作物种子活力与DNA甲基化之间的相关性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保证基因库种质资源的安全保存和科学地进行种质繁殖更新,确保种质在贮藏及更新过程中维持其遗传完整性是种质安全保存研究的最核心的课题。本研究以花生和水稻为材料,分析种子活力下降与DNA甲基化之间的相关性,以及种子萌发早期阶段DNA甲基化的变化规律和特点,旨在能够建立一种既能减少种子检验数量又能准确检测种子活力新方法,能够为种质资源及时繁殖更新和种子老化的预警机制提供依据,并为了解种子老化机理做基础性工作。主要结论如下:
     1、用MSAP分子标记技术对不同活力水平的花生(密花1号)和水稻(吉粳)DNA甲基化水平进行检测,通过分析种子老化过程中发芽率(G)、发芽势(Gp)、发芽指数(Gi)、活力指数(Vi)与DNA去甲基化(D)、甲基化(M)、总甲基化水平(M-D)之间的相关性,发现活力指数(Vi)与去甲基化(D)、甲基化(M)呈显著负相关(p<0.05),研究和利用这些相关性,可以建立一种既能减少种子检验数量又能准确检测种子活力方法,并为种质资源及时繁殖更新和种子老化的预警机制提供依据。
     2、用MSAP分子标记技术对高活力水稻种子萌发早期(0—16小时)不同阶段的DNA甲基化状态进行检测,发现在萌发早期同时发生了甲基化和去甲基化,去甲基化(D)呈指数增长,甲基化(M)呈S型增长。在萌发0-2小时,甲基化水平缓慢上升,与干种子差异不大;而在2-4小时期间,甲基化水平迅速上升,并超过去甲基化水平,在4-16小时期间甲基化水平趋于稳定,并且始终高于去甲基化水平。
The core research projects of germplasm safe conservation are ensuring the safety of germplasm resource in gene bank, regenerating scientifically and maintaining the genetic integrity in the process of germplasm conservation and renewal process. The present study, which took the peanuts and rice as subjects, analyzed the correlation between seed vigor decline and DNA methylation, as well as the rules and characteristics of DNA methylation in early stage of seed germination. The aim of the study is to explore a new seed testing method which can not only reduce the amount of inspection but also test the seed vigor accurately, to provide the basis for warning system of germplasm resource regenerating and seed aging in time and to lay the groundwork for future research on understanding the seed aging mechanism. The major findings are:
     1. The test took peanuts (Mihua 1#)and rice(Jijing)on different level as subjects and used the MSAP molecule labelling technique to analyze the germinating capacity(G), germinating index(Gi), vigor index(Vi), and the corelationship between DNA methylation(M)and total methylation level (M-D). It is found that the vigor index is negatively related to demethylation (D) and methylation (M)(p<0.05). By researching and taking advantage of the corelationship, a method of testing the seed vigor can be found and the basis for warning system of germplasm resource regenerating and seed aging in time can be provided.
     2. Another test which took high vigor rice seed in the early stage of bourgeon as subject to analyze their different states of DNA methylation. It is found that in the early state both the methylation and demethylation occurred, the index of demethylation (D)increased and methylation (M)increased in the s shape. In the first 0-2 hours, the increasing speed of methylate was slow and the there was little discrepancy with the dry seed. In the 2-4 hour, the increasing speed of methylate shoot up and exceeded the level of demethylation. In the 4-16 hour, the level of methylation went to stable and kept on the higher level.
引文
[1] Wu Ct, Morris JR: enes, genetics, and epigenetics: a correspondence [J]. Science.2001,293:1103-1105.
    [2] Razin A, Cedar H. DNA methylation-Biochemistry and Biological Significance [J]. J Chromatogr.1992,581:31-40.
    [3] Flavell R B. Inactivation of gene expression in plants as a on sequence of specific sequence duplication [J]. Proc. Natl. Acid. Sci. USA, 91:3490-3496.
    [4] Gruenbaum Y,Naveh–Many T,et al. Sequence specificity of methylation in higher plant DNA [J]. Nature, 1981, 292: 860-862.
    [5] Bezdek M, Koukalova B, Kuhrova V, Vyskot B. Differeniial sensitivity of CG and CCG DNA sequences to ethionine-induced hypomethylation of the Nicotiana tabacum genome [J] FEBS Lett, 1992, 300(3): 268-270
    [6] Jeddeloh J A, Richards E J. mCCG methylation in angiosperms [J]. Plant J.1996, 9(5): 579-586.
    [7] Wagner I. Capesius I. Determination of 5-methyleytosine from plant DNA by high-performance liquid chromatography [J]. Biochim BioPhys Acta, 1981, 654 (1): 52-56.
    [8] Montero L M, Filipski J, Gil P, et al. The distribution of s-methyl cytosine in the nuclear genome of plants[J]. Nucleic Acids Res,1992,20(12):3207-3210.
    [9] M. G. Goll, T. H. Bestor, Eukaryotic cytosine methyltransferases [J]. Annu. Rev. Biochem. 2005,74,481-514.
    [10] Chan SW. Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana [J] Nat Rev Genet 2005, 6: 351-60.
    [11] Bartee B K. Extraction site reconstruction for alveolar ridge preservation. Part 2: membrane-assisted surgical technique [J]. J Oral ImPlantol, 2001,27 (4): 194-197.
    [12] Vongs A, Kakutani T, Martienssen R A, Richards E J. Arabidopsis thaliana DNA methylation mutants [J] Science,1993,260: 1926-1928.
    [13] Reik W, Dean W, Walte J Epigenetic reprogramming in mammalian development [J]. Science 2001, 293:1089-1093.
    [14] Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? [J]. J Cell Biochem 2002, 87:117-125.
    [15] Schwartz D, Dennis E: Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation [J]. Mol Gen Genet 1986, 205: 476-482.
    [16] Banks JA, Masson P, Fedoroff N: Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element [J]. Genes Dev 1988, 2: 1364-1380.
    [17] Matzke MA, Primig M, Trnovsky J, Matzke AJM: Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants [J]. EMBO J 1989, 8: 643-649.
    [18] Pennisi E., Chemical shackles for genes? [J]. Seience1996,273: 574-575.
    [19] Kakutani T, Jeddeloh JA, Flowers SK, Munakata K, Richards EJ. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations [J]. Proc Natl Acad Sci USA 1996, 93: 12406-12411.
    [20] Kakutani T, Munakata K, Richards EJ, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana [J]. Genetics 1999, 151: 831-838.
    [21] Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development [J]. Proc Natl Acad Sei USA 93: 8449-8454.
    [22] Riddle NC, Richards EJ (2002) The control of natural variation in cytosine methylation in Arabidopsis [J]. Genetics 1996, 162: 355-363.
    [23] Takeda S, Paszkowski J DNA methylation and epigenetic inheritance during plant gametogenesis [J]. Chromosoma (2006) 115: 27-35.
    [24] Oakeley EJ, Podesta A, Jost JP (1997) Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation[J]. Proc Natl Acad Sci USA 94:11721-11725.
    [25] Ronemus MJ, Galbiati M, Tieknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental Pleiotropy in Arabidopsis[J]. Seience 273:654-657.
    [26] Luis Amado, Rita Abranches, Nuno Neves , Wanda Viegas (1997) Development-dependent inheritance of 5-azacytidine-induced epimutations in triticale: analysis of rDNA expression Patterns [J]. Chromosome Research 1997, 5, 445-450.
    [27] Heslop-Harrison JS(1990) Gene expression and parental dominance in hybrid plants. Development (SupplI.): 21-28.
    [28] Nakano Y., Steward N., Sekine M., Kusano T., Sano H., A tobacco NtMET1 cDNA encoding a DNA methyltransferase: molecular characterization and abnormal phenotypes of transgenic tobacco plants[J]. Plant Cell Physiol. 41(2000) 448-57.
    [29] Finnegan EJ, Genger RK, Peaeock WJ etal. DNA methylation in Plants [J]. Ann Rev Plant Physiol Plant Mol Biol 1998, 49: 223-247.
    [30] Messegure R, Ganal MW, Steffens JC et al. Characterization of the level , target sites and inheritance of cytosine methylation in tomato nuelear DNA [J]. Plant Mol Biol.1991, 16: 753-770.
    [31] Sano H, Kamada l, Youssefian S et al. A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA [J]. Mol Gener Genet. 1990, 220: 441-447.
    [32] King GJ. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine [J]. J Hort Sci. 1995, 70(2): 333-342.
    [33] Richard IS, Brettell, Dennis ES. Reaetivation of a silent Ac following tissue culture is associated with heritable alteration in its methylation pattern [J]. Mol Goner Genet 1991, 229: 365-372.
    [34] Finnegan EJ, Genger RK, Kovac K et al. DNA methylation and the promotion by vernalization [J]. Proc Natl Acad Sci USA 1998, 95: 5824-5829
    [35] Burn JE, Bagnall DJ, Metzger JD et al. DNA methylation, vernalization, and the initiation of flowering [J]. Proc Natl Acad Sci USA 1993, 90: 287-291.
    [36] Madlung A, Masuelli RW Watson B, Reynolds SH, Davison J, Comai L Remodeling of DNA methylation and Phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids [J].Plant Physiol 2002, 129: 733-746.
    [37] Levy AA, Feldman M Genetic and epigenetic reprogramming of the wheat genomeupon allopolyploidization [J]. Biol J Linn Soc. 2004, 82: 607-613.
    [38] Liu B, Wendel JF. Epigenetic phenomena and the evolution of plant allopolyploids [J]. Molecular Phylogenetics and Evolution. 2003, 29: 365-379.
    [39] Liu ZL, Wang YM, Shen Y, Guo WL, Hao S, Liu B Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia [J]. Plant Mol Biol. 2004, 54: 571-582
    [40] Salmon A, Ainouche ML, Wendel JF Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae) [J]. Mol Eeol. 2005, 14: 1163-1175.
    [41] Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids [J]. Plant Physiol 2006, 140: 336-348.
    [42] Marfil CF, Masuelli RW, Davison J, Comai L Genomic instability in Solanum tuberosum x solanum kurtzianum interspecific hybrids [J]. Genome 2006, 49: 104-113.
    [43] Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, Lund Extensive maternal DNA hypomethylation in the endosperm of Zea mays [J]. Plant Cell G2004, 16: 510-522.
    [44] Kinoshita T, Mlura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation[J]. Science 2004, 303: 521-523.
    [45] FAO. Report on the state of the worlds plants genetic resources. International Technical Conference on Plant Genetic Resources, Leipzig, Germany. FAO. Rome,Italy,1996
    [46] Xiong LZ, Xu CG, Shagi-Maroof MA, Zhang Q Patterns of cytosine methyaltion in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polylmorphism technique [J]. Mol Gene Genomics1999, 261: 439-446.
    [47] Ashikawa I. Surveying CpG methylation at 5’-CCGG in the genomes of rice cultivars [J]. Plant Molecular Biology 2001, 45: 31-39.
    [48] Finnegan EJ, Kovac KA. Plant DNA methyltransferases. Plant Mol Biol. 2000, 43: 189-201.
    [49] Wang YM, Lin XY, Dong B, et al. DNA methylation Polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression [J]. Cellular and Molecular Biology Letters. 2004, 9: 543-556.
    [50] Cervera MT Ruiz-Gareia L, Martinez-Zapater JM. Analysis of DNA methylation in Arabldopsis thaliana based on methylation-sensitive AFLP markers [J]. Mol Genet Genomics, 2002, 268: 543-552.
    [51] Schmitt FE, Oakeley J, Jost JP. Antibiotic induces genome-wide hypermethylation in cultured Nicotiana tabacum Plants [J]. J. Biol. Chem., 1997, 272: 534-540.
    [52] Xiao W., Custard K.D., Brown R.C., Lemmon B.E., Harada J.J., Goldberg R.B., Fiseher R.L., DNA methylation is critical for Arabidopsis embryogenesis and seed viability [J]. Plant Cell 2006, 18, 805-814.
    [53] Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation [J]. Cell 2006, 124: 495-506.
    [54] Ruiz-Garcia L., Cervera M.T., Martinez-Zapater J.M., DNA methylation increases throughout Aiabidopsis development[J]. Planta 222 (2005) 301-306.
    [55] Sha A.H., Lin X.H., Huang J.B., D.P. Zhang, Analysis of DNA methytation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis [J]. Mol. Genet. Genomics 2005, 273, 484-490.
    [56] Xu M., Li X., Korban S.S., DNA-methylation alterations and exchanges durlng invitro cellular differentiation in rose (Rosa hybrida L.) [J]. Theor. Appl. Genet. 2004, 109 899-910.
    [57] Jacobsen SE, Meyerowitz EM. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis[J]. Seience 1997, 277: 1100-1103.
    [58] Soppe W.J, Jacobsen S.E., Alonso-Blaneo C., Jaekson J.P., Kakutani T., Koornneef M., Peeters A.J., The late flowering Phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene [J]. Mol. Cell 2000, 6 791-802.
    [59] Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry [J]. Nature, 1999, 401: 157-161.
    [60] Burn JE, Smyth DR, Peacock WJ et al. Gene conferring Iate flowering in Arabidopsis thaliana [J]. Genet, 1993, 90: 147-155.
    [61] Sheldon CC, Burn JE, Perez PP et al. The FLF MADS box gene: are pressor of flowering in Arabidopsis regulated by vernalization and methylation [J]. Plant Cell, 1999, 11: 445-458
    [62] Busslinger M, Hurst J, Flavell R A. DNA methylation and the regulation of globin gene expression [J]. Cell, 1983, 34 (l) : 197-206.
    [63] Keshet I., Yisraeli J. Cedar H., Effect of regional DNA methylation on gene expression [J]. Proc. NatI, Acad. Sci. U.S.A. 1985, 82 2560-2564.
    [64] Kruczek I., Doerfler W., Expression of the chloramphenicol acetyltransferase gene in mammalian cells under the control of adenovirus type 12 promoters: effect of promoter methylation on gene expression [J]. Proc. Natl. Acad. Sci. U.S.A. 1983, 80 7586-7590.
    [65] Graessmann A., Sandberg G., Guhl E., Graessmann M., Methylation of single sites wlthin the herpes simplex virus tk coding region and the simian virus 40 T-antigen intron causes gene inactivation [J]. Mol. Cell. Biol. 1994, 14 20o4-2010.
    [66] Hsieh C.L., Stability of patch methylation and its impact in regions of transcriptional initiation and elongation [J]. Mol. Cell. Biol. 1997, 17, 5897-5904.
    [67] Kass S.U., Landsberger N., Wolffe A.P., DNA methylation directs a timedependent repression of transcription initiation [J]. Curr. Biol.1997, 7, 157-165.
    [68] Siegfried., Eden S., Mendelsohn M., Feng X., Tsuberi B.Z., Cedar H., DNA methylation represses transcription in vivo [J]. Nat. Genet. 1999, 22, 203-206.
    [69] Zilberman D., Gehring M., Tran R.K., Ballinger T., Henikoff S., Genomewide analysis of Arabidopsis DNA methylation uncovers an interdependence between methylation and transcription [J]. Nat. Genet. 2007, 39, 61-69.
    [70] Buschhausen G., Wittig B., Graessmann M., Graessmann A., Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene [J]. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 1177-1181.
    [71] Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S.W., Chen H., Henderson I.R., Shinn P., PellegriniM., Jaeobsen S.E., Ecker J.R., Genomewide high-resolutionmapping and function alanalysis of DNA methylation in Arabidopsis [J]. Cell 2006, 126, 1189-1201.
    [72] Kankel M.W., Ramsey D.E., Stokes T.L., FlowersS .K., Haag J.R., Jeddeloh J.A., Riddle N.C., Verbsky M.L., Richards E.J., Arabidopsis MET1 cytosine methyltransferase mutants [J]. Genetics 2003, 163, 1109-1122.
    [73] Barryn C., Faugeron G., Rossignol J.L., Methylation induced premeiotically in Aseobolus: coextension with DNA repeat lengths and effect on transcript elongation [J]. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 4557-4561.
    [74] Hohn T., Corsten S., Rieke, S. Muller M., Rothnie H., Methylation of coding region alone inhibits gene expression in plant protoplasts [J]. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 8334-8339.
    [75] Rountree M.R., Selker E.U., DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa [J]. Genes Dev. 1997, 11, 2383-2395.
    [76] Finnegan EJ. Is plant gene expression regulated globally [J]. Trends Genet. 2001, 17: 361-365.
    [77] Ng H H, Bird A. DNA methylation and chromatin modification [J]. Curr. OPin. Genet. Dev. 1999, 9: 158-163.
    [78] Martienessen R A, Colot V. DNA methylation and epigenetic ingeritance in plants and filamentous fungi [J] Science, 2001, 293: 1070-1074.
    [79] Robertson K D, Wolffe A P. DNA methylation in health and disease [J]. Nat. Rev. Genet. 2000 1: 11-19
    [80] Peerbolte R, Leenhouts K, Hooykaas-van Slogteren GMS, et al. Clones from a shooty tobacco crown gall tumor II: irregular T-DNA structures and organization, T-DNA methylation and conditional expression of opines genes [J]. plant Mol Biol, 1986, 7: 285-299.
    [81] Martienssen RA, Colot V. DNA methylation and epigenetic inheritance in plants and filamenious fungi [J]. Science, 2001, 293: 1070-1074.
    [82] Steimer A, Amedeo P, Afsar K, et al. Endogenous targets of transcriptional gene silencing in Arabidopsis[J]. The Plant Cell, 2000, 12: 1165-1178.
    [83] Chandier VL, Rivin C, Walbot V. Stable non-mutator stocks of maize have sequenceshomologous to the Mu1 transposable element [J]. Genetics, 1986, 114: 1007-1021.
    [84] Fedoroff N, Schlappi M, Raina R. Epigenetic regulation of the maize Spm transposon [J]. Bioessays, 1995, 17: 291-297.
    [85] McClintock B. The Significance of responses of the genome to challenge [J]. Science, 1984, 226: 792-801
    [86] Wendel JF, Wessler SR. Retrotransposon-mediated genome evolution on a local ecological scale [J]. Proc Natl Acad Sci USA, 2000, 97: 6250-6252.
    [87] Leutwiler L.S., Hough-Evans B.R., Meyerowitz E.M., The DNA of Arabidopsis thaliana [J]. Mol. Gen. Genet. 1984, 194, 15-23.
    [88] Liu B, Vega JM, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences [J]. Genome, 1998, 41: 535-542.
    [89] Liu B, Vega JM, Segal G, et al. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. changes in low-copy noncoding DNA sequences [J]. Genome 1998,41: 272一277.
    [90] Lee HS, Chen ZJ. Protein coding genes are epigenetically regulated in Arabidopsis polyploids [J]. Proc Natl Acad USA 2001 98: 6753-6758.
    [91] Madlung A, Watson B, Masuelli R, et al. Genetic and epigenetic changes in synthetic allopolyploids of Arabidopsis thaliana [J]. Plant & Animal Genomes XI Conference, 2003, 1: 11-15.
    [92] Lewis N, Lukens J, Pires C, et al. Patterns of Sequence Loss and Cytosine Methylation within a Population of Newly Resynthesized Brassica napus Allopolyploids [J]. Plant Physiology, 2006, 140: 336-348.
    [93] Madlung A, Tyagi AP, Watson B, et al. Genomic changes in synthetic Arabidopsis polyploids [J]. Plant J, 2005, 41: 221-230.
    [94] Liu B, Brubaker CL, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes [J]. Genome, 2001, 44: 321-330.
    [95] Matzke MA, Mette MF, Mazke AJM. Transgene silencing by the host Genome defense: implification for the evolution of epigenetic control mechanisms in plants and vertebrates[J]. Plant Mol Biol 2000, 43: 401-415.
    [96] Matzke M A and Matzke A J M, How and why do plants inactivate homologous (trans) genes? [J]. Plant Physiol, 1995, 107: 679-685.
    [97] Tanaka H, Masuta C, Uehara K, et al. Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-L-homocysteine hydrolase gene [J]. Plant Mol Biol, 1997, 35 (6): 981-986.
    [98] Phillips RL, Kaeppler SM, and Olhoft P. Genetic Instability of Plant Tissue Cultures: Breakdown of Normal Controls [J]. PNAS, 1994, 91: 5222-5226.
    [99] Groose RW, Talbert LE, Kojis WP, et al. Progressive heterosis in autotetraploid alfalfa: Studies using two types of inbreds [J]. Crop Sci, 1989, 29: 1173-1177.
    [100] Bingham E T, Groose R W, Woodfield D R, et al. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids[J]. Crop Sci, 1994, 34: 823-829.
    [101] Liu B, Piao H M, Zhao F S, et al. DNA methylation changes in rice induced by Zizania latifolia (Griseb.) DNA introgression [J]. Hereditas, 1999, 131: 75-78.
    [102] KaPoor A, Agius F, Zhu J K, Preventing transcriptional gene silencing by active DNA demethylation [J]. FEBS Lett. 2005, 579, 5889-5898
    [103] Scheid O M, Jakovleva L, Afsar K, et al. A change of ploidy can modify epigenetic silencing [J]. Genetics, 1996, 93 (14): 7114-7119.
    [104] Liu B, Hu B, Dong Y Z, et al. Speciation-induced heritable cytosine methylation changes inpolyploidy wheat [J]. Progress In Natural Science, 2000, 10(8): 601-606.
    [105] Steward N, Ito M, Yamaguchi Y, et al. DNA methylation in maize nucleosomes and demethylation by environmental stress [J]. J Biol Chem. 2002. 277 (40): 37741-37746.
    [106] Long L, Lin X, Zhai J, et al. Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization [J]. Biochem BioPhys Res Commun, 2006, 340(2): 369-376.
    [107] Sharma S, Balyan HS, Gupta PK. Adaptive methylation pattern of ribosomal DNA in wild barley from lsrael Barley Genetics Newsletter, 2005, 35: 27-35.
    [108] Richards EJ. DNA methylation and plant development [J]. Trends Genet, 1997, 13 (8): 319-322.
    [109] Wassenegger M. RNA directed DNA methylation [J]. Plant Mol Biol, 2000, 43: 203-220.
    [110] Kass SU, Pruss D, Wolffe AP. How does DNA methylation repress transeription? Trends Genet, 1997, 13: 444-449.
    [111] Meyer P. Transcriptional transgene silencing and chromatin components [J]. Plant Mol Biol, 2000, 43: 221-234.
    [112] Li E. The mojo of methylation [J]. Nature Genet, 1999, 23: 5-6
    [113] Fu X, Kohli A, Twyman RM et al. Alternative silencing effect involve distinct types of non2spreading cytosine methylation at a three2gene,Single-copy transgenic locus in rice [J]. Mol Goner Genet, 2000, 263: 106-118.
    [114] Shan GH, Jose LMJ, Antonio GJ. Mitotic stability of infection-induced resistance to plum pox potyvirus with trans gene silencing and DNA methylation [J]. Mol Plant Microb Interactions, 1999, 12 (2): 103-111.
    [115] Louise JA, Thomas CL, Andrew M. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus [J]. Euro Mol Biol Organi J, 1998, 17 (21): 6385-6393.
    [116] Bocharst A, Hodal L, Palmgren G et al. DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene [J]. Plant Physiol, 1992, 99: 409-414.
    [117] Van HH, Ingelbrecht I, Van MM et al. Post-transcriptional of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3‘Flanklng regions [J]. Plant J, 1997, 12: 379-392.
    [118] Wassenegger M, Pelissier T. A model for RNA-mediated gene silencing in higher plants [J]. Plant Mol Biol, 1998, 37: 349-362.
    [119] .Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds [J]. Proc Natl Acad Sci USA 2000, 97: 10637-10642.
    [120] Vielle-Calzada JP, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygoticDDM1 activity [J]. Genes Dev 1999, 13: 2971-2982.
    [121] Julliena PE, Kinoshita T, Ohadc N, Bergera F Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting [J]. Plant Cell 2006, 18: 1360-1372.
    [122] .Bird, A. DNA methylation patterns and epigenetic memory [J]. Genes Dev. 2002, 16, 6-21.
    [123] Kress, C., Thomassin, H. and Grange, T. Local DNA demethylation in vertebrates: how could it be Performed and targeted [J]. FEBS Lett. 2001, 494, 135-140.
    [124] Mayer, W., Niveleau, A., Walter, J., Fundele, R. and Haaf, T. Embryogenesis-demethylation of the zygotic paternal genome. Nature 2000, 403, 501-502.
    [125] Choi Y., Gehring M., Johnson L., Hannon M., Harada J.J., Goldberg R.B., Jacobsen S.E., Fiseher R.L., DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis [J]. Cell 2002, 110 33-42.
    [126] Gehring M., Henikoff S. DNA methylation dynamics in plant genomes [J]. Biochim. Biophys. Acta (2007), doi: 10. 1016/j. bbaexp. 2007. 01. 009
    [127] Morales-Ruiz T., Ortega-Galisteo A.P., Ponferrada-Marin M.I., Martinez-Macias M.I., Ariza R.R., Roldan-Arjona T., DEMETER and REPRESSOR OF SILENCING 1 encodes 5-methylcytosine DNA glycosylases [J]. Proc. Natl. Acad. Sci. U.S.A. 2006, 103: 6853-6858.
    [128] .Agius F., Kapoor A., Zhu J.K., Role of the Arabidopsis DNA glycosylase/lyase ROS1 inactive DNA demethylation [J]. Proc. Natl. Acad. Sci. U.S.A. 2006, 103: 11796-11801.
    [129] .Gong Z., Morales-Ruiz T., Ariza R.R., Roldan-Arjona T., David L., Zhu J.K, ROS1, are pressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase [J]. Cell 2002, 111: 803-814.
    [130] Kinoshita T., Yadegari R., Harada J.J., Goldberg R.B., Fischer R.L., Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm [J]. Plant Cell 1999, 11: 1945-1952.
    [131] Xiao W., Gehring M., Choi Y., Margossian L., Pu H, Harada JJ., Goldberg R.B., Pennell, R. l. Fischer R. L., Imprinting of the MEA polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase [J]. Dev. Cell 2003, 5: 891-901.
    [132] Cao X., Jaeobsen S.E., Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes [J]. Proc. Natl. Acad. Sci .U.S.A. 2002, 99 (Suppl 4) 16491-16498.
    [133] Gutierrez-Marcos J.F., Costa L.M., Dal Pra M., Scholten S., Kranz E., Perez P., Dickinson H.G., Epigenetic asymmetry of imprinted genes in plant gametes[J]. Nat. Genet. 2006, 38: 876-878.
    [134] Danilevskaya O.N., Hermon P., Hantke S.,Muszynski M.G., KolliPara K., Ananiev E.V., Duplicated FIE genes in maize: expression pattern and imprinting suggest distinct functions [J]. Plant Cell 2003, 15: 425-438
    [135] Reik W and Dean W. DNA methylation and mammalian epigenetics [J]. Electrophoresis, 2001, 22 (14): 2838-2843.
    [136] Rand E and Cedar H. Regulation of imprinting: A multiltiered process[J]. J Cell Biochem, 2003, 88 (2): 400-407.
    [137] Sleutels F and Barlow DP. The origins of genomic imprinting in mammals [J]. Adv Genet, 2002, 46: 119-63.
    [138]武立鹏,朱卫国. DNA甲基化的生物学应用及检测方法进展[J].中国检验医学杂志, 2004, 27(7): 468-474.
    [139]黄琼晓,金帆,黄荷凤. DNA甲基化的研究方法学[J].国外医学遗传学分册, 2004, 27(6): 354-358.
    [140] Kuo K C, McCune R A, Gehrke C W, et al. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA [J]. Nucleic Acids Res, 1980, 8: 4763-4776.
    [141] Fraga M F, Uriol E, Borja D L, et al. High-performance capillary electrophoretic method for the quantification of 5-methyl 2-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues [J]. Electrophoresis, 2002, 23: 1677-1681.
    [142] Oefner, P J, Bonn G K, Huber C G, et al. Comparative study of capillary zone electrophoresis and high-performance liquid chromatography in the analysis of oligonucleotides and DNA. [J]. Chromatogr, 1992, 625(2): 331-3401.
    [143]邓大君,邓国仁,吕有勇等.变性高效液相色谱法检测CpG岛胞嘧啶甲基化[J].中华医学杂志, 2001, 80(2), 158–1611.
    [144] Wu J, Issa J, Hermen J, et al. Expression of an exogenous eukaryotic DNA methyl transferase gene induces transformation of NIN3T3 ceils [J]. Proc Natl Acad Sci USA, 1993, 90(19): 8891–8895.
    [145] Oakeley E J, Podesta A, Jost J P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation [J]. Proc Natl Acad Sci USA, 1997, 94: 11721–11725.
    [146] Oakeley E J, Schmitt F, Jost J P. Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction [J]. Biotechniques, 1999, 27: 744-6,748-50,752.
    [147] Frommer M, McDonald L E, Millar D S, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands [J]. Proc Natl Acad Sci USA, 1992, 89: 1827–1831.
    [148]朱燕. DNA的甲基化的分析与状态检测[J].现代预防医学, 2005, 32(9): 1070-1073.
    [149]沈佳尧,侯鹏,祭美菊等. DNA甲基化方法研究现状[J].生命的化学, 2003, 23(2): 149-151.
    [150] Herman J G, Graff J R, Myohanen S, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands [J]. Proc Natl Acad Sci USA, 1996, Sep 3. 93(18), 9821-9826.
    [151] Kuppuswamy M N, Hoffmann J W, Kasper C K, Spitzer S G, Groce S L, Bajaj S P. Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes [J]. Proc Natl Acad Sci USA, 1991, 88: 1143–1147.
    [152] Gonzalgo M L, Jones P A. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE) [J]. Nucleic Acids Res, 1997, 25: 2529–2531.
    [153] Xiong Z, Laird P W COBRA: a sensitive and quantitative DNA methylation assay [J].Nucleic Acids Res, 1997, 25: 2532–2534.
    [154] Maekawa M, Sugano K, Kashiwabara H, et al. DNA methylation analysis using bisulfite treatment and PCR-single-strand conformation polymorphism in colorectal cancer showing microsatellite instability [J]. Biochem Biophys Res Commun, 1999, 262: 671–676.
    [155] Cariello N F, Scott J K, Kat A G, et al. Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich [J]. Am J Hum Genet, 1988, May, 42(5): 726-34.
    [156] Abrams E S, Stanton V P. Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids [J]. Methods Enzymol, 1992, 212: 71-104.
    [157] Aggerholm A, Guldberg P, Hokland M, et al. Extensive intra- and interindividual heterogeneity of p15INK4B methylation in acute myeloid leukemia [J]. Cancer Res, 1999, 59: 436-441.
    [158]黄庆,府伟灵. DNA甲基化分析技术[J].中国实验诊断学, 2005, 9(2): 304-306.
    [159] Worm J, Aggerholm A, Guldberg P. In-tube DNA methylation profiling by fluorescence melting curve analysis [J]. Clin Chem, 2001, 47(7): 1183-9.
    [160] Eads C A, Danenberg K D, Kawakami K, et al. MethyLight: a highthroughput assay to measure DNA methylation [J]. Nucleic Acids Res, 2000, 28: E32.
    [161]范保星. DNA甲基化检测方法[J].国外医学遗传学分册, 2002, 25(2): 99-101.
    [162] Yan P S, Chen C M, Shi H, et al. Dissecting comples epigenetic alterations in breast cancer using CpG island microarrays [J]. Cancer Res, 2001, 61(23): 8375-8380.
    [163] Huang T H, Perry M R, Laux D E. Methylation profiling of CpG islands in human breast cancer cells [J]. Hum Mol Genet, 1999, 8: 459-470.
    [164] Gitan R S, Shi H, Chen C M, et al. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis [J]. Genome Res, 2002, 12: 158–164.
    [165] Clement G., Benhattar J. A methylation sensitive dot blot assay (MS-DBA) for the quantitative analysis of DNA methylation in clinical samples [J]. Clin Pathol, 2005, Feb. 58(2): 155-8.
    [166] Schouten J P, McElgunn C J, Waaijer R, et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification [J]. Nucleic Acids Res, 2002, Jun 15, 30 (12): e57.
    [167] Nygren A O, Ameziane N, Duarte H M, et al. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences [J]. Nucleic Acids Res, 2005, Aug 16, 33 (14): e128.
    [168] Costello J F, Fruhwald M C, Smiraglia D J, et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns [J]. Nat Genet, 2000, Feb, 24(2): 132-8.
    [169] Huang T H, Laux D E, Hamlin B C, et al. Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique [J]. Cancer Res, 1997, Mar 15, 57(6): 1030-4.
    [170] Frigola J, Ribas M, Risques R A, et al. Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res, 2002, Apr 1. 30(7): e28.
    [171] Hatada I, Hayashizaki Y, Hirotsune S, et al. A genomic scanning method for higher organisms using restriction sites as landmarks [J]. Proc Natl Acad Sci USA, 1991, 88: 9523-9527.
    [172] Shiraishi M, Sekiguchi A, Oates A J, et al. Methyl-CpG binding domain column chromatography as a tool for the analysis of genomic DNA methylation. Ana Biochem, 2004, Jun 1, 329(1): 1-10.
    [173] Meehan R R, Lewis J D, McKay S, et al. Identification of a mammalian protein that binds speciWcally to DNA containing methylated CpGs [J]. Cell, 1989, 58: 499-507.
    [174] Bird A. DNA methylation patterns and epigenetic memory [J]. Genes Dev, 2002, 16: 6-21.
    [175] Bird A P, Wolffe A P. Methylation-induced repression-belts, braces, and chromatin [J]. Cell, 1999, 99: 451-454.
    [176] Lewis J D, Meehan R R, Henze W J, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA [J] Cell, 1992, 69: 905-914.
    [177] Yegnasubramanian S, Lin X, Haffner M C, et al. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation [J]. Nucleic Acids Res, 2006, Feb 9, 34(3): e19.
    [178] Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins [J]. Mol Cell Biol, 1998, 18: 6538–6547.
    [179]卢新雄,陈晓玲,水稻种子贮藏过程中生活力丧失特性及预警指标的研究,中国农业科学2002,35(8):975—979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700