精密运动台主动减振与重力补偿技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基板运动台是平板显示扫描光刻机最关键的分系统之一,其精度和稳定性直接影响光刻机的产率、Overlay和成像质量。与IC前道光刻机的硅片台相比,基板运动台具有运动行程更大、扫描速度更快、负载更大、电机驱动反力更大的特点,这些因素都给基板台的减振和运动控制带来了巨大的挑战。本论文面向平板显示光刻机的性能需求,从基板运动台的主动减振、微动台局部减振两个方面展开研究,通过优化主动减振参数提高全局主动减振性能,设计重力补偿减振器结构和控制器以提高局部减振性能。
     采用理论推导的方法建立了主动减振系统的结构动力学模型,提出了减振器的结构参数的优化方法和主动减振系统PID参数快速整定方法。推导了摆机构的结构刚度模型和峰值应力模型,并以减振系统的水平向固有频率为设计目标,建立了以材料应力和结构尺寸为约束的非线性优化模型,应用序列二次规划方法计算出最优的摆机构结构参数,实验结果表明实际结构频率与理论值差异在10%以内;提出了采用3个步骤快速整定减振系统PID控制参数的方法,并进行了仿真和实验验证。
     局部减振系统采用了重力补偿减振技术,分别建立了局部减振系统单元级和系统级两个结构层次的动力学模型。理论分析了两种重力补偿减振器的刚度模型,选取了气囊型重力补偿减振器方案,并对气囊型结构的刚度模型进行了实验验证。推导了局部减振系统六自由度动力学模型,采用模态解耦法分析的刚体模态频率与实际值差异小于10%。
     提出了一种基板运动台垂向的运动控制方法,在电机位置控制环路中增加了气动力反馈环路,消除了负载重力变化造成的静态电机驱动力,从而降低直线电机的发热。试验结果表明,在不影响垂向控制精度的条件下,95%的负载重力被重力补偿减振器压力环路所补偿。
     基板运动台垂向精度高,且其三个自由度运动耦合,为此,本文推导了垂向微动台的GS/GB解耦矩阵,实现Z、Rx和Ry三轴运动控制的解耦。机电联合仿真结果显示,垂向运动台的结构和控制方案能满足精度指标要求。
     搭建了基板运动台水平向运动测试平台及垂向运动测试平台,对基板运动台的减振性能进行了测试。基板运动台水平向采用主动减振系统,X向超调量降低了近95%,Y向的超调量降低了65%,并且X/Y方向的伺服位置误差能在150ms内收敛到150nm范围以内。垂向测试平台测试结果表明Z、Rx、Ry和Rz四个轴的稳定时间在100ms以内,实现运动精度分别为97nm、140nrad、334nrad、268nrad,能满足设计指标需求。验证了本文所研究的基板台减振结构和方法的有效性。
Plate stage is one of the key subsystems in Thin-film Transistor-Liquid Crystal Display (TFT-LCD) lithography equipment. Precision and stability of the plate stage affect the throughput, overlay and imaging performance of the tool Compared with wafer stage in Integrated Circuit (IC) lithography tool, the moving range, motion speed and the reation force of the plate stage are larger, and the vibration isolation and motion control are much more difficult. In order to fulfill the performance requirements of plate stage, global active vibration control and local area vibration isolation are studied in this dissertation. Both structure and control parameters of the active vibration isolators are optimized to improve the performance of global active vibration isolation system (AVIS). Also, structure and controller of the gravity compensation isolators are designed for local vibration isolation.
     The dynamic model of the AVIS is deduced with theoretical derivation. The optimization method for the structure parmaters and the self-tuning method for the PID controller are also proposed. The stiffness model and the peak stress model of the pendulum are presented. In order to minimize the margin of the horizontal natural frequency between the actual values and the design value, its optimal structure parameters are obtained by using the sequential quadratic programming (SQP) algorithm with the constraints of the material stress and geometry sizes. The experiment results show that the relative error of natural frequency between the experiment value and the design value is less than10%. And a self-tuning method with3steps is proposed to tune the PID parameters of the controller, which is approved both by simulation and experiment.
     Gravity Compensation and vibration Isolator are used in the Local Vibration Isolation System (LVIS), and the dynamic models of LVIS including unit level and system level are established.The stiffness models of two types of GCI are deduced and the corrugated diaphragm type is chosen for LVIS. The stiffness model of corrugated diaphragm type GCI is verified by an experiment. The6-DOFs dynamic model of the LVIS is deduced, and their model natural frequencies are calculated with model decoupling method. The experiment result shows that the relative errors of the model natural frequencies between the experiment values and the calculated values are less than10%.
     A motion control method for the vertical directions of the plate stage is proposed. Three pneumatic force feedback loops are added to the positioning control loops in vertical directions, in order to eliminate the static force of the motors and reduce the heat generated by the motors when the gravity force of the payload is varied. Experiment results show that the vertical positioning performance isn't affected by the pneumatic loop, and95%of the static force of the Lorenz motor is compensated by the pneumatic loop.
     The vertical stage requires high precision positioning performance in Z/Rx/Ry/Rz directions, and the structure shows that strong motion couplings exit in Z/Rx/Ry directions. So the gain scheduling maxtrix and the gain balancing matrix are deduced for decoupling control of the vertical stage. The electro-mechanical simulation results show that the structure and the decoupling control method for the vertical stage fulfill the positioning its performance requirement.
引文
[1]黄锡珉.液晶显示技术发展轨迹[J].液晶与显示.2003(1).
    [2]http://www.displaysearch.com.cn.
    [3]Marcel Heertjes, Koen de Graaff, Jan-Gerard van der Toorn. Active vibration isolation of metrology frames; a modal decoupled control design. Journal of Vibration and Acoustics.2005.127pp223-233.
    [4]Amick H, Gendreau M, Busch T, et al. Evolving criteria for research facilities:I-Vibration[C]// Proceeding of SPIE. Buildings for Nanoscale Research and Beyond,2005, San Diego, America. 5933:1-13.
    [5]Roozen N B, Philips P P H, Biloen D, et al. Active vibration isolation applied to a magnetic resonance imaging (MRI) system[C]//Twelfth International Congres on Sound and Vibration, July 11-14, Lisbon, Portugal.
    [6]Technical Manufacturing Corporation. Technical Background [E/OL]. [2007], http://www.techmfg.com/techbkgd/intro.htm.
    [7]Integrated Dynamics Engineering.IDE Profile[E/OL]. [2010]. http://www.ideworld.com/aboutus/IDE_Image_sp.pdf.
    [8]王加春,董申,李旦.超精密机床的主动隔振系统研究[J].振动与冲击,2000,19(3):186.
    [9]Yoshioka H, Takahashi Y, Katayama K, et al. An active microvibration isolation system for hi-tech manufacturing facilities[J].Journal of Vibration and Acoustics.2001,123(2):269-275,2001.
    [10]Sven Antoin Johan Hol. Design and optimization of a magnetic gravity compensator [D]. Eindhoven University. ISBN 90-386-1563-9.
    [11]Takahashi M, Yoshioka H, and Shinno H. A newly developed long-stroke vertical nano-motion platform with gravity compensator [J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing. Vol.2, No.3,2008. pp356-365.
    [12]Martinus Agnes Willem Cuijpers, Frank Auer, Robertus Nicodemus Jacobus van Ballegoij. Lithographic projection apparatus, supporting assembly and device manufacturing method[P]. United States Patent.2000. US6473161B2.
    [13]J M M van Kimmenade, A van der Pal, J van Eijk. Positioning device with a force actuator system for compensating center-of-gravity displacements, and lithographic device provided with such a positioning device:the U.S.A patent,5844664[P].1994-8-25.
    [14]Mayama T, Takabayshi Y, Wakui S. Anti-vibration apparatus, exposure apparatus using the same, device manufacturing method, and anti-vibration method:the U.S.Apatent,6322060[P].2001-11-27.
    [15]Hara H. Anti-vibration system for exposure apparatus:the U.S.A patent,6862077[P].2005-3-1.
    [16]E R Loopstra, P Heiland. Supporting device provided with a gas spring with a gas bearing, and lithographic device provided with such supporting devices:the U.S.A patent,6226075[P].1998-7-6.
    [17]Phillips A H, Sakamoto H, Binnard M B. Vibration-attenuation devices having low lateral stiffness, and exposure apparatus comprising same:the U.S.A patent,20040080729[P].2004-4-29.
    [18]Aangenent W H T M, Criens C H A, van de Molenraft M J G, et al. LPV control of an active vibration isolation system[C]//2009 American Control Conference. Jun.10-12,2009, St. Louis, USA.
    [19]Beorlage M, de Jager B, Steibuch M. Control relevant blind identification of disturbances with application to a multivariable active vibration isolation platform[J]. IEEE Transactions on Control Systems Technology,2010,18(2):393-404.
    [20]Rademakers N G M. Modelling, identification and multivariable control of an active vibration isolation system[M]. Eindhoven University of Technology,2005.
    [21]van Dijk J. Mechatronic design of hard-mount concepts for precision equipment[J]. Motion and Vibration Control,2009,10:315-324.
    [22]Poel G W. An exploration of active hard mount vibration isolation for precision equipment[D]. Enschede:University of Twente,2010.
    [23]Holterman J. Vibration Control of High-Precision Machines with Active Structural Elements[D]. Enschede:Twente University Press,2002.
    [24]Mizuno T, Takemori Y. A unified transfer function approach to control design for virtually zero
    power magnetic suspension[C]//7th International Symposium on Magnetic Bearings. Aug 23-25. 2000. Swiss.
    [25]Mizuno T, Takasaki M, Kishita D, et al. Vibration isolation system combining zero-power magnetic suspension with springs[J]. Control Engineering Practice.2007,15(2):187-196
    [26]Hoque M E, Mizuno T, Ishino Y, et al. A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism[J]. Journal of Sound and Vibration,2010,329:3417-3430.
    [27]Hua W S, Adhikari R, Debra D B, et al. Low-frequency active vibration isolation for advanced LIGO[C]//Proceeding of SPIE on Gravitational Wave and Particle Astrophysics Detectors. June 23, 2004, Glasgrow, United Kindom.
    [28]Lei Z, Nayfeh S A. An integral sliding control for robust vibration isolation and its implementation[C]//Proceeding of SPIE on Smart Structures and Materials. Mar.18,2004, San Diego, USA.
    [29]Lei Z, Nayfeh S A. Modified LMS feed-forward control for vibration isolation with actuator limits[C]//Proceeding of SPIE on Smart Structures and Materials. Mar 10,2005, San Diego, USA.
    [30]Lei Z. Element and system design for active and passive vibration isolation[D]. Massachusetts: Massachusetts Institute of Technology,2005.
    [31]Yan T H, Pu H Y, Chen X D, et al. Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X/Y tables[J]. Measurement Science and Technology,2010,21(6),065901.
    [32]Pu H Y, Luo X, Jiang W, et al. Modelling and control of hybrid vibration isolation system for
    high-precision equipment[C]//8th IEEE International Conference on Control & Automation. June 9-11.2010, Xiamen, China.
    [33]Luo X, Pu H Y, Chen X D, et al. Study on a piezoelectric structure based active vibration isolation system for high precision equipment [C]//Acoustic Waves and Device Applications and China Symposium on Frequency Control Technology. Dec 9-11.2009. Wuhan, China.
    [34]Pu H Y, Luo X, Chen X D. Modeling and analysis of dual-chamber pneumatic spring with adjustable damping for precision vibration isolation[J]. Journal of Sound and Vibration,2011.03.005
    [35]Pu H Y, Chen X D, Luo X. Six Degrees-of-Freedom Active Vibration Isolation System with Decoupled Collocated Control[J]. Journal of Engineering Manufacture,2011, Proceedings of the IMchE, Part B.
    [36]陈学东,蒲华燕,罗欣,et al.一种自适应变阻尼超精密减振器:中国专利,101818777[P].2010-09-01.CHEN X D, PU H Y, LUO X, et al. Ultra-precision vibration isolators with adaptive variable damping adjustment:Chinese patent,101818777[P].2010-09-01.
    [37]陈学东,李小平,刘雷钧,et al.一种水平二自由度隔振机构:中国专利,101709763[P].2010-05-19.
    [38]Chen X D, Li X P, Liu L J, et al. Horizontal vibration isolation devices:Chinese patent, 101709763[P].2010-05-19.
    [39]刘彦,谭久彬,王雷.差动电磁作动器的超大型光学仪器隔振基础的主动控制机理[J].光学精密工程.2007,15(10):1602-1608.LIU Y, TANG J B, WANG L. Control mechanism based on differential electromagnet actuator for a room-sized optical instrument vibration isolation foundation [J]. Optics and Precision Engineering. 2007,15(10):1602-1608.
    [40]邓习树.步进扫描光刻机模拟隔振试验平台主动隔振系统研究[D].长沙:中南大学,2007 DENG X S. Study on active vibration-reduction system of simulated vibration-isolation testing table for stepping and scanning lithography[D]. Changsha:Central South University of Technology,2007.
    [41]Karnopp D C. Active and semi-active vibration isolation[J]. Journal of Mechanical Design,1995, 117(B) 117-125.
    [42]Karnopp D C, TRIKHA A K. Comparative study of optimization techniques for shock and vibration isolation[J]. Trans. ASME. J. of Engineering for Industry,1969, Series B,91:1128-1132.
    [43]Beard A M, Schuber D W, von Flotow A H. A practical product implementation of an active/passive vibration isolation system[J]. Active Control of Vibration and Noise,1994,75:485-492.
    [44]Schubert d w, Beard A M, Shedd S F, et al. Stiff actuator active vibration isolation system:the U.S.A patent,5660255[P].1994-4-4.
    [45]Schubert d w, Beard A M, Shedd S F, et al. Stiff actuator active vibration isolation system:the U.S.A patent,5823307 [P].1997-5-2.
    [46]Nijsse G. A subspace based approach to the design, implementation and validation of algorithms for active vibration isolation control[D]. Enschede:University of Twente,2006.
    [47]Holterman J, de Vries T J A. Active damping within an advanced microlithography system using piezoelectric Smart Discs[J]. Mechatronics.2004,14:15-34.
    [48]Holterman J, de Vries T J A. Prediction and improvement of the maximum achievable damping with
    collocated control[C]//10th International Congress on Sound and Vibration. July 7-10,2003, Stockholm. Sweden.
    [49]Holterman J, de Vries T J A. Active vibration control based on collocation[C]//8th Mechatronics Forum International Conference on Mechatronics. June 24-26,2002, Enschede, Netherlands.
    [50]Mizuno T, Takasaki M, Suzuki H. Application of zero-power magnetic suspension to vibration
    isolation system[C]//8th International Symposium on Magnetic Bearing. Aug 26-28,2002, Mito, Japan.
    [51]Takemori Y. A transfer-function approach to the analysis and design of zero-power controllers for Magnetic Suspension System[J]. Electrical Engineering in Japan,2002,141(2):933-940.
    [52]Ibrahim R A. Recent advances in nonlinear passive vibration isolatiors[J]. Journal of Sound and Vibration.2008,314:371-452.
    [53]Beadle B M, Hurlebaus S, Stobener U, et al. Modeling and Parameter Identification of an Active Anti-Vibration System[C].//Proceeding of SPIE. International Symposia in Smart Structures & Materials/NDE. Mar,2005, San Diego.America.
    [54]Robertson W S, Kidner M R Cazzolato F B, et al. Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation[J]. Journal of Sound and Vibration,2009,326(1-2): 88-103.
    [55]Robertson W S, Cazzolato F B, and Zander A. A multipole array magnetic spring[J]. IEEE Transactions on Magnetic,2005,41(10):3826-3828.
    [56]Robertson W S, Cazzolato F B, and Zander A. Nonlinear Control of a one axis magnetic spring[C]//
    14th International Congress on Sound and Vibration. July 9-12,2007, Cairns, Australia.
    [57]Robertson W S. A study on magnetic systems for vibration isolation, with a particular emphasis on using unstable forces for quasi-zero stiffness[D]. Adelaide:University of Adelaide,2009.
    [58]Heertjes M, van de Wouw N. Nonlinear dynamics and control of a pneumatic vibration isolator[J]. Journal of Vibration and Acoustics,2006,128:439-448.
    [59]Yasuda M, Itojima f. Method of controlling positions and vibrations and active vibration control apparatus therefore:the U.S.A patent,5121898[P].1990-7-24
    [60]Konkola P T. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions[D]. Cambridge:Massachusetts Institute of Technology, 2003.
    [61]Teel a r, Zaccarian L, Marcinkowski J J. Active vibration isolation systems with nolinear compensation to account for actuator saturation:the U.S.A patent,6511035[P].2003-1-28.
    [62]Nelson P G. High center of gravity stable pneumatic isolator:the U.S.A patent,6926263[P]. 2005-8-9.
    [63]Yasuda M, Minbu S, Pan G Y, et al. Vibration control unit and vibration control body:the U.S.A patent,7278623[P].2002-7-30.
    [64]Heiland P. Supporting device for supporting vibration sensitive components:Europe,1744215[P]. 2007-1-17.
    [65]Heiland P. Magnetic spring device with negative stiffness:the U.S.Apatent,7290642[P].2003-5-5.
    [66]Hanieh A A. Active isolation and damping of vibrations via Stewart platform[D]. Brussels: Universite Libre de Bruxelles[D],2003.
    [67]Preumont A, Horodinca M, Romanescu I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration,2007,300(3-5):644-661.
    [68]Sang-Myeong, K., Elliott, S. J., Brennan, M. J. Decentralized control for multichannel active vibration isolation. Control Systems Technology, IEEE Transactions on.2001,9(1):93-100.
    [69]Peter Heiland, A. Kropp. Control of an active vibration isolation system[P]. the U.S.A. patent,7489987B2.2009-2-10.
    [70]Canon. Vibration damping apparatus and method[P]. the U.S.A. patent,6155542.1997-3-10.
    [71]Sayyarrodsari, B., How, J. P., Hassibi, B., Carrier, A. Estimation-based synthesis of H∞-optimal adaptive FIR filters for filtered-LMS problems. Signal Processing, IEEE Transactions on.2001, 49(1):164-178.
    [72]Seba, B., Nedeljkovic, N., Paschedag, J., Lohmann, B. H[infinity] Feedback control and Fx-LMS feedforward control for car engine vibration attenuation. Applied Acoustics.2005,66(3):277-296.
    [73]R.A.P.M. van den Bleek. MIMO H8 control design for the AVIS[M]. Master's thesis. Technische Universiteit Eindhoven.2007.
    [74]M.R.Bai, W.Liu. Control design of active vibration isolation using μ-synthesis. Journal of Sound and Vibration.2002,257(1):157-175.
    [75]Zuo, L., Slotine, J. J. E., Nayfeh, S. A. Model reaching adaptive control for vibration isolation. Control Systems Technology, IEEE Transactions on.2005,13(4):611-617.
    [76]Sommerfeldt, S. D. Adaptive vibration control of vibration isolation mounts, using an LMS-based control algorithm.1989.
    [77]Peng, F. J., Gu, M., Niemann, H. J. Sinusoidal reference strategy for adaptive feedforward vibration control:numerical simulation and experimental study. Journal of Sound and Vibration. 2003,265(5):1047-1061.
    [78]Min Sig, K., Woo Hyun, Y. Acceleration feedforward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm. Control Systems Technology, IEEE Transactions on.2006,14(1):134-140.
    [79]Sayyarrodsari, B., How, J. P., Hassibi, B., Carrier, A. Estimation-based synthesis of H∞-optimal adaptive FIR filters for filtered-LMS problems. Signal Processing, IEEE Transactions on.2001, 49(1):164-178.
    [80]Tanaka, K., Wang, H. O. Fuzzy Control Systems Design and Analysis. New York:JOHN WILEY&SONS, INC,
    [81]Lu, L.-Y., Lin, C.-C., Lin, G.-L., Lin, C.-Y. Experiment and analysis of a fuzzy-controlled piezoelectric seismic isolation system. Journal of Sound and Vibration.329(11):1992-2014.
    [82]Chen, K. T., Chou, C. H., Chang, S. H., Liu, Y. H. Intelligent active vibration control in an isolation platform. Applied Acoustics.2008,69(11):1063-1084.
    [83]S.A.J. Hol, E. Lomonova, A.J.A. Vandenput. Design of a magnetic gravity compensation system. Precision Engineering.30,2006.pp.265-273.
    [84]Young-Man Choi and Dae-Gab Gweon. A High-Precision Dual-Servo Stage Using Halbach Linear Active Magnetic Bearings. IEEE/ASME TRANSACTIONS ON MECHATRONICS. 10.1109/TMECH.2010.2056694.pp1-7.
    [85]AdamBurnton, Julian5.Cashmore.PeetrElboum.eta,.High-resolution EUV Microstepper tool for resist testing & technology evaluation[C]. Porceedings of SPIE. Vol.5448(2004),pp681-692
    [86]胡松,姚汉民,唐小萍,et al.调焦机构[P].中国专利.2000.CN99231709.6.
    [87]胡松.高分辨力高导向精度柔性铰链调焦机构[J].光电工程.1998,3:23-26.
    [88]Erik Roelof Loopstra, Adrianus Gerardus Bouwer, Henricus W. A. Jassen, et al. Positioning device and lithographic projection apparatus comprising such a device[P]. the U.S.A. patent,6337484B1. 2002-1-8.
    [89]Eric W.A. Janssen, Marcel J.M. Renkens, Jakob Vijfvinkel, et al. Lithographic apparatus, device manufacturing method, and device manufactured thereby apparatus[P]. the U.S.A. patent,20040001188A1.2004-6-1.
    [90]Kenji Nishi. Vibration control device, stage device and exposure apparatus[P]. the U.S.A patent, 6894449B2.2005-5-17
    [91]Alton H. Phillips, Hideaki Sakamoto, Michael B. Binnard. Vibration-attenuation devices having low lateral stiffness, and exposure apparatus comprising same[P]. the U.S.A. patent,20040082729. 2004-4-29.
    [92]Nikon.3-Ring magnetic anti-gravity support[P]. the U.S.A patent,6879127A2.2002-2-12.
    [93]Tomonori Kato, Kenji Kawashima, Koichi Sawamoto, et al. Active control of a pneumatic isolation table using model following control and a pressure differentiator[J]. Precision Engineering.2007,31: 269-275.
    [94]R C Hibbeler. Mechanics of Materials[B]. Publishing House of Electronics Industry. ISBN:0131245716,2003.
    [95]Powell, M J D. A fast algorithm for nonlinearly constrained optimization calculations. Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Springer Verlag, Vol.630,1978.
    [96]Powell, M J D. The convergence of variable metric methods for nonlinearly constrained optimization calculations. Nonlinear Programming 3. Academic Press,1978.
    [97]C Erin and B Wilson. An improved model of a pneumatic vibration isolator:theory and experiment[J]. Journal of Sound and Vibration.1998.218(1):81-101.
    [98]Kawashima K.; Kato T.; Swamoto K.; et al.2007. Realization of virtual sub chamber on active controlled pneumatic isolation table with pressure diffeentiator. Precision Engineering,21:139-145.
    [99]Preumont A.; Francois A.; et al.2002. Force feedback versus acceleration feedback in active vibration isolation. Journal of Sound and Vibration,257(4):605-613.
    [100]Jeung-Hoon Lee, Kwang-Joon Kim. Modeling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations. Journal of Sound and Vibration(2007),doi: 10.1016/j.jsv.2006.10.029.
    [101]J.-H. Lee, K.-J. Kim, A method of transmissibility design for dual-chamber pneumatic vibration isolator, Journal of Sound and Vibration(2009),doi:10.1016/j.jsv.2008.12.028.
    [102]Paul Lambrechts, Matthijs Boerlage, Maarten Steinbuch. Trajectory planning and feedforward design for high performance motion systems[C]. Proceeding of the 2004 American Control Conference. Boston, Massachusetts June 30-July 2,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700