海鳗腌制加工技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腌鱼是一种风味独特的传统食品,有着广泛的市场需求。为满足现代生活对食品安全、营养、风味的消费需求,有必要对传统腌制加工技术进行革新。本论文系统研究了鱼腌制过程中的影响因素,食盐渗透扩散规律和生化变化对品质的影响。探索了加快腌鱼风味成熟和延长保藏期的技术手段,建立了优化的腌制工艺。
     采用浊度比色法建立了一种简便、快速、可靠的分析水产品中食盐含量的新方法。最佳测定条件是:最大吸收波长为385nm, 3.2 mol/L硝酸用量2mL;明胶浓度和用量分别为1.5g/L和2mL;0.5%AgNO3溶液5mL;显色反应的温度在60℃,保温10min。经过与国家标准GB/T12457~90对比分析,两者之间不存在显著性差异,而且用时和成本为国家标准滴定法的1/3,该法切实可行。
     以海鳗为原料,以食盐含量、水分含量及重量变化为指标研究腌制温度、浓度、食盐纯度、鱼体大小、渗透调节剂和真空对腌制的影响,结果表明,腌制温度越高,则鱼体中食盐内渗量就大。腌制浓度越大,则鱼体中食盐内渗量就大。腌制浓度决定鱼体腌制后重量是增加还是减少,变化范围在15~18%之间。食盐中钙、镁离子对腌制有一定负影响,钙镁离子存在影响鱼体中食盐内渗量的增加,同时影响鱼体水分的失去。鱼体大小对渗透有影响,鱼体越大,食盐内渗量和水分失去减少。腌制液中添加海藻糖可以加速食盐的扩散和水分的脱去,而且随着海藻糖浓度增加而加快。因此在盐渍溶液中添加2%海藻糖就可以明显增加食盐内渗量。真空腌制可以明显增加鱼体中食盐内渗量和水分失去。而且随着真空度的升高作用更加明显。因此可采用真空和添加海藻糖来加速腌制。
     通过鱼体食盐获得和水分失去来研究食盐扩散渗透规律,考察浓度和温度对渗透扩散系数和活化能的影响。结果表明,随着温度的升高,盐的渗透速度常数随着增加。不同的初始食盐浓度浸渍下,其渗透速度常数随着食盐浓度的增加而增加。盐的扩散系数是温度和初始盐渍浓度的函数,活化能随着初始盐渍浓度增加而减少,活化能的大小是温度影响扩散过程的一个指标。当鱼体盐浓度较小时,温度是加速腌制的重要因素。通过动力学分析,得到了在一定温度和盐渍浓度下,食盐获得(StG)与水分失去(WL)随着时间(t)而变化的拟合方程StG=0.193t/(3.20+t)和WL=0.277t/(3.87+t)。此方程有利于指导生产,即采用高盐浓度腌制,可以加速脱去水分、摄入盐分以及节约后熟时间。
     采用DSC、FT-IR、SDS-PAGE、荧光等技术手段研究腌制过程蛋白质的生化变化及其对品质影响。结果表明,随着腌鱼制品食盐含量渐渐增大,其肌动球蛋白分子渐渐打开,最后由于肽链上氨基酸侧链间的键桥变化及疏水性区域那样的局部变化,形成蛋白质的聚集而变性。腌制对鱼组织结构的产生了影响。采用扫描电镜(SEM)观察,经过腌制后食盐含量达到12.7%时肌肉组织坚实,而新鲜鱼肌肉结构疏松。质构分析(TPA)表明,随着腌制鱼中食盐含量增加,其硬度和内聚性明显增加,而弹性随着减小。蛋白质变性使得腌鱼制品的口感变差,使鱼的组织结构韧性增加,可食性降低,而且会削弱蛋白质的凝胶性能。在腌制液中添加海藻糖,当肌肉中海藻糖含量达到2.90%时可以抑制蛋白质的变性,使得腌鱼制品的口感、组织结构韧性较好,提高了腌制鱼的品质。肌肉成分的溶出随着温度增加,盐卤中增加的氨基酸量明显。随着盐渍浓度的增加,溶出到盐卤中的氨基酸的数量随着减少。而鱼体肌肉蛋白质的分解,随着盐渍温度和浓度的提高,肌肉中游离氨基酸随着增加。所以采用低温10℃和高浓度20%腌制较为有利。
     以感官、质构和主要成分为指标,考察腌制和后熟方式对腌鱼品质的影响。结果表明,湿腌的产品比干腌的品质好;真空干燥脱水在缩短干燥时间、抑制和减缓脂肪氧化方面比传统的热风干燥形式稍优越;而热风干燥在腌鱼外观的形成、风味物质的积累等方面存在优势,可以采用真空-热风联用干燥既可以缩短干燥周期,减缓脂肪氧化,又能提供令人满意的产品外观和风味,具有较高的适用性。腌鱼的风味品质通过主要成分含量,感官评定和质构来评价,感官、质构与主要成分之间存在显著的相关性,通过相关性分析,腌鱼制品具有较好的感官及质构性能的两个主要指标是食盐6%,水分活度0.81。
     通过GC-MS技术对腌腊鱼风味成分分析及感官评定,探索加速风味成熟的途经。采用间歇微波可以加快风味成熟,添加风味蛋白酶对改善腌鱼的品质具有明显的效果。在腌制液中添加0.4%的风味蛋白酶作用2h后再用间歇微波处理1min的样品中所含有的风味物质有大幅度的增加,由对照组的36种风味化合物增加到优化后的61种,同时产生对腌鱼起重要作用的羰基化合物和呈香物质酯类。其制品品质有极显著的提高,腊香味、咬劲和口味等感官评价较对照为优。
     通过TVBN、TAMN、TVC和TBA等分析来研究气调包装、超高压等技术手段在腌鱼保藏中的作用。结果表明气调包装,超高压处理等能够使腌鱼制品的保藏期有所增加,但是增加的幅度在25℃下大约是3~4天。将海藻糖用于腌鱼保藏,结果表明海藻糖能使得食盐含量为6%的腌鱼在4℃保藏期延长100天,这为鱼腌制工业化生产奠定了非常有利的基础。
Cured fish is one of traditional foods with particular flavor , there are broad demands of cured fish in market . In order to satisfy consumption demands of food in safety, nutrition, flavor on modern life, it is necessary to innovate traditional processing technique of cured fish. In this paper, the effect factors, osmotic dehydration phenomena and biochemistry changes of protein of fish muscle during salting were systematically investigated; the techniques of improving flavor ripening and extending the preservation capability of cured fish were tried . The optimization pickling technique was set up.
     A novel, simple, rapid and reliable turbidity spectrophotometric method to determine sodium chloride in salted fish was developed and validated. The absorbance was measured at 385nm. The method was tested under various conditions: 2mL 1/4 (V/V) nitric acid, 2mL 1.5 g L-1 gelatin, 5mL 0.5% silver nitrate in a total volume of 50mL, mixed and heated at 60℃for 10 min. The accuracy and the results of this method comparing with GB/T12457~90 were not significantly different, this method is feasible to determination salt concentration and has low cost and is not time-consuming compare with GB/T12457~90.
     The effects of temperature, concentration, salt purity, fish fillet size, osmotic regulator and vacuum on salting process were evaluated through changes of salt concentration, moisture and weight using pike eel as material, the results showed that the higher the brine temperature was, the more fish muscle gain salt. The higher the brine concentration was, the more fish muscle gain salt , The effect of brine concentration on the weight change magnitude of pike eel muscle whether increase or decrease was crucial , the change ranged from 15% to 18%. Calcium and magnesium ion had negative effect on penetration of salt, so it is necessary to use pure salt in pickling. The effect of fillet size on osmotic rate was significant, the bigger the fillet size was, the less water loss and salt gain. When trehalose was added in brine solution, it could significantly accelerate salt gain and water loss, the higher trehalose concentration was, the more water loss and salt gain. Vacuum penetration at 22℃and 25% brine concentration could also accelerate salt gain and water loss, when vacuum degree increase, the effect also increased. So using vacuum and addition trehalose can accelerate salt penetration.
     The osmotic dehydration phenomena were investigated with salt gain and water loss, the results indicated that rate constant and salt penetration rate increased along with temperature and concentration increase. The salt diffusion coefficient was function of temperature and initial salt concentration. The magnitude of the activation energy was an indication of the temperature influence on the diffusion process. The values of activation energy decreased with initial salt concentration increase, When the salt concentration in muscle decreases, temperature starts to be an important factor for accelerating the process. The kinetics analysis showed that the fitting equations StG=0.193t/(3.20+t)①and WL=0.277t/(3.87+t)②of salt gain and water loss of pike eel muscle with time change were beneficial to guide production and ensure quality at definite brine temperature and concentration. Pickling with high salt concentration can accelerate water loss and salt gain and reduce drying time.
     The analysis biochemical changes of protein and its effect on quality of cured fish during salting using DSC, FT-IR, SDS-PAGE, fluorescence, etc were carried out, the results showed that along with increasing the salt concentration of pike eel muscle , actomyosin unfold gradually , the bond bridge of amino acids side chain of peptidic chain and hydrophobic region changes resulted in aggregation and denaturation of protein. The scanning electronic microscopy(SEM) showed that pike eel muscle became tight and hardness after salting at concentration of 12.7% and fresh pike eel muscle was loose. Texture profile analysis(TPA) indicated that the hardness and cohesiveness sharply increased with increasing salt penetration of cured fish, whereas the springiness decreased. Protein denaturation in fish not only resulted in toughness in fish fillets, which became inedible, but also impaired gelation properties. When trehalose content was 2.9% in salted pike eel muscle , the denaturation of protein could be inhibited and the quality of salted fish could be improved. The higher the temperature of salting solution was, the more amino acids dissolved in brine of pike eel muscle. The higher concentration of salting solution was, the less amino acids dissolved in brine of pike eel muscle. Whereas decompounding of protein in pike eel muscle was also affected with brine concentration and temperature and they had positive correlation .So it is better to pickle at 10℃and brine concentration at 20%
     The effect of methods by pickling and drying on quality of cured fish were evaluated with sensory evaluation, texture and principal composition. The results indicated that the quality of brine salting was better than pile salting. Vacuum drying was better than hot-air drying in decrease drying time, inhibition and slowing oxidation of fat, whereas hot-air drying was better in appearance and flavor accumulation of cured fish, so it is nice to combine vacuum drying with hot-air drying for cured fish quality. The quality of cured fish from chemical composition analysis, sensory evaluation and texture test could be analyzed ,the relativity between sensory, texture with chemical composition was significant, so the optimization of two indicators were put forward : salt concentration 6% and water activity 0.81.
     The methods to accelerate flavor ripening were tried through GC-MS analysis and sensory evaluation, the results indicated that adding flavourzyme and intermittent microwave were very effective. When the flavourzyme(0.4%) was added to brine solution for 2 hours and then deal with 1min by intermittent microwave, The flavor compounds were sharply increased from 36 at control to 61 of optimization technique condition, and carbonyl and ester compounds may be important compounds in cured fish flavor. The cured fish quality was largely improved compared with control in sensory evaluation.
     Modified atmosphere package (MAP) and ultra-high pressure(UHP) treatment were studied for preservation of cured fish with indicators of TVBN, TMAN, TVC & TBA etc. The results showed that MAP and UHP could extend shelf-life of cured fish ,but the increase magnitude was only for 3~4 days at 25℃. A new kind of additive—trehalose was found out using in preservation cured fish and could extend shelf-life more than 100 days compared with control at 4℃, this research results were foundation to industrialize for cured fish.
引文
1.王锡昌.中国水产品加工的当代思考[J].食品与机械,,2006,22(4):10-12
    2. FAO.FAO year book[M]. Rome,1993:395
    3.贾公树.我国水产品加工与装备综述[J].渔业现代化,2000,(2):12-14
    4.李明华.2001年上半年日本鱼类产品的进口总量[J].水产科技,2002,(4):45-46
    5. Mathew S, Raghunath M R. Leaching of protein and other nitrogenous compounds during brine curing of mackerel[J]. Fish Technology, 1996, 33:69-71
    6. Fougere H. The water transfer in codfish muscle immersed in sodium chloride solutions[J] .Journal of fisheries research board Canada, 1952, 9(8):388-392
    7. Corzo O, Bracho N. Osmotic dehydration kinetic of sardine sheets using Zugarramurdi and Lupin model[J]. Journal of Food Engineering, 2005, 66:51-56
    8. Corzo O, Bracho N. Shrinkage of osmotically dehydrated sardine sheets at changing moisture contents[J]. Journal of Food Engineering, 2004, 65:333-339
    9. Barat J M, Rodriguez-Barona S, Andres A, et al. Cod salting manufacturing analysis[J]. Food Research International, 2003, 36: 447-453
    10. Lauritzsen K, Akse L, Gundersen B ,et al. Effects of calcium, magnesium and pH during salt curing of cod (Gadus morhua L)[J]. Journal of the Science of Food and Agriculture, 2004, 84:683-692
    11. Andres A , Rodriguez-Barona S , Barat J M, et al. Application of vacuum impregnation technology to salting and desalting cod(Gadus morhua) Osmotic dehydration and vacuum impregnation[M]. Technomic Publishing Company Inc: IN: Fito,P., Chilart A., Barat J M(ed) ,2001:185-192
    12. Kilinc B, Cakli S. Chemical, microbiological and sensory changes in thawed frozen fillets of sardine (Sardina pilchardus) during marination[J]. Food Chemistry, 2004, (88) :275-280
    13. Brennan M H, T R Gormley. Use of trehalose for osmotic dehydration of cod and underutilized fish species. Osmotic dehydration and vacuum impregnation [M]. Technomic Publishing Company Inc: IN: Fito,P., Chilart A., Barat J M(ed) , 2001, 133-141
    14. Chiralt A, Fito P, Barat J M, et al. Use of vacuum impregnation in food salting process[J]. Journal of Food Engineering, 2001, 49:141-151
    15. Wang D, Tang J, Correia LR. Postmortem changes of cultivated atlantic salmon and their effects on salt uptake[J]. Journal of Food Science,1998,63(4):634-637
    16. Lauritzsen K, Akse L, Johansen A,et al. Physical and quality attributes of salted cod as affected by the state of rigor and freezing prior to salting[J]. Food Research International, 2004, 37: 677-688
    17. Sen D P, Aitken A. Effect of magnesium in salting of cod[J]. Journal of Food Science, 1965, 30:286-287
    18. Deng J C. Effect of freezing and frozen storage on salt penetration into fish muscle immersed inbrine[J] .Journal of Food Science, 1977, 42(2):348-351
    19. Deumier F,Mens F, Heriard-Dubreuil B,et al. Control of immersion process: A novel system for monitoring mass transfer tested with herring brining[J]. Journal of Food Engineering, 1997, 32:293-311
    20. Del valle F R, Nickerson J T R. Studies on salting and drying fish I: Equilibrium considerations in salting[J]. Journal of Food Science, 1967, 32:173-179
    21. Del valle F R, Nickerson J T R. Studies on salting and drying fish II: dynamic aspects of the salting of fish[J]. Journal of Food Science, 1967, 32: 218-224
    22. Wang DH, Tang JM, Correia L R. Salt diffusivities and salt diffusion in farmed Atlantic salmon muscle as influenced by rigor mortis[J]. Journal of Food Engineering, 2000, 43:115-123
    23. Telis V R N, Romanelli P F, Gabas A L, et al. Salting kinetics and salt diffusivities in farmed Pantanl caiman muscle[J]. Pesquisa Agropecuária Brasileira, 2003, 38(4):529-535
    24. Stefanovskaya NV, Stefanovskii VM, Samoilova LV. Coefficient of salt diffusion in pike tissue[J]. izvestiya vysshikh uchebnykh zavedenii. Pishchevaya Tekhnologiya, 1976, 42:137-139
    25. Sakai M, Miki M. Transfer rates of salt in fish flesh[J]. Nippon Shokuhin Kogyo Gakkaiski, 1982, 29:490-495
    26. Sakai M, Suzuki A. Transfer rates of salt in fish flesh and into flesh through skin[J] .Nippon Shokuhin Kogyo Gakkaiski, 1985, 32:480-485
    27. Rodger G, Hastings R, Cryne C, et al, Diffusion properties of salt and acetic acid into herring and their subsequent effect on the muscle tissue[J]. Journal of Food Science, 1984, 49:714-720
    28. Zugarramurdi A, Lupin H M. A model to explain observed behavior on fish salting[J]. Journal of Food Science, 1980, 45:1305-1311
    29. Fito P. Modeling of vacuum osmotic dehydration of food[J]. Journal of Food Engineering, 1994, 22:313-328
    30. Rastogi N K, Raghavarao KSMS. Kinetics of osmotic dehydration under vacuum[J]. Lebensm.-Wiss. u.-Technol., 1996, 29:669-672
    31. Rastogi NK, Raghavarao KSMS , Niranjan K, et al. Recent developments in osmotic dehydration: methods to enhance mass transfer[J]. Trends in food science and technology, 2002,13: 48-59
    32. Bohuon P , collignan A, Rios G M, et al .Soaking process in ternary liquids: Experimental study of mass transport under natural and forced convection[J]. Journal of Food Engineering, 1998, 37:451-469
    33. Azuara E, Beristain C I ,Gutierrez G F. A method for continuous kinetic evaluation of osmotic dehydration[J]. Lebensm Wiss u .Technol, 1998, 31:317-321
    34. Corzo O, Bracho N, Rodr uze J ,et al. Study of equilibrium distribution coefficients of water and salt for osmotically dehydrated with vacuum pulse sardine sheets[J]. Fevista de la Facultad de Farmacia, 2004, 46(1):35-39
    35. Collignan A, Bohuon P, Deumier F, et al .Osmotic treatment of fish and meat products[J]. Journal ofFood Engineering, 2001, 49:153-162
    36. Byrne H, Nesvadba P, Hastings R. Osmotic and diffusional treatment for fish processing and preservation Osmotic dehydration and vacuum impregnation[M]. Technomic Publishing Company Inc: IN: Fito,P., Chilart A., Barat J M(ed) ,, 2001,111-122.
    37. Shi J, Maguer M Le. Osmotic dehydration of foods: Mass transfer and modeling aspects[J]. Food Reviews International, 2002, 18(4):305-335
    38. Medina-Vivanco M, Sobral PJA, Sereno AM, et al Thermal analysis of osmotically dehydrated tilapia muscle: effect of sodium chloride and sucrose on denaturation temperature of myofibrilar proteins[C]. Drying 2004– Proceedings of the 14th International Drying Symposium (IDS 2004) S?o Paulo, Brazil, vol. C, 1859-1867
    39. Thorarinsdottir K A, Arason S, Geirsdottir M, et al, Changes in myofibrillar proteins during processing of salted cod(Gadus morhua) as determined by electrophoresis and differential scanning calorimetry[J]. Food Chemistry, 2002, (77): 377-385
    40. Sannaveerappa T, Ammu K , Joseph J . Protein-related changes during salting of milkfish (Chanos chanos)[J] .Journal of the Science of Food and Agriculture, 2004, 84:863-869
    41. Sigurgisladottir S, Sigurdardottir MS, Torrissen OJ ,et al. Effects of different salting and smoking processes on the microstructure, the texture and yield of Atlantic salmon(Salmo salar) fillets[J]. Food Research International, 2000, 33: 847-855
    42. Esaiassen M, Ostli J, Elvevoll E O, et al. Brining of cod fillets: influence on sensory properties and consumers liking[J]. Food Quality and Preference, 2004, 15:421-428
    43. Hattula T, Kiesvaara M. Breakdown products of adenosine triphosphate in heated fishery products as an indicator of raw material freshness and of storage quality[J]. Lebensm.-Wiss. u.-Technol, 1996, 29:135-139
    44.别春彦,许钟,杨宪时.淡腌黄鱼在不同温度下贮藏的微生物及品质变化[J].南方水产,2005,1(4):60-63
    45. Sallam KI, Ahmed AM, Elgazzar MM, et al. Chemical quality and sensory attributes of marinated Pacific saury (Cololabis saira) during vacuum-packaged storage at 4℃[J]. Food Chemistry, 2007,102 : 1061-1070
    46. Goulas A E, Kontominas M G. Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensory attributes[J]. Food Chemistry, 2007, 100:287-296
    47. Jeevanandamb K, Kakatkara A, Dokea SN, et al. Influence of salting and gamma irradiation on the shelf-life extension of threadfin bream in ice[J]. Food Research International, 2001, 34:739-746
    48.夏文水主编.食品工艺学[M].北京:中国轻工业出版社, 2007,1
    49.沈月新主编.水产食品学[M].北京:中国农业出版社,2001,4.
    50. Crean P B .The light pickle salting of cod[J] .Journal of Fisheries Research Board Canada 1961,18(5):833-844
    51.蒋雪梅.几种地方醉制水产品的加工[J].淡水渔业,2001,(5):37
    52.叶成利,杨爱群,谢丹,等.油炸榕江侗家腌鱼真空软包装生产工艺[J].中国水产,2000,(7):48-49
    53.钱名全.咸干鱼的加工[J].内陆水产,1998,(8):28-29
    54.张文华.黔东腌鱼软罐头生产工艺[J].食品科技,1999,(1):26-27
    55.丁松林.香椿扑鱼的研制[J].肉类工业,2002,(5):33-35
    56.张芝芬,吴汉民,黄晓春,等.糟醉鲳鱼的工艺研究[J].东海海洋,2001,(2):69-72
    57.陈维娟.咸鱼深加工工艺探讨[J].中国水产,2004,(4):74-75
    58. Mendelsohn J M. Rapid techniques for salt-curing fish: A review[J]. Journal of Food Science, 1974,39:125-127
    59.龚丽,李浩权,刘清化,等.半咸干鱼的加工工艺[J].食品与发酵工业,2004,30(9):130-132
    60.张弘.水产淡盐干制品加工技术[J].福建水产,2004,8(3):72-73
    61.凌建忠,李圣法,严利平.东海区主要渔业资源利用状况的分析[J].海洋渔业, 2006,28(2):111-116
    62.陈卫忠,李长松,胡芬.东海区海洋渔业资源近况浅析[J].中国水产科学, 1997,4(3):39-43
    1夏文水.食品工艺学[M].北京:中国轻工业出版社,2007,1
    2 AOAC. Methods of analysis (15th ed.). Washington DC: Association of Official Analytical Chemists. 1990
    3中华人民共和国国家标准.食品中氯化钠的测定方法GB/T 12457-90.
    4 Pérez-Olmos R, Herrero R, Lima JLFC, Montenegro MCBSM. Sequential potentiometric determination of chloride and nitrate meat product[J]. Food Chemistry, 1997,59:305-311
    5 Lapa RAS, Lima JLFC, Perez-Olmos R, et al. Simultaneous automatic potentiometric determination of acidity, chloride and fluoride in vinegar[J]. Food Control, 1995,6:155-159
    6万国民.电位滴定法测定食盐中的氯化钠含量[J].中国井矿盐,1997,4:39-41
    7那晓林,王树祥,苏艳丽.食盐中氯化钠含量的电极法测定[J].中国卫生检验杂志,1998,8(2):109-110
    8 Zhou M.S, Guo DL. Simultaneous determination of chloride, nitrate and sulphate in vegetable samples by single-column ion chromatography[J]. Microchemical Journal, 2000, 65: 221-226
    9 Alcazar A, Fernandez-Caceres PL, Martin MJ, et al.. Ion chromatographic determination of some organic acid , chloride and phosphate in coffee and tea[J]. Talanta, 2003, 61:95-101
    10袁建平.紫外检测离子色谱法测定调味品中的食盐含量[J].中国调味品, 1995,2:28-30
    11 Taylor RH, Grate TW. A flow injection analysis technique for the determination chloride using reflectance detection[J] . Talanta, 1995, 42(2):257-261
    12 Silva FV, Souza G.B, Ferraz LFM, et al. Determination of chloride in milk using sequential injection automated conductimetry[J]. Food Chemistry , 1999,67:317-322
    13 Chalk S J, Tyson J F. Determination of chloride by flow injection spectrophotometry with membrane reagent introduction[J]. Analytica Chimica Acta , 1998,366:147-153
    14 Couto CMCM, Lima JLFC, Montenegroo MCBSM. Construction and evaluation of a crystalline silver double-membrane tubular potentiometric detector for flow injection analysis. Application to chloride determination in wine[J]. Analysis, 1998, 26:182-186
    15 Velasco-Arjona A, Garcia-Garrido JA, Quiles.Zafra R, et al. Full automated robotic method for the determination of chloride, nitrite and nitrate in curing meat product[J]. Talanta, 1998, 46:969-976
    16大连轻工业学院主编.食品分析[M].北京:中国轻工业出版社,1994,10
    17王兆喜,汪敬武.比浊法在分析科学中的应用研究[J].江西化工,2002,4:11-15,22
    18张桂香,徐宝玲.“杂项”光度法测定工业盐中总氯量[J].海湖盐与化工,2003, 32:20-22
    19方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994,69-70
    20 McMahon M, Regan F, Hughes H. The determination of total germanium in real food samples including Chinese herbal remedies using graphite furnace atomic absorption spectroscopy[J]. Food Chemistry, 2006, 97:411–417
    21 Beatty S A, Fougere H. The processing of dried salted fish (Bulletin No. 112)[C]. Ottawa: Fisheries Research Board of Canada. 1957.
    22 Lauritzen K, Akse L. Quality of salt and salted fish[C]. Report no. 1/1995. Tromso (Norway): Pub. Fiskeriforskning. 1995
    23 Van Klaveren FW, Legendre R. Salted cod[M]. In G. Borgstorm (Ed.). Fish as Food (Vol. III,). New York:Edit. Academic Press Inc. 1965:133–163
    24 Wheaton F W, Lawson T B. Processing Aquatic Food Products[M]. New York: Wiley. 1985
    25 Arganosa G C, Marriott N G. Salt substitutes in canned luncheon meat[J]. Journal of Muscle Food, 1990,1: 207–216
    26 Gillette M. Flavor effects of sodium chloride[J]. Food Technology, 1985,39(6): 47–52
    27沈月新主编.水产食品学[M].北京:中国农业出版社,2001:209
    28 Brennan M H, Gormley T R. Use of trehalose for osmotic dehydration of cod and underutilized fish species. Osmotic dehydration and vacuum impregnation [M]. Technomic Publishing Company Inc: IN: Fito,P., Chilart A., Barat J M(ed) , 2001:133-141
    29 Roser B. Trehalose ,a new approach to premium dried foods[J]. Trends in Food Science and Technology, 1991,2:166-169
    30 Fito P, Pastor R. On some non-diffusional mechanisms occurring during vacuum osmoticdehydration[J]. Journal of Food Engineering. 1994,21:513-519.
    31 Fito P. Modelling of osmotic dehydration of foods .In Water in Foods. Fundamental Aspects and Their Significance in Relation to Processing of Foods[M]. P.Fito, A.Mulet, and B. Mckenna, eds. Londres :Elsevier Applied Science , 1994:313-328.
    63. Chiralt A, Fito P, Barat J M, et al. Use of vacuum impregnation in food salting process[J]. Journal of Food Engineering 2001 ,49 :141-151
    64. Stefanovskaya NV, Stefanovskii VM, Samoilova LV. Coefficient of salt diffusion in pike tissue[J]. izvestiya vysshikh uchebnykh zavedenii. Pishchevaya Tekhnologiya, 1976, 42:137-139
    65. Sakai M, Miki M. Transfer rates of salt in fish flesh[J]. Nippon Shokuhin Kogyo Gakkaiski, 1982, 29:490-495
    66. Sakai M, Suzuki A. Transfer rates of salt in fish flesh and into flesh through skin[J] .Nippon Shokuhin Kogyo Gakkaiski, 1985, 32:480-485
    67. Rodger G, Hastings R, Cryne C, et al. Diffusion properties of salt and acetic acid into herring and their subsequent effect on the muscle tissue[J]. Journal of Food Science, 1984, 49:714-720
    68. Zugarramurdi A, Lupin H M. A model to explain observed behavior on fish salting[J]. Journal of Food Science, 1980, 45:1305-1311
    69. Fito P. Modeling of vacuum osmotic dehydration of food[J]. Journal of Food Engineering, 1994, 22:313-328
    70. Rastogi NK, and Raghavarao KSMS. Kinetics of osmotic dehydration under vacuum[J]. Lebensm.-Wiss. u.-Technol., 1996, 29:669-672
    71. Rastogi NK, Raghavarao KSMS ,Niranjan K, et al. Recent developments in osmotic dehydration: methods to enhance mass transfer[J]. Trends in Food Science and Technology, 2002,13: 48-59
    72. Bohuon P , collignan A, Rios G M, et al .Soaking process in ternary liquids: Experimental study of mass transport under natural and forced convection[J]. Journal of Food Engineering, 1998, 37:451-469
    73. Azuara E, Beristain C I ,Gutierrez G F. A method for continuous kinetic evaluation of osmotic dehydration[J]. Lebensm Wiss u .Technol, 1998, 31:317-321
    74. Corzo O, Bracho N, Rodr uze J, et al. Study of equilibrium distribution coefficients of water and salt for osmotically dehydrated with vacuum pulse sardine sheets[J]. Fevista de la Facultad de Farmacia, 2004, 46(1):35-39
    75. Collignan A, Bohuon P, Deumier F, et al .Osmotic treatment of fish and meat products[J]. Journal of Food Engineering, 2001, 49:153-162
    76. Byrne H, Nesvadba P, Hastings R. Osmotic and diffusional treatment for fish processing and preservation Osmotic dehydration and vacuum impregnation [M]. Technomic Publishing Company Inc: IN: Fito,P., Chilart A., Barat J M(ed) , 2001, 111-122
    77. Shi J, Maguer M Le. Osmotic dehydration of foods: Mass transfer and modeling aspects[J]. Food Reviews International, 2002, 18(4):305-335
    78. Telis V R N, Romanelli P F, Gabas A L ,et al. Salting kinetics and salt diffusivities in farmed Pantanl caiman muscle[J]. Resq Agropec Bras,2003,38(4):529-535
    79. Deumier F, Mens F, Heriard-Dubreuil B, et al. Control of immersion process: A novel system for monitoring mass transfer tested with herring brining[J]. Journal of food engineering 1997,(32):293-311
    80. Wang DH, Tang JM, Correia L R. Salt diffusivities and salt diffusion in farmed Atlantic salmon muscle as influenced by rigor mortis[J]. Journal of Food Engineering ,2000 ,43 :115-123
    81. Medina-Vivanco M, Sobral P J A, Hubinger M D. Mass transfer during dewatering and salting of tilapia for different volume brine to fillets ratios[C]. International drying symposium 1998 V A, 852-859
    82. Deng J C. Effect of freezing and frozen storage on salt penetration into fish muscle immersed in brine[J] .Journal of Food Science, 1977, 42(2):348-351
    83. Colligan A, Raoult-Wack,A L. Dewatering through immersion in sugar/salt concentrated solutions at low temperature . An interesting alternative for animal foodstuffs stabilization [C]. In Drying’92 ,ed. A.S Mujumdar, Elsevier Science, Amsterdam 1992,1887-1897.
    84. Del Valle F R ,Nickerson J TR. Studies on salting and drying fish .1. Equilibrium consideration in salting[J]. Journal of Food Science 1967,32:173-179
    85. Crank J. The mathematics of diffusion.[M] 2nd ed .Oxford:Clarendon, 1975:414
    1. Hagen B F, Berdague J L, Holck AL, et al. Bacterial proteinase reduces maturation time of dry fermented sausages[J].Journal of Food Science.1996,61:1024-1029
    2. Mackie I M. The effects of freezing on flesh proteins[J]. Food Reviews International, 1993. 9(4): 575-610
    3.吴光红,洪玉菁,张金亮译.水产食品学[M].上海:上海科学技术出版社,1992,4
    4.沈月新主编.水产食品学[M].北京:中国农业出版社,2001,4
    5. Sa-Pereira P, Carvalho ASL, Costa-Ferreira M, et al. Thermostabilization of Bacillus subtillis CCMI 966 xylanases with trehalose study of deactivation kinetics[J]. Enzyme and Microbial Technology, 2004,34:278–82
    6. Guiavarc’h Y, Sila D, Duvetter T, et al. Influence of sugars and polyols on the thermal stability of purified tomato and cucumber pectinmethylesterases: a basis for TTI development[J]. Enzyme and Microbial Technology, 2003, 33:544–555
    7.万建荣,洪玉菁,奚印慈,等编译.水产品食品化学分析手册[M],上海:上海科学技术出版社,1993,2
    8.何照范,张迪清,编著.保健食品化学及其检测技术[M].北京:中国轻工业出版社,1998
    9. Bardford M. A rapid sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding[J]. Analytical Biochemistry, 1976, 7(2):248-252
    10. Yongsawatdigul J, Park J W. Thermal denaturation and aggregation of threadfin bream actomyosin[J]. Food chemistry, 2003,83:409-416
    11. Ellman,G.L. Tissue sulfhydryl groups[J]. Archives of Biochemistry and Biophysics, 1959,82:70-77
    12.汪家政,范明主编.蛋白质技术手册[M].北京:科学出版社,2000,8
    13. Saeed S, Howell N K. Rheological and differential scanning calorimetry studies on structural and textural changes in frozen Atlantic mackerel (Scomber scombrus)[J]. Journal of the Science of Food and Agriculture, 2004, 84:1216-1222
    14. Hayakawa S, and Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins[J]. Journal of Food Science, 1985,50(2):486-491
    15. Ko W C, Tanaka M, NagashimaY, et al. Effect of pressure treatment on depolymerization of fish actin[J]. Nippon Suisan Gakkaishi, 1990, 56(12):2109–2112
    16. Roura SI, MontecciaC, GoldembergAL, et al. Biochemical and physicochemical properties of actomyosin from pre and post-spawned hake stored on ice[J]. Journal of Food Science, 1990. 55: 688-692
    17. Roura SI, Crupkin M. Biochemical and functional of myofibrils from pre and post-spawned hake stored on ice[J]. Journal of Food Science, 1995. 60: 269-272
    18. Benjakul S, SeymourT S, Morrissey M T, et al. Physicochemical changes in Pacific whiting muscle proteins during iced storage[J]. Journal of Food Science, 1997,62:729–733
    19. Tambo T, Yamada N, Kitada N. Change in myofibrillar protein of fish muscle caused by soaking in NaCl solution[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1992, 58:677–683
    20. Auh J H, Lee H G, Kim J W, et al. Highly concentrated branched oligosaccharides as cryoprotectant for surimi[J]. Journal of Food Science, 1999, 64:418-422
    21. Benjakul S, Bauer F. Physicochemical and enzymatic changes of cod muscle protein subjected to different freeze-thaw cycles[J]. Journal of the Science of Food and Agriculture, 2000, 80:1143-1150
    22. Jiang S T, Hwang D C, Chen C S. Effect of storage temperature on the information of disulfides and denaturation of milkfish actomyosin (Chanos chanos)[J]. Journal of Food Science, 1988, 53:1333-1335
    23. Lim H K, Haard N F. Protein insolubilization in frozen Greenland halibut(Reinhardtius hippoglossoides)[J]. Journal of Food Science, 1984, 8:163-187
    24. Benjakula S, Visessanguanb W, Thongkaewa C, et al. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage[J]. Food Research International , 2003,36 :787-795
    25. Ishioroshi M, Samejima K, Yasui T. Further studies on the roles of the head and tail regions of the myosin molecule in heat-induced gelation[J]. Journal of Food Science, 1981, 47,114-120,124
    26. Gerbanowski A, Malabat C, Rabiler C, et al. Grafting of aliphatic and aromatic probes on rapseed 2S and 12S proteins: influence on their structural and physicochemical [J]. Journal of Agricultural and Food Chemistry, 1999, 47:5218-5226
    27.王克夷.疏水作用和蛋白质.生命的化学[J],1999 ,19(5 ):233-235
    28. Yongsawatdigul J, Sinsuwan S. Aggregation and conformational changes of tilapia actomyosin as affected by calcium ion during setting[J] .Food Hydrocolloids(2007,.in press)
    29. Morawetz,H. Conformational transitions in macromolecules[J]. Advances in Protein Chemistry, 1972, 26:243–248
    30. Morrissey P A, Mulvihill D M, O’Neill E M. Functional properties of muscle protein[M] In B J F Hudson(Ed.),Development in food protein, New York: Elsevier Science Pub, Co. 1987,pp:195-225
    31. Roura S I, Saavedra J P, Truco RE, et al. Conformational changes in actomyosin from post-spawned hake stored on ice[J]. Journal of Food Science, 1992, 57: 1109-1111
    32. Hastings R J, Rodger W, Park P, et al. Differential scanning calorimetry of fish muscle: the effect of processing and species variation[J]. Journal of Food Science, 1985, 50:503-510
    33. Park JW, LainerTC. Effect of salt and sucrose addition on thermal denaturation and aggregation of water-leached fish muscle[J]. Journal of Food Biochemistry, 1990,14: 395-404
    34. Ma C Y ,Harwalkar V R. Thermal analysis of food proteins[M]. Advances in Food and Nutrition Research 35, 317-366, Academic Press, 1991.
    35. Medina-Vivanco M, Sobral PJA, Sereno AM. et al Thermal analysis of osmotically dehydrated tilapia muscle: effect of sodium chloride and sucrose on denaturation temperature of myofibrilar proteins Drying 2004– Proceedings of the 14th International Drying Symposium (IDS 2004) S?o Paulo, Brazil, 2004, vol. C, 1859-1867
    36. Wright D J, Leach I B, Wilding P. Differential scanning calorimetric studies of muscle and its constituent proteins[J]. Journal of the Science of Food and Agriculture, 1977, 28:557-564
    37. Staburavik E, Martens H. Thermal denaturation of protein in post rigor muscle tissue as studied by differential scanning calorimetry[J]. Journal of the Science of Food and Agriculture, 1980,31: 1034-1042
    38. Quinn J R, Raymond D P, Harwalkar V R. Differential scanning calorimetry of meat protein as affected by processing treatment[J]. Journal of Food Science, 1980,45:1145
    39. Byler DM., BrouilletteJN, Susi H.[J] Spectroscopy , 1986,1(3):29-32
    40. Liu HZ, Yang WJ, Chen JY. Effects of surfactants on emulsification and secondary structure of lysozyme in aqueous solutions[J], Biochemical Engineering Journal, 1998, 2:187-196
    41. Surewicz W K, Mantsch H H. New insight into secondary structure from resolution enhanced infrared spectra[J]. Biochimica et Biophysica Acta ,1988 ,952 :115-130
    42. Bandekar J . Amide modes and protein conformation[J]. Biochim. Biophys. Acta, 1992,1120:123-143
    43. Baddii F, Howell N K. Effect of antioxidants, citrate, and cryoprotectants on protein denaturation and texture of frozen cod (Gadus morhua)[J].Journal of Agricluture and Food Chemstry, 2002, 50:2053-2061
    44. Bechtel PJ, Parrish F C J. Effects of postmortem storage and temperature on muscle degradation : analysis by SDS gel electrophoresis[J]. Journal of Food Science, 1983, 48:294-297
    45. Garcia I, Diez V, Zumalacarregui J M. Changes in proteins during the ripening of Spanish dried beef‘cecina’[J]. Meat Science, 1997, 46:379-385
    46. Duerr J D, Dyer W J. Protein in fish muscle, IV. Denaturation by salt[J]. Journal of Fisheries Research Board of Canada, 1952, 8:325-331
    47. Xiong Y L. Myofibrillar protein from different muscle fiber types: Implications of biochemical and functional properties in meat processing[J]. Critical Reviews in Food Science and Nutrition, 1994, 34:293-320
    48. Sano T, Noguchi SF, Matsumoto JJ , et al. Effect of ionic strength on dynamic viscoelastic behaviour of myosin during thermal gelation[J]. Journal of Food Science,1990,55:51-55.
    49. Gordon A, Barbut S. Effect of chloride salts on protein extraction and interfacial protein film formation in meat batters[J]. Journal of the Science of Food and Agriculture, 1992,58:227–238
    50. Patist A, Zoerb H. Preservation mechanisms of trehalose in food and biosystems[J] . Colloids and Surfaces B: Biointerfaces, 2005, 40:107–113
    51. Crowe J H, Corwe L M, Chapman D. Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum[J]. Arch Biochem Biophys,1983,220:477-484
    52. Sakurai Minoru, Inone Yoshio. Hydration characteristics of carbohydrates and physiological function of trehalose[J]. Seibutsu Butsuri, 1997,37(1): 326 (Japanese)
    53. Hill A R, Irvine DM, Bullock D H. Precipitation and recovery of whey protein. A review[J]. Can Inst Food Sci Technol J, 1982,15:155-160
    54. Lee J C, Timasheff SN. The stabilization of proteins by sucrose[J]. Journal of Biological Chemistry 1981, 256:7193–7201
    55. Arakawa T, Timasheff S N. Stabilization of protein structure by sugars[J]. Biochemistry 1982, 21: 6536–6544
    1. Carterette E, FriedmanMP. (Eds.) Flavour Chemistry[M]. Trends and Development; American Chemical Society: Washington, DC, 1989
    2. FilsingerB E, BarssiCA, Lupin HM, et al. An objective index for the evaluation of the ripening of salted anchovy[J]. Journal of Food Technology, 1982, 17:193–200
    3. Mattos A, Torrejon S, Gus P , et al. Study on the utilization of Engraulis anchoita for the preparation of anchovies[C]. In: Proceedings of the Conference on the Handling, Processing and Marketing of Tropical Fish. London: Tropical Product Institute. 1976, 257–259
    4. Roldan HA, Barassi CA, Trucco RE. Increase in free fatty acids during ripening of anchovies (Engraulis anchoita)[J]. Journal of Food Technology, 1985,20:581–585
    5. BaldratiG, Cassara A, Guidi G, et al. Technology of ripening of anchovies. I. Ripening of fresh and frozen anchovies under salt[J]. Industrie Delle Conserve, 1975, 50: 261–266
    6. Durand P. Study of the soluble nitrogen fraction of salted anchovies during aging[J]. Revue Des Travaux de L’Institute Des Peches Maritimes, 1982, 45:271–281
    7. Cha YJ, Lee GH. Aroma active compounds in salt-fermented anchovy[M]. In: Flavor and Lipid Chemistry of Seafoods (edited by K. R. Cadwallader)..Washington, DC: American Chemical Society. 1997, Pp. 131–147.
    8. Bellagha S, Amam I E, Farh T A , et al. Drying kinetics and characteristic drying curve of lightly salted sardine[J]. Drying Technology, 2002, 20 (7) : 1527- 1538
    9.申保庆,赵祥涛,何翔.低温真空干燥技术与设备的发展前景与适用范围[J].粮食流通技术,2004,4:32
    10. Schubring R. Differential Scanning Calorimetric investigations on pyloric caeca during ripening of salted herring products[J] .Journal of Thermal Analysis and Calorimetry, 1999, 57 :283-291
    11. Diaz O, Fernandez M, Garcia GD, et al. Proteolysis in dry fermented sausages: the effect of selected exogenous proteases[J]. Meat Science, 1997,46:115-128
    12. Shinmura Y, Yamada J, Fujii S, et al. Changes of water holding capacity, NO2 level, color forming ratio,and amount of nitrite and nitrate of cured pork loins during curing period[J]. Nippon Shokuhin Kogyo Gakkaishi, 1981,28:554–561 (in Japanese)
    13. Shenderyuk V I, Bykowski P J. in Seafood: resources, nutritional composition, and preservation[M].ed. Z. E. Sikorski, CRC, Boca Raton 1990, p. 147.
    14. Molly K, Demeyer D, Johansson GM, et al. The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project[J]. Food Chemistry, 1997, 59: 539-545
    15. Demeyer DI, Verplaetse A, Gistelinck M. Fermentation of meat: an integrated process[C]. In Proceedings of the 32nd Meeting of European Meat Research Workers, Ghent,Belgium, Session 5, 1986, pp. 241-247
    16. Johansson G, Berdague JL, Larson M, et al. Lipolysis, proteolysis and formation of volatiles components during ripening of fermented sausage with Pediococcus pentosaceus and Staphylococcus xylosus as starter cultures[J]. Meat Science, 1994, 38:203-218
    17. Toldra′F. Proteolysis and lipolysis in flavour development of dry cured meat products[j]. Meat Science, 1998, 49(Suppl. 1), S101–S110
    18. Toldra′F, Miralles MC, Flores J. Protein extractability in dry-cured ham[J]. Food Chemistry, 1992, 44(5):391–394
    19. Campello F. Microbiological approach of the maturation of anchovies[J]. Rev Trav Inst Peche Marit, 1985, 47(3/4):217–226
    20. Ucherek M. An integrated approach to factors affecting the shelf life of products in Modified Atmosphere Packaging (MAP)[J]. Food Reviews International 2004,20( 3):297–307
    21. Farber J M. Microbiological aspects of modified-atmosphere packaging technology. A review[J]. Journal of Food Protection, 1991, 54:58-70.
    22. Amanatidou A, Schluter O, Lemkau K, et al. Effect of combined application of high pressure treatment and modified atmospheres on the shelf life of fresh Atlantic salmon[J]. Innovative Food Science and Emerging Technologies, 2000, 1:87-98
    23. Anelich LE, Hoffman LC, & Swanepoel MJ. The influence of packaging methodology on the microbiological and fatty acid profiles of refrigerated African catfish fillets[J]. Journal of Applied Microbiology, 2001, 91:22-28
    24. Cakli S, Kilinc B, Dincer T, et al. Comparison of the shelf lifes of map and vacuum packaged hot smoked rainbow trout (Onchoryncus mykiss)[J]. European Food Research Technology, 2006,224:19-26
    25. Dhananjaya S ,Stroud GD. Chemical and sensory changes in haddock and herring stored under modified atmosphere[J]. International Journal of Food Science Technology , 1994, 29:575-583
    26. Erkan N, Ozden O, Alakavuk DU, et al. Spoilage and shelf life of sardines (Sardina pilchardus) packed in modified atmosphere[J]. European Food Research Technology, 2006, 222: 667-673
    27. Goulas A E, Chouliara I, Nessi E, et al. Microbiological, biochemical and sensory assessment of mussels (Mytilus galloprovincialis) stored under modified atmosphere packaging[J]. Journal of Applied Microbiology, 2005, 98:752-760.
    28. Hong LC, Leblanc EL, Hawrysh ZJ, et al. Quality of atlantic mackerel (Scomber scombrus L.) fillets during modified atmosphere storage[J]. Journal of Food Science, 1996, 61:646-651
    29. Masniyom P, Benjakul S, VisessanguanW. Combination effect of phosphate and modified atmosphere on quality and shelf-life extension of refrigerated seabass slices[J]. LWT, 2005, 38:745-756
    30. Ozogul F, Polat A , Ozogul Y. The effects of modified atmosphere packaging and vacuum packaging on chemical, sensory and microbiological changes of sardines (Sardina pilchardus)[J]. Food Chemistry, 2004, 85:49-57
    31. Pastoriza L, Sampedro G, Herrera JJ, et al. Effect of carbon dioxide atmosphere on microbial growth and quality of salmon slices[J]. Journal of the Science of Food and Agriculture, 1996, 72:348-352.
    32. Randell K, Hattula T, SkyttaèE, et al. Quality of filleted salmon in various retail packages[J]. Journal of Food Quality, 1999, 22:483-497
    33. Reddy NR, Roman MG, Villanueva M, et al. Shelf life and Clostridium botulinum toxin development during storage of modified atmosphere-packaged fresh catfish fillets[J]. Journal of Food Science, 1997, 62: 878-884
    34. Reddy NR, Villanueva M , Kautter DA. Shelf-life of modified atmosphere packaged fresh tilapia fillets stored under refrigeration and temperature-abuse conditions[J]. Journal of Food Protect, 1995, 58:908-914
    35.陈祥奎.超高压杀菌新技术[J].食品与发酵工业,1995, 4: 69
    36.大连轻工业学院等主编.食品分析[M].北京:中国轻工业出版社, 1994,10
    37. Witte V C, Krause G F ,Bailey M E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage[J]. Journal of Food Science, 1970, 35:582-585
    38. Gokoglu N, Cengiz E, Yerlikaya P. Determination of the shelf life of marinated sardine (Sardina pilchardus) stored at 4℃[J]. Food Control, 2004, 15:1-4
    39. Barat J M, Rodriguez-Barona S, Andres A, et al. Cod salting manufacturing analysis[J]. Food Research International, 2003, 36: 447-453
    40. Yashoda KP, Suryanarayana Rao SV. Studies on textural and histological changes in cured fish muscle[J] .Journal of Food Science Technology, 1998, 35(1):21-24
    41. Heran TL, Sgoutas SA, Heran JA, et al. Polyunsaturated fatty acids and fat in fish flesh for selectingspecies for health benefits[J]. Journal of Food Science, 1987,52(5):1209-1211.
    42.郭振德,刘莉政,郑淑贞,等.鳗鱼骨油的脂肪酸组成分析[J].广州化学,1997, 1:35-38
    43.吴惠勤,程志青,张桂英. GC/MS法分析鳗鱼骨油的脂肪酸[J].分析测试学报, 1995, 14(5):28-30
    44. Buffler, C. Microwave cooking and processing[M]: Engineering Fundamentals for the Food Scientist; AVI Book: New York, 1993; 6-7, 157-158
    45. Decearau RV, Peterson R. Microwave processing and engineering[M]. Ellis Horwood: Chichester, 1986,18-21
    46. Kilara, A. Enzyme-modified protein food ingredients[J]. Process Biochemistry. 1985, 20: 149-158
    47. Iida H.Studies On the accumulation of dimethyl-propiothetin and the formation of dimethyl sulfide in aquatic organisms[J].Bul1.Tokairey.Fish.Res.Lab,1988,124:35-63
    48. Mansur M A, Bhadra A, Takamura H, et al. Volatile flavor compounds of some sea fish and prawn species[J]. Fisheries Science, 2003, 69: 864–866
    49. Josephson DB, Lindsay RC, Stuiber. Identification of compounds characterizing the aroma of fresh whitefish(Coregon us clupeaformis )[J]. Journal of Agriculture & Food Chemistry. 1983, 31: 326-330
    50.江健,王锡昌,陈西瑶.顶空固相微萃取与GC-MS联用法分析淡水鱼肉气味成分[J].现代食品科技2006,22(2):219-222
    51.陈俊卿,王锡昌.固相微萃取与气质联用法分析鱼肉中气味成分[J].广州食品工业科技,2004, 20(3):117-118
    52.王锡昌,陈俊卿.顶空固相微萃取与气质联用法分析鲢肉中风味成分[J].上海水产大学学报, 2005, 14(2):176-180
    53.谭汝成,熊善柏,鲁长新,等.加工工艺对腌腊鱼中挥发性成分的影响[J].华中农业大学学报,2006,25(2):203-207
    54. Sivertsvik M, Jeksrud WK, Rosnes JT. A review of modified atmosphere packaging of fish and fishery products-significance of microbial growth, activities and safety[J]. International Journal of Food Science and Technology , 2002, 37:107-127
    55. Dalgaard P , Fresh and lightly preserved seafood[M]. In C. M. D. Man & A. A. Jones (Eds.), Shelf-life evaluation of foods. Gaithersburg, MD, USA: Aspen Publishing Inc, 2000, pp:110-139
    56. Ruiz-Capillas C , Moral A. Sensory and biochemical aspects of quality of whole bigeye tuna (Thunnus obesus) during bulk storage in controlled atmospheres[J]. Food Chemistry, 2005, 89(3):347-354
    57. EI Marrackchi A, Bennour M, Bovchritt N, et al. Sensory, chemical and microbiological assessments of Morroccan sardines (Sardina pilchardus) stored in ice[J]. Journal of Food Protection, 1990, 53(7): 600-605
    58. Sikorski ZE, Kolakowska A , Burt JR. Post harvest biochemical and microbial changes. Seafood: resources, nutritional composition and preservation[M]. Boca Raton, Florida: CRC Press Inc. 1989
    59. Goulas AE , Kontominas MG. Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensoryattributes[J]. Food Chemistry, 2007, 100:287-296
    60. Shakila RJ, Vijayalakshmi K , Jeyasekaran G. Changes in histamine and volatile amines of six commercially important species of fish of the Thoothukkudi coast of Tamil Nadu, India stored at ambient temperature[J]. Food Chemistry, 2003, 82:347-352
    61. Gram L, Dalgaard P. Fish spoilage bacteria—problems and solutions[J]. Environmental Biotechnology, 2002, 13:262-266
    62. Jorgensen BR , Gibson DM, Huss HH, Microbiological quality and shelf life prediction of chilled fish[J]. International Journal of Food Microbiology, 1988,6: 295-307
    63. Ozogul Y, Ozyurt G, Ozogul F, et al. Freshness assessment of European eel (Anguilla anguilla)by sensory, chemical and microbiological methods [J]. Food Chemistry, 2005, 92:745-751
    64. Aubourg SP. Review: interaction of malondialdehyde with biological molecules– new trends about reactivity and significance[J]. International Journal of Food Science and Technology, 1993, 28:323-335
    65. Connell JJ (Eds.). Methods of assessing and selecting for quality[M]. In Control of fish quality, (3rd ed). Oxford: Fishing News Books, 1990, pp:122-150
    66. Varlik C, Ugur M, Gokoglu N ,et al. Su urunlerinde kalite kontrol ilke ve yontemleri. Gida Teknolojisi Dernegi, 1993,17: 16–17 (in Turkish)
    67. Gram L, Huss H H. Microbiological spoilage of fish and fish products[J]. International Journal of Food Microbiology, 1996, 33:121-137
    68. Gram L, Huss H H. Fresh and processed fish and shellfish[M]. Lund. B. M., Baird-Parker, T. C., Gould, G. W. The Microbiological Safety and Quality of Food. Gaithersburg Maryland USA: Aspen Publishers Inc, 2000, 472-506.
    69. Huss H H, Dalgaard P, Gram L. Microbiology of fish and fish products[M]. In J. B. Luten, T. Borresen, & J. Oehlenschlager (Eds.), Seafood from producer to consumer, integrated approach to quality. Amsterdam: Elsevier Science Publishing. 1997, pp:413-430.
    70.刘云宏,朱文学,董铁有等.食品高压杀菌技术[J].食品科学, 2005-S1:157-160
    71. Wada S. in High Pressure and Biotechnology[J],edited by C.Balny ,R ,Hayashi ,K. Heremans and P.Masson ,Editions John Libbey Eurtoext ,Montrouge , 1992. 235
    72. Roser B, Trehalose, a new approach to premium dried foods[J]. Trends in Food Science & Technology, 1991, 2:166-169
    73. Otting G, Liepinsh E ,Wuthrich K. Protein hydration in aqueons solution[J]. Science , 1991 ,254 :974
    74. Frank F, Hatley, RHM, et al. Materials Science and the production of shelf - stable biologicals[J] .Biopharmaceutical. 1991 ,4 :38
    75. Patist A, Zoerb H. Preservation mechanisms of trehalose in food and biosystems[J] . Colloids and Surfaces B: Biointerfaces, 2005, 40:107–113
    76.李爱民,张银志,徐晖.海藻糖的研究与应用[J].汉中师范学院学报(自然科学), 2003,21(2):89-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700