 2004, 52(11): 3126-3135.
    [28] Forsythe K W and Bliss D W. Waveform Correlation and Optimization Issues for MIMO Radar [C]. 39th Asilomar Conference on Signals, Systems and Computers, NOV 2005: 1306-1310
    [29] Jian Li, Stoica P and Xie Y. On Probing Signal Design for MIMO Radar [C]. 40th Asilomar Conference on Signals, Systems and Computers, 2006: 31-35.
    [30] Jian Li, Petre Stoica and Xumin Zhu. MIMO Radar Waveform Synthesis [C]. IEEE Radar Conference 2008, 2008: 2125-2130
    [31] Jian Li, Petre Stoica and Xiayu. Zheng. Signal Synthesis and Receiver Design for MIMO Radar Imaging [J]. IEEE Transactions on Signal Processing,2008, 56(8): 3959-3968.
    [32]林茂庸,柯有安.雷达信号理论[M].北京:国防工业出版社, 1981.
    [33] Hai Deng. Discrete Frequency-Coding Waveform Design for Netted Radar Systems [J], IEEE Signal Processing Letters, 2004, 11(2): 179-182.
    [34] Bo Liu, Zishu He, Jiankui Zeng, Benyong Liu. Polyphase Orthogonal CodeDesign for MIMO Radar Systems [C], International Conference on Radar,Oct. 2006: 113-116.
    [35] Bo Liu, Zishu He. Orthogonal Discrete Frequency-Coding Waveform Design for MIMO Radar [J], Journal of Electronics (China), 2008, 25(4): 472-476
    [36] Ding Kai, Yang Ruliang. New Method of Chaotic Polyphase Sequences Design [J], IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1075-1084
    [37] Flores B C, Thomas E A. Assessment of Chaos-based FM Signal for Range-Doppler Imaging [C], Proceedings of IEE Radar, Sonar and Navigation, 2003, 150(4): 100-111.
    [38] Ian G. Cumming, Frank H. Wong, Digital Processing of Synthetic ApertureRadar Data: Algorithms and Implementation [M], Artech House, Inc., 2005.
    [39] Long Maurice W. Airborne Early Warning System Concepts [M]. Boston: Artech House, 1992.
    [40] Joachim H.G. Ender, Patrick Berens, et al. Multi Channel SAR/MTI System Development at FGAN: From AER to PAMIR [C]. Proceedings of IGARSS 2002, Toronto, Canada, 2002: 1697-1701.
    [41] Joachim H.G. Ender, Brenner A R. PAMIR-A Wideband Phased Array SAR/MTI System [C]. IEE Proc.-Radar Sonar Navig., 2003, 150(3): 165-172.
    [42] Brenner A R, Joachim H.G. Ender. Demonstration of Advanced Reconnaissance Techniques with the Airborne SAR/GMTI Sensor PAMIR [C]. IEE Proc.-Radar Sonar Navig., 2006, 153(2): 152-162.
    [43] Cerutti-Maori D, Burger W, Joachim H.G. Ender, Brenner A R. Wide areasurveillance of moving targets with the SAR/GMTI system PAMIR [C]. Proceedings of EUSAR 2006, Dresden Germany, May 2006.
    [44] Cerutti-Maori D, Ursula Skupin. First experimental SCAN/MTI results achieved with the multi-channel SAR-system PAMIR [C]. Proceedings of EUSAR 2004, Ulm Germany, May 2004.
    [45]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社,2001.
    [46]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2002.
    [47] http://en.wikipedia.org/wiki/Lacrosse_(satellite).
    [48] Attema E P W, Duchossois G, Kohlhammer G. ERS-1/2 SAR Land Applications: Overview and Main Results [C]. Proceedings of the IEEE IGARSS 1998, Seattle, USA. July, 1998, (4): 1796-1798.
    [49] Franz M, Stefan H, Rupert M, et al. Towards Traffic Monitoring with TerraSAR-X [J]. Can. J. Remote Sensing, 2007, 33(1): 39-51.
    [50] Major Kim Corcoran. Higher Eyes in the Sky: The Feasibility of Moving AWACS and JSTARS Functions into Space [D]. Faculty Thesis, School ofAdvanced Airpower Studies, Air University, Maxwell Air Force Base, ALABAMA, 1998.
    [51] Hounam D, Baumgartner S, Bethke K H, et al. An autonomous, non-cooperative, wide-area traffic monitoring system using space-based radar (TRAMRAD) [C]. Proceedings of the IEEE IGARSS 2005, Seoul, Korea. July, 2005: 2917-2920.
    [52] Rosen P A, Davis M E. A Joint Space-Borne Radar Technology Demonstration Mission for NASA and the Air Force [C]. Proceedings of 2003 IEEEAerospace Conference, Big Sky, Montana, March, 2003.
    [53] Das A, Cobb R. TechSat 21– Space Missions Using Collaborating Constellations of Satellites [C]. Proceeding of the 12th AIAA/USU Conference onSmall Satellites, Logan Utah, September 1998.
    [54] Jung-Hyo Kim, Ossowska A, Wiesbeck W. Investigation of MIMO SAR for Interferometry [C]. Proceedings of the 4th European Radar Conference, Munich, Germany, 2007: 51-54.
    [55] Klare J. Digital Beamforming for A 3D MIMO SAR-Improvements throughFrequency and Waveform Diversity [C]. Proceedings of the IEEE IGARSS2008, Boston, USA, 2008, (V): 17-19.
    [56] Alamouti S M. A simple transmit diversity technique for wireless communications [J]. IEEE Journal on Selected Areas in Communications, 1998, 16(8):1451-1458.
    [57] Fishler E, Haimovich A, Blum R, Chizhik D, Cimini L, and Valenzuela R.MIMO Radar: An Idea Whose Time Has Come [C], Proc.IEEE Radar Conference, April. 2004: 71-78.
    [58] Li Jian and Stoica P, MIMO Radar Signal Processing [M], NY: A John Wiley & Sons, Inc., Publication, 2009.
    [59]何子述,韩春林,刘波. MIMO雷达概念及其技术特点分析[J],电子学报, 2005, 33(12A): 2441-2445.
    [60] Haimovich A M, Blum R S, and Cimini L J. MIMO Radar with Widely Separated Antennas [J], IEEE Signal Processing Magazine, 2008, 25(1): 116-129.
    [61] Fishler E, Haimovich A, Blum R, Cimini L, Chizhik D, and Valenzuela R.Performance of MIMO Radar Systems: Advantages of Angular Diversity [C]. 38th Asilomar Conference on Signals, Systems and Computers, Nov, 2004: 7-10.
    [62] Li Jian, and Stoica P. MIMO Radar with Colocated Antennas: Review of Some Recent Work [J]. IEEE Signal Processing Magazine, Sept, 2007, 24(5): 106-114.
    [63] Rabideau D J, Parker P. Ubiquitous MIMO Multifunction Digital Array Radar [C]. 37th Asilomar Conference on Signals, Systems and Computers, Nov, 2003: 1057-1064.
    [64]保铮,张庆文.一种新型的米波雷达——综合脉冲与孔径雷达[J].现代雷达,1995, 17(1): 1-13.
    [65] Luce A S, Molina H, Muller D, Thirard V. Experimental Results on SIARDigital Beamforming Radar [C]. Proceedings of the IEEE International Radar Conference, Oct. 1992, (1): 74-77.
    [66] Robey F C, Coutts S, et al. MIMO Radar Theory and Experimental Results [C]. Conferenc Record of the 38th Asilomar Conference on Signal, Systems and Computers, Nov. 2004, (1): 300-304.
    [67] Wilden H, Peters O, Saalmann O, Poppelreuter B, Brenner A. PAMIR withReconfigurable Antenna Frontend [C]. First European Conference on Antennas and Propagation, Nice, France, Nov. 2006: 1-8.
    [68] Wilden H, Poppelreuter B, Saalmann O, Brenner A, Ender J. Design and Realisation of the PAMIR Antenna Frontend [C]. Proceedings of EUSAR 2004, Ulm Germany, May 2004.
    [69] Cerutti-Maori D, Klare J, Burger W, Brenner A R, Ender J. Wide Area Traffic Monitoring with the PAMIR System [C]. Proceedings of the IEEE IGARSS 2007, Barcelona, Spain, July 2007: 3567-3570.
    [70] Martin M, Klupar P, Kilberg S, et al. Techsat21 and Revolutionizing SpaceMissions Using Microsatellites [C]. 15th American Institute of Aeronauticsand Astronautics Conference on Small Satellites, Utah, 2001.
    [71] Burns R, McLaughlin C A, Leitner J, et al. TechSat 21: Formation Design,Control, and Simulation [C]. IEEE Aerospace Conference Proceedings, BigSky, Montana, March, 2000, (7): 19-25.
    [72] Steyskal H, Schindler J K, Franchi P, et al. Pattern Synthesis for TechSat21-A Distributed Space-Based Radar System [J]. IEEE Antennas and Propagation Magazine. 2003, 45(4): 19-25.
    [73] Khan H A and Edwards D J. Doppler Problems in Orthogonal MIMO Radars [C]. Proceedings of the 2006 IEEE International Radar Conference, Verona, NY, USA. April, 2006: 244-247.
    [74] Khan H A, Zhang Y Y, et al. Optimizing Polyphase Sequences for Orthogonal Netted Radar [J]. IEEE Signal Processing Letters, 2006, 13(10): 589-592.
    [75]刘波. MIMO雷达正交波形设计及信号处理研究[D].电子科技大学博士学位论文, 2008.
    [76] Chen C Y, Vaidyanathan P P. MIMO Radar Ambiguity Optimization UsingFrequency-Hopping Waveforms [C]. 41th Asilomar Conference on Signals,Systems and Computers, Nov. 2007, (4): 192-196.
    [77]王敦勇,袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计[J].空军雷达学院学报, 2007, 21(2): 105-107.
    [78] Yang Yang and Blum R S. Waveform Design for MIMO Radar Based on Mutual Information and Minimum Mean-Square Error Estimation [C]. 40th Annual Conference on Information Sciences and Systems, 2006, (1): 111-116.
    [79] Yang Yang and Blum R S. MIMO Radar Waveform Design Based on Mutual Information and Minimum Mean-Square Error Estimation [J]. IEEE Transactions on AES 2007, 43(1): 330-343.
    [80] Mittermayer J, Martinez J M. Analysis of Range Ambiguity Suppression inSAR by Up and Down Chirp Modulation for Point and Distributed Targets[C], Processings of the IEEE IGARSS 2003, Toulouse, France, July, 2003:4077-4079.
    [81] Shannon D. Blunt, Gerlach K. Adaptive Pulse Compression via MMSE Estimation [J], IEEE Transactions on Aerospace and Electronic Systems, 2006,42(2): 572-584
    [82]鲍坤超,陶海红,廖桂生,多发射体制下小卫星分布式雷达系统的波形设计[J],电子与信息学报, 2007, 29(9): 2117-2119.
    [83] Krieger G, Gebert N and Moreira A. Multidimensional Waveform Encoding:A new Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing [J], IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31-46.
    [84] Rabideau D J. Adaptive MIMO Radar Waveforms [C]. Proceedings of the IEEE Radar Conference 2008, Rome, Italy, May, 2008: 1349-1354.
    [85]黎薇萍,洪伟,陶海红,廖桂生.用于分布式天基SAR系统低速运动目标检测的空时波形优化设计[J].电子学报. 2008, 36(12): 2383-2388.
    [86]成芳.正交波形MIMO雷达中信号处理与仿真实验研究[D].电子科技大学硕士学位论文, 2008.
    [87] Garnham J, Wainwright R, Burns R. Enabling Research and Development for Flight Demonstration of Sparse Aperture Sensing. AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 2001.
    [88] Leatherwood D A, Melvin W L, and Acree R. Configuring a Sparse Aperture Antenna for Spaceborne MTI Radar [C], Proceedings of the 2003 IEEEInternational Radar Conference, Huntsville, Alabama, May, 2003: 139-146.
    [89] Leatherwood D A. Melvin W L. and Garnham J, High-Fidelity MTI Modeling and Analysis of a Distributed Aperture Spaceborne Concept [C], AIAASpace 2000 Conference & Exposition, Long Beach, CA, Sep. 2000.
    [90] Leatherwood D A, Melvin W L, and Berger S. Adaptive Signal Processingfor a Spaceborne Distributed Aperture [C], AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 2001.
    [91] http://www.airforceworld.com/others/E-8_JSTARS_AWACS_USAF.htm.
    [92]杨志伟.机载/星载正侧视阵列雷达GMTI研究[D].西安电子科技大学博士学位论文, 2008.
    [93]朱雅林.天基SAR/GMTI技术[C].星载SAR/GMTI技术研讨论文集,北京, July, 2007: 123-129.
    [94] Skolnik M I. Radar Handbook, Second Edition [M]. New York: McGraw-Hill Companies, Inc, 1990.
    [95] Brennan L E, Reed I S. Theory of Adaptive Radar [J]. IEEE Transactions on AES, 1973, 9(2): 237-252.
    [96] Brennan L E, Mallett J D, Reed I S. Adaptive Arrays in Airborne MTI Radar [J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5): 607-615.
    [97] Mecca V F, Ramakrishnan D and Krolik J L. MIMO Radar Space-Time Adaptive Processing for Multipath Clutter Mitigation [C]. Proc. 4th IEEE Workshop on Sensor Array and Multi-Channel Processing, Waltham, MA, July2006.
    [98]伍勇.空时自适应杂波抑制[D].清华大学博士学位论文, 2008.
    [99]陆必应.天基GMTI与解模糊方法研究[D].国防科学技术大学博士学位论文,2006.
    [100]康雪艳,江碧涛,张云华,云日升.星载GMTI稀疏阵雷达的STAP研究[J],系统工程与电子技术, 2007, 29(9): 1460-1463.
    [101] Klemm R. Adaptive Clutter Suppression for Airborne Phased Array Radars[J]. IEE Proc. F&H, 1983, (1): 125-132.
    [102] Klemm R. Adaptive Airborne MTI: an Auxiliary Channel Approach [J]. IEE Proceedings of Pt.F, June, 1987, 134(3): 269-276.
    [103]保铮,廖桂生等.相控阵机载雷达杂波抑制的时-空二维自适应滤波[J].电子学报, 1993, 21(9): 1-7.
    [104] Wang Y L, Peng Y N, Bao Z. Space-Time Adaptive Processing for Airborne Radar with Various Array Orientations [J]. IEE Proc.-Radar, Sonar Navig., 1997, 144(6): 330-340.
    [105] Wang H, Cai L J. On Adaptive Spatial-Temporal Processing for Airborne Surveillance Radar Systems [J]. IEEE Transactions on AES, 1994, 30(3): 660-670.
    [106] Ward J. Space-Time Adaptive Processing for Airborne Radar [R]. TechnicalReport 1015, Lincoln Lab. Massachusetts Institute of Technology, Lexington, Massachusetts, 1994.
    [107]王永良,保铮,彭应宁等.空时二维自适应处理的统一理论、模型与局域处理方法[J].电子学报, 1996, 24(9): 64-69.
    [108] Chen C Y, Vaidyanathan P P. A Subspace Method for MIMO Radar Space-Time Adaptive Processing [C]. IEEE ICASSP 2007, Honolulu, USA, April, 2007, (2): 925-928.
    [109] Chen C Y, Vaidyanathan P P. MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions [J]. IEEE Transactions on Signal Processing, 2008, 56(2): 623-635.
    [110]李彩彩,廖桂生等. MIMO雷达子阵级m-Capon方法研究[J].系统工程与电子技术, 2010, 32(6): 1117-1120.
    [111] Stiefvater Consultants. Along Track interferometry Synthetic Aperture Radar(ATI-SAR) Techniques for Ground Moving Target Detection [R]. AFRL-SN-RS-TR-2005-410, Air Force Research Laboratory, 2006.
    [112]杨凤凤.星载雷达GMTI系统与信号处理研究[D].国防科学技术大学博士学位论文, 2007.
    [113] Ender J. Space-Time Adaptive Processing for Synthetic Aperture Radar [M].The Institution of Electrical Engineers. IEE, Savoy Place, London, 1998.
    [114] Ender J. Space-Time processing for multichannel synthetic aperture radar [J]. Electronics & Communication Engineering Journal. 1999: 29-38.
    [115] Lombardo P, Colone F and Pastina D. Monitoring and Surveillance Potentialities Obtained by Splitting the Antenna of the COSMO-SkyMed SAR intoMultiple Sub-Apertures [J]. IEE Proc.-Radar Sonar Navig., 2006, 153(2): 104-116.
    [116]朱力,李敏慧,仇光锋.星载SAR/GMTI系统研究[C].星载SAR/GMTI技术研讨论文集,北京, July, 2007: 35-40.
    [117] Shen Chiu. SAR Along-Track Interferometry with Application to RADARSAT-2 Ground Moving Target Indication [J]. Image and Signal Processing for Remote Sensing VIII, Proceedings of SPIE, 2003, 4885: 246-255.
    [118] Suchandt S, Palubinskas G, et al. Results from an Airborne SAR GMTI Experiment Supporting TerraSAR-X Traffic Processor Development [C]. Proceedings of the IEEE IGARSS 2005, Seoul, Korea, July, 2005: 2949-2952.
    [119]宁蔚,廖桂生.双星多工作频率下的地面慢速目标检测方法[J].西安电子科技大学学报(自然科学版), 2004, 31(2): 199-204.
    [120] Nadav Levanon, Eli Mozeson. Radar Signals [M], NY: A John Wiley & Sons, INC., 2004.
    [121]赖涛.星载多通道SAR高分辨宽测绘带成像方法研究[D].国防科学技术大学博士论文, 2010.
    [122] Costas J P. A Study of a Class of Detection Waveforms Having Nearly Ideal Range-Dopplers Ambiguity Properties [C]. Proceedings of the IEEE, Aug. 1984, 72(8): 996-1009.
    [123]吴顺君,梅晓春.雷达信号处理和数据处理技术[M].北京:电子工业出版社,2008: 68-71.
    [124]刘国岁,顾红,苏卫明.随机信号雷达[M].北京:国防工业出版社, 2005.
    [125] Sarwate D V, and Pursley M B. Crosscorrelation Properties of Pseudorandom and Related Sequences [C]. Proceedings of the IEEE, May, 1980, 68(5):593-618.
    [126] Oppenheim A V, Schafer R W, and Buck John R. Discrete-Time Signal Processing [M], Prentice-Hall, Inc, 1999.
    [127] Achroyd M H, Ghani F. Optimum Mismatched Filters for Sidelobe Suppression [J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 10(2): 214-218.
    [128] Baden J M, Cohen M N. Optimal Peak Sidelobe Filters for Biphase Pulse Compression [C], Record of the IEEE 1990 International Radar Conference,Virginia,USA, May, 1990: 249-252.
    [129]张光义.相控阵雷达系统[M].北京:国防工业出版社, 1994.
    [130]任迎舟,张玉洪.机载相控阵雷达时空二维杂波的仿真[J].现代雷达, 1994, 16(2): 28-36.
    [131]阮锋.机载雷达环境仿真与动目标检测[D].西安电子科技大学硕士学位论文.2006.
    [132] Szabo A P. Clutter Simulation for Airborne Pulse-Doppler Radars [C]. Proceedings of the International Conference on Radar 2003, Adelaide, Sep. 2003: 608-613.
    [133] Jao J K. Amplitude Distribution of Composite Terrain Radar Clutter and the K-Distribution [J]. IEEE Transactions on Antennas and Propagation, 1984,AP-32(10): 1049-1062.
    [134] Jakeman E. K-Distributed Noise [J]. J.Opt.A: Pure Appl.Opt.1, 1999: 784-789.
    [135] Mitchell R L著,陈训达译.雷达系统模拟[M].北京:科学出版社, 1982.
    [136] Reed I S, Mallet J D, Brennan L E. Rapid Convergence Rate in AdaptiveArrays [J]. IEEE Transaction on AES, 1974, 10(6): 853-863.
    [137] Richard Klemm. Principles of Space-Time Adaptive Processing [M]. The Institution of Electrical Engineers, London, 2002.
    [138]保铮等.机载雷达空时二维信号处理[J].现代雷达, 1994, 16(1): 38-48.
    [139]袁孝康.星载合成孔径雷达导论[M],北京:国防工业出版社, 2003: 159-162.
    [140] Robey F C, Fuhrmann D R, Kelly E J. A CFAR Adaptive Matched FilterDetector [J]. IEEE Transactions on AES, 1992, 28(1): 208-216.
    [141]张良,保铮,廖桂生.基于空时自适应处理的恒虚警检测算法研究[J].西安电子科技大学学报(自然科学版), 2000, 27(3): 265-269.
    [142] Kelly E J. An Adaptive Detection Algorithm [J]. IEEE Transactions on AES, 1986, 22(1): 115-127.
    [143] Adve R, Schneible R, McMillan R. Adaptive Space/Frequency Processing for Distributed Aperture Radars [C]. Proceedings of the 2003 IEEE Radar Conference, Huntsville, Alabama, May, 2003: 160-164.
    [144] Zeng J K, He Z S, Liu B. Adaptive Space-Time-Waveform Processing for MIMO Radar [C]. ICCCAS 2007, Japan, July, 2007: 641-643.
    [145] Cerutti-Maori D, Burger W, Ender J H, Brenner A R. Experimental Resultsof Ground Moving Target Detection Achieved with the Multi-Channel SAR/MTI System PAMIR [C]. Proceedings of the EURAD 2005, European, Oct. 2005: 45-58.
    [146] Ward J. Maximum Likelihood Angle and Velocity Estimation with Space-Time Adaptive Processing Radar [C]. 1996 Conference Record of the 30th Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA, Nov. 1996, (2): 1265-1267.
    [147]吴建新.机载相控阵雷达STAP及目标参数估计方法研究[D].西安电子科技大学博士学位论文, 2006.
    [148]王鞠庭,江胜利,刘中,复合高斯杂波中MIMO雷达DOA估计的克拉美-罗下限[J].电子与信息学报, 2009, 31(4): 786-789.
    [149] Ward J. Cramer-Rao Bounds for Target Angle and Doppler Estimation withSpace-Time Adaptive Processing Radar [C]. Proc. 29th ASILOMAR Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 30 October-2 November, 1995: 1198-1203.
    [150] Showman G A, Melvin W L, and Zywicki D J. Application of the Cramer-Rao Lower Bound for Bearing Estimation to STAP Performance Studies [C]. Processings of the IEEE 2004 Radar Conference, Philadelphia, USA, April, 2004: 402-407.
    [151]秦国栋,陈伯孝,陈多芳,张守宏.多载频MIMO雷达解速度模糊及综合处理方法[J].电子与信息学报, 2009, 31(7): 1696-1700.
    [152]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004.
    [153] Shen Chiu and Livingstone C. A Comparison of Displaced Phase Centre Antenna and Along-Track Interferometry Techniques for RADARSAT-2 Ground Moving Target Indication [J]. Can. J. Remote Sensing, 2005, 31(1): 3~51.
    [154] Gierull C H. Statistical Analysis of Multilook SAR Interferograms for CFAR Detection of Ground Moving Targets [J]. IEEE Trans. Geosci. Remote Sensing, 2004, 42(4): 691~701.
    [155] Shen Chiu. A Constant False Alarm Rate (CFAR) Detector for RADARSAT-2 Along-Track Interferometry [J]. Canadian Journal of Remote Sensing, 2005, 31(1): 73~84.
    [156]宁蔚.机载/星载雷达地面动目标检测方法研究[D].西安电子科技大学博士学位论文, 2005.
    [157] Curlander J C, McDonough R N. Synthetic Aperture Radar: System and Signal Processing [M]. NY: A John Wiley & Sons, Inc., Publication, 1991.
    [158] Gierull C H. Moving Target Detection with Along-Track SAR Interferometry: A Theoretical Analysis [R]. Defence R&D Canada-Ottawa, Technical Report, DRDC Ottawa TR 2002-084, 2002.
    [159] Zebker Howard A. Decorrelation in Interferometric Radar Echoes [J]. IEEETransactions on GRS, 1992, 30(5): 950-959.
    [160] Gierull C H. Digital Channel Balancing of Along-Track Interferometric SAR Data [R]. Defence Research Establishment Ottawa:Technical Memorandum TM 2003-024, 2003.
    [161]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社, 2003.
    [162] Xu W, Chang E C, et al. Phase-Unwrapping of SAR Interferogram with Multi-Frequency or Multi-Baseline [C]. IEEE International Geoscience and Remote Sensing Symposium 1994, Pasadena, CA, USA, Aug. 1994: 730~732.
    [163]宁蔚,廖桂生.分布式小卫星系统沿航迹干涉SAR测速去模糊方法[J].信号处理, 2004, 20(5): 441-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700