路面病害光学无损检测技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学无损检测技术涉及光学、图像处理、信息处理、模式识别等多种学科领域。是一种不干扰待测场分布的测量诊断技术。本文提出的光学无损路面病害自动检测算法,针对目前路面病害检测算法存在的精度低、适用范围窄、自动化水平低的缺陷,着重研究了复杂背景下裂纹病害的提取以及病害的自动分类问题。主要工作内容和研究成果简述如下:
     1.本文提出了基于Ridgelet变换域的模糊自适应图像增强算法,利用在傅里叶变换域给出的Radon变换积分投影与原场分布在频域上的联系,实现离散Radon变换投影切片定理。并提出Radon变换重建原图像的基本条件;利用广义模糊集合概念和最大模糊熵原理,提出一种自适应设置模糊增强函数方法,使得增强后的图像在抑制噪声、增强特征方面达到较好折衷。
     2.提出基于Curvelet变换域的路面图像去噪算法。Curvelet变换综合了Ridgelet擅长表示直线特征和小波适于表现点状特征的优点,并充分利用了多尺度分析独到的优势,适用于路面中网状裂纹的增强去噪。针对Curvelet系数稀疏矩阵表示出来的局部结构信息设计了一种自适应的消噪处理方法,对局部邻域中心点的高频Curvelet系数进行处理得出新的Curvelet系数,以达到去噪的效果。
     3.提出了一种基于亚像素多重分形原理求取图像奇异性的新型算法,降低了单纯依靠整数像素位置灰度级梯度信息计算边缘测度所产生的误差。该算法结合CCD成像机理给出在亚像素位置的灰度级梯度分布规律,利用多重分形理论将实际图像分割成一系列具有不同奇异性指数的分形集合,对应着从边缘到纹理各层面的图像内容。采用多重分形理论并结合具体图像的物理和统计特性进行路面裂纹病害图像分割的分析,通过奇异性指数的概率分布以及最奇异指数值可判断图像中有无裂纹病害。
     4.本文最后介绍了自行研制的路面裂纹病害自动检测系统的框架结构。主要由图像采集和病害检测两大模块组成。详细说明了系统中图像采集模块的设备运行参数,以及病害检测模块的工作流程。目前该系统已经投入使用,并完成多条高等级公路的检测任务。实际使用结果表明本系统的正确率在90%以上。
The optical nondestructive examination is involved with many kinds of disciplinedomains, such as optics, image processing, information processing, and pattern recognition.The technology can measure the observation object without interferencing the field. In thisdissertation, the pavement damage automatic detection arithmetic is proposed based on theoptical nondestructive examination. In the current pavement damage detection arithmetics,there exist the defects such as low accuracy, narrow scope of application and lowautomation level. Then we lay stress on the method of abstracting and classifying thecracks under the complicated background. The main work is described as follows:
     1. The implement algorithm of adaptive fuzzy image enhancement is proposed inRidgelet transform domain. The discrete Radon projection slice theorem is brought basedon the integral projection of Radon transform and original field distribution in the Fourierdomain. The basic condition of reconstructing the original image through Radon transformis proposed. The algorithm of adaptive fuzzy image enhancement is put forward based onthe generalized fuzzy set and the maximum fuzzy entropy. The processed image is thebetter compromise between enhancing the characteristics and inhibiting the noise.
     2. The pavement image denoise algorithm is proposed based on the Curvelet transform.Curvelet transform generalized the Ridgelet feature representing the straight line and theWavelet trait characterizing the point. And it takes full advantage of the multiscale analysis.It is applicable to enhance the alligator cracks. The method of adaptive denoise is proposedbased on the local information denoted by the Curvelet transform coefficient matrix.Derived from the Curvelet high frequency coefficients of local central point, the processedCurvelet coefficients can enhance the object.
     3. In order to analyze image singularity and the features of the different sections, a newmultifractal algorithm is proposed based on sub-pixel edge measure. The greylevelgradient areal density function and edge-measure of random subsets (radii can reach theprecision of sub-pixel) are obtained by the square aperture sampling law on the position ofsub-pixel. Utilized the multifractal frame, the image can be segmented into a series fractalsets of the different singularity exponents. The existing cracks can be judged by probabilitydistribution of singularity exponents and the most singular exponent.
     4. In the end, the automatic detection system for pavement damage is presented. It isconsisted of image collection and pavement damage detection. The working parameters of the apparatus and the workflow of the detection have been presented in details.Now thesystem has been gone to service and completed several highway detection tasks. Theresults show that the accuracy of the indexes of the experiments has reached above 90%.
引文
1 徐培华,高等级公路路基路面养护技术,北京,人民交通出版社,2003
    2 2005年公路水路交通行业发展统计公报,交通部网站,www.moc.gov.cn
    3 盛安连,路基路面检测技术,北京,人民交通出版社,1996
    4 Chakravarthy Bhagvati, Michael M. Skolnick, Dimitri A. Grivas, Gaussian Normalization of Morphological Size Distributions for Increasing Sensitivity to Texture Variations and its Application to Pavement Distress Classification. IEEE pp.700-703(1994)
    5 L. Li, P. Chan and R. L. Lytton, Images Detection of Thin Cracks on Noisy Pavement. Transportation Research Record 1311, 1991.
    6 H. D. Cheng, M. Miyojim, Automatic Pavement Distress Detection System, Journal of Information Sciences, 108(1998) 219-204.
    7 David H. Kil, Frances B. Shin. Automatic Road-distress Classification and Identification Using a Combination of Hierarchical Classifiers and Expert Systems—subimage&Object Processing. IEEE pp. 414-417, 1997
    8 H. Lee and H. Oshima, New Crack-imaging Procedure Using Spatial Autocorrelation Function. Journal of Transportation Engineering, Vol. 120, No. 2, March/Aprol, 1994.
    9 Randal C. Nelson, Finding Line Segments by Stick Growing. IEEE Transactions On Pattern analysis and machine intelligence. Vol. 16(5), pp. 519-523; 1994.
    10 S. A. Velinsky, K. R. Kirshke, Design considerations for automated pavement crack sealing machine, in: Proceedings of the second international conference on applications of advanced technologies in ransportation Engineering, 18-21 August 1991, pp77-80.
    11 Satoshi Abe, Toshio Abe, Hisao Sato, Taizo Okano, Koki Sengoku, System Integration of Road Crack Evaluation System, SPIE Vol. 1907, pp. 38-48, 1993.
    12 Naoki Tanaka, Kenji Lematsu, A Crack Detection Method In Road Surface Images Using Morphology. MVA' 98 LAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chiba, Japan.
    13 Yong Gen Huang, Howard Tillotson, Martin Snaith, Massively Parallel Computing Techniques Might Improve Highway Maintenance. Concurrency, IEEE [see also IEEE Parallel&Distributed Technology], Volume:6 Issue: 1, Jan-Mar 1998 Page (s): 58-67.
    14 Hosin Lee, Application of machine vision techniques for the evaluation of highway pavements in unstructured environments. Advanced Robotics, 1991. Robots in Unstructured Environments', 91 ICAR., Fifth international Conference on, 19-22 Jun 1991, Page (s): 1425-1428 vol. 2
    15 Liviu Bursanescu, Fran}ois Blais, Automated pavement distress data collection and analysis:a 3-D approach. 3-D Digital Imaging and Modeling 1997. Proceedings. International Conference on Recent Advances, 12-15 May 1997 Page (s): 311-317.
    16 H. D. Cheng, Automated real-time pavement distress detection using fuzzy logic and neural networks. SPIE vol. 2946, pp. 140-151.
    17 H. D. Cheng, Jim-Rong Chen, A novel fuzzy logic approach to pavement distress detection. SPIE, vol. 2946, pp. 97-108.
    18 Tomikawa, A study of road crack detection by the meta-genetic algorithm. IEEE, 1999, vol. 1, pp. 543-548.
    19 JaChing Chou, Wende A.0' Neil, Pavement Distress Classification Using Neural Networks. IEEE, 1994, Vol. 1, pp. 397-401.
    20 S. Paquis, V. Legeay, H. Konik, J. Charrier, Multiresolution Texture Analysis applied to Road Surface Inspection. SPIE, vol. 3652, 1999, pp. 242-245.
    21 Philippe Delagnes, Dominique Barba, A Markov Random For Rectilinear Structure extraction in Pavement Distress Image Analysis. IEEE pp. 446-449 (1995).
    22 H. N. Koutsopoulos, A. B. Downey, Primitive-Based Classification of Pavement Cracking Images. Journal of Transportation Engineering, Vol. 119, No. 3, May/June, 1993.
    23 K. M. Chua, L,Xu, Simple Procedure for Identifying Pavement Distresses from Video Images. Journal of Transportation Engineering, Vol. 120,No.3, May/June, 1994.
    24 Roger Howe, An Assessment of the Feasibility of Developing and Implementing an Automated Pavement Distress Survey System Incorporating Digital Image Processing. Final report.
    25 Harry C. S.Rughooputh, Soonil D. D. V. Rughooputh, Jason Kinser. Automatic Inspection of Road Surfaces. In Machine Vision Application in industrial Inspection, Proceedings of SPIE vol. 3966, pp. 349-356(2000)
    26 潘玉利,路面管理系统原理,人民交通出版社,1998。
    27 常魁和,高群,公路沥青路面养护新技术,人民交通出版社,2001。
    28 中华人民共和国行业标准,《公路沥青路面养护技术规范》,(TTJ 073.2-2001),北京,人民交通出版社,2001。
    29 Kenneth H. McGhee, Automated Pavement Distress Collection Techniques, WASHINGTON, D. C., Transportation Research Board, 2004.
    30 蒋彬,刘淑荣,基于图象识别的公路路面破损自动检测研究进展,东北公路,2002 Vol.25 No.3。
    31 Fukuhara, Automatic Pavement-Distress-Survey System. ASCE Journal of Transportation Engineering, Vol. 116, No. 3, May/June, pp.280-286. (1990)
    32 IMS, An Image Processing Overview of the PAVUE Fully Automated Surface Distress System. (1996)
    33 P. Offrell, Automatic Crack Measurement in Sweden. Pavement Surface Characteristics. Ⅳ'th international Symposium "SURF 2000". Proceedings pp. 497-506. Nantes (France), 22-24 May 2000.
    34 J Pynn, A Wright and R Lodge, Automatic Identifacation of Cracks in Road surfaces. Proceedings of 7th International Congress on Image Processing and its Applications, vol .2, pp671-675, IEE 1999.
    35 Kelvin C. P Wang, Robert P. Elliott. Investigation of Image Archiving for Pavement Surface Distress Survey. A final report submitted to Mack-Blackwell Transportation Center. July 26, 1999.
    36 高建贞,任明武,杨静宇,路面裂缝的自动检测与识别。计算机工程.2003 029(002)pp149-150
    37 王荣本,王超,初秀民,路面破损图像识别研究进展,吉林大学学报(工学版),2002,10,Vol.32No.40
    38 L. Li, P. Chan and R. L. Lytton, Images Detection of Thin Cracks on Noisy Pavement. Transportation Research Record 1311, 1991.
    39 Kaseko. M. S. Ritchie. S. G. A neural network-based methodology for pavement crack detection and classification. Tans. Resc. 1993. 1(14), 275-291.
    40 Cheng. H. D., Chen. J. R., Glazier. C, et al. Novel approach to pavement distress detection based on fuzzy set theory. J. Comput. Civ. Eng., 1999, 13(4): 270-280.
    41 Cheng. H. D, Wang. J., Hu. Y. G., et al., A novel approach to pavement cracking detection based on neural network. Transportation Research Record 1764, Transportation Research Board, Washington, D, C., 2001, 119-127.
    42 W. Liu, T. F. Fwa, Wavelet analysis for pavement roughness studies, in Proc. 8th Int. Conf. on Application of Advanced Technologies in Transportation. Engineering. 2004, 455-459.
    43 W. Liu, T. F. Fwa, and Z. Zhao, Wavelet analysis and interpretation of road roughness, J. Transp. Eng. 2005, 131(2), 120-130.
    44 N. Oguri, K. Himeno, A. Kawamura, and R. Nakamura, Application of wavelet analysis on evaluation of roughness of pavement surfaces, in Proc. 4th Int. Symp. on Pavement Surface Characteristics of Roads and Airfields,2000, 57-66.
    45 Donoho D L. Orthonormal ridgelets and linear singularities. Technical report. Stanford Univ.,1998
    46 Candes E J. Ridgelet: theory and application. Ph. D dissertation, Stanford Univ., 1998.
    47 Candes E J. Monoscale ridgelets for the representation of images with edges. Technical report. Stanford Univ., 1999.
    48 Candes E J, Donoho D L. Curvelets: a surprisingly effective non-adaptive representation for objects with edges. Technical report. Stanford Univ., 1999.
    49 L. G. Roberts. "Machine Perception of Three-Dimensional solids", in Optical and Electro-Optical Information Processing, MIT Press; Cambridge, MA, 1965, 159-197.
    50 J. M. S. Prewitt, "Object Inhancement and Extraction," in Pictrue Processing and Psychopictorics, Academic Press, New York, 1970.
    51 E. argyle, "Techniques for Edge Detection", Proc. IEEE, 59, 2, 1971,285-287.
    52 A. P. Paplinski, "Directional filtering in Edge Detection", IEEE Trans, Image Processing, IP-7,4 1998, 611-615.
    53 J. Canny, "A computational Approach to Edge Detection", IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-8, 6, 1986, 679-698.
    54 A. Huertas and G. Medioni, "Detection of Intensity Changes Using Laplacian-Gaussian Masks", IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-8, 5, 1986, 651-664.
    55 R. M. Haralick, "Digital Step Edges from Zero Crossing of Second Directional Derivatives", IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-6, 1, 1984, 58-68.
    56 J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex fourier series", Mathematics of computation 19, 90, 1965, 297-301.
    57 G. A. Mastin, "Adaptice filters for digital image noise smoothing: An Evaluation", Computer vision, Graphics, and Image processing, 31, 1, 1985 103-121.
    58 J. S. Walker, A primer on Wavelets and their scientific applications, Chapman & Hall CRC Press, Boca Raton, FL, 1999.
    59 S. Mallat, A wavelet tour of signal processing, Academic Press, New York, 1998.
    60 Mallat S. Zhong S. Characterizationof signal from multi-scale edges. IEEE Transaction On Pattern Analysis and Machine Intelligence, 1992,14(7):710~732.
    61 Mallat S著,扬力华等译.信号处理的小波导引.北京:机械工业出版社,2002
    62 Donoho D L. Orthonormal ridgelets and linear singularities. Technical report. Stanford Univ., 1998
    63 Candes, E. J, Donoho D. L, Ridgelets: The key to High-Dimensional. Intermittency? Phil. Trans. R. Soc. Lond. A. 1999(357): 2495-2509.
    64 Mallat S, A Wavelet Tour of Signal processing. [M]. Beijing: Engineering Industry Press, 2002, 166~182
    65 Candes E J. Monoscale ridgelets for the representation of images with edges. Technical report. Stanford Univ., 1999.
    66 S. G. Mallat, "A theory for multiresolution signal decomposition: The Wavelet Representation", IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-11, 7, 1989, 674-693.
    67 Ray Snyder, Lambertus Hesslink. High speed Optical tomography for flow visualization. Applied Optics, 1985, (12): 4046-4051
    68 Depang Yan, Soyoung Stephen Cha, Computational and Interferometric System for Real-Time Limited-View Tomography of Flow Fields, Appl. Opt., 1998, (37): 1159-1164
    69 Natterer F., The mathematics of computerized tomography, John Wiley &Sons Ltd and Teubner, Stuttgart, 1986
    70 Donoho D L. Emerging application of geometric multiscale analysis. ICM,2002, 1: 209~233.
    71 S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. On PAMI: 674-693,1989.
    72 Yao Hongbing, He Anzhi. Improvement of The Reconstruction Algorithm of Optical Computerized Tomography [J], Acta Optical Sinica(光学学报), 2004, 24(2); 158~161(in Chinese)
    73 Yao Hongbing, He Anzhi, Wu Yingchuan, etc. Three-Dimensional Tomography of Incomplete Data with Fusion of Virtual and Real Experiments[J], Acta Optical Sinica(光学学报), 2005, 25(4); 479~484(in Chinese)
    74 Donoho, D. L. Ridge functions and orthonormat ridgelets.[J]. Approx. Theory, 2001, 111(2): 143-179.
    75 姚卫.相位场干涉层析的理论和方法研究[D].南京:南京理工大学,1998.41~43.
    76 Daubechies I, Orthogonal bases of compactly supported wavelets. Comm. Pure applied Math, 41: 909-996.
    77 Daubechies I, Ten Lecture on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, Philadephia, SIAM, 1992.
    78 Do M N, Vetterli M. Orthonormal finite ridgeket transform for image compression. Proc. IEEE Int. Conf. Image Processing. 2000.
    79 陈武凡.小波分析及其在图像处理中的应用,科学出版社,2002.
    80 程正兴,小波分析算法与应用,西安交通大学出版社,1990.
    81 刘贵忠,邸双亮,小波分析及其应用,西安电子科技大学出版社,1997.
    82 肖亮,吴慧中,韦志辉.基于图像内容的脊波变换域数字水印模型和算法研究[J].电子与信息学报.2004 26(9):1441-1448.
    83 Donoho D L. Denoising by soft-thresholding[J]. IEEE Trans. on Information heory, 1995,41:613-627.
    84 Stein, C., Estimation of the mean of a multivariate normal distribution, Ann.Statist., 9(1981), 1135-1155
    85 李弼程,郭志刚,文超.图像的多层次模糊增强与边缘提取[J].模糊系统与数学,2000,14(4):77-83.
    86 V. S. Nalwa and T. O. Binford, "On detecting edges", IEEE Trans, Pattern Analysis and Machine Intelligence, PAMI-6,1986, 699-714.
    87 J. R. Fram and E. S. Deutsch, "On the Ebaluation of Edge Detection Schemes and Their Comparison with Human Performance", IEEE Trans, Computers, C-24,6, 1975, 616-628.
    88 D. L. Donoho, M. R. Duncan: Digital curvelet transform:Strategy, implementation and experiments. In: Proc, SPIE. San Jose, CA: SPIE Press, 2000. 12-30
    89 隆刚,肖磊,陈学俭.Curvelet变换在图像处理中的应用综述,计算机研究与发展,42(8):1331-1337,2005
    90 E. J Candes, F. Guo. New multiscale transform, minimum total variaation synthesis: Applications to edge-preserving image reconstruction. Signal Processing,2002, 82(11): 1519-1543
    91 王刚,贺安之,肖亮.基于高速公路裂纹局部线性特征内容的脊波变换域算法研究[J]光学学报,2006.26(03):341-346.
    92 Chipman L J, Orr T M, Graham L N. Wavelets and image fusion [A] Proceedings of the IEEE International Conference on Image Processing [C], 1995. 248-251.
    93 Do M N, Vetterli M. The Finite Ridgelet Transform for Image Representation[J], IEEE Transcations on Image Processing, 2003, 12(1): 16.
    94 E. J. Candes, D. L. Donoho. Curvelets-A surprisingly effective nonadaptive representation for objects with edges[C]. In: Curves and Surfaces.Nashville, TN: Vanderbilt Univ. Press, 2000, 105-120.
    95 E. J. Candes, D. L. Donoho. Curvelets, multiresolution representation, and scaling laws. In: proc. SPIE. San Jose, CA: SPIE press, 2000. 1-12
    96 Candes E. J., Monoscale ridgelets for the representation of images with edges. Technical Report, Department of Statistics, Stanford University, 1999.
    97 Candes, E. J. and Donoho, D. (1999)Curvelets: a surprisingly effective nonadaptive representation for objects with edges, in Curves and Surfaces Ⅳ ed. P.-J. Laurent.
    98 J. L. Starck, E. J. Candμes, and D. L. Donoho,\The curvelet transform for image denoising,"[J] IEEE Trans. Image Proc. 2002. vol. 11: 670-684
    99 Tony T. Cai, Bernard W. silverman. Incorporating information on Neighbouring Coefficients into wavelet estimation. The Indian Journal of Statistics. 2001, 63(2B): 127-148
    100 Jean-Luc STARCK,Fionn MURTAGH, Emmanuel J. CANDES,et al. Gray and Color Image Contrast Enhancement by the Curvelet Transform. IEEE Trans Image Proc,2003 12(6): 706-716
    101 Stephen MALLAT. A Wavelet Tour of Signal Processing[M]. YANG Li-hua. Beijing: China Machine Press, 2003
    102 王海晖,彭嘉雄,吴巍.采用交互信息量评价遥感图像融合结果的方法.华中科技大学学报(自然科学版),2003,31(12):32~34
    103 杨静,王岩飞,刘波.一种新的非抽取提升结构小波变换图象融合算法.光子学报,2004,33(6):728~731
    104 胡良梅,高隽,何柯峰.图像融合质量评价方法的研究.电子学报,2004,32(12A):218~221
    105 Wang Zhou, Bovik A C. A universal image quality index. IEEE Signal Processing Letters, 2002, 9 (3): 81~84
    106 Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600~612
    107 Pentland A "Fractal-based description of nature scene"IEEE Trans. Pattern Anal. Machine Intetl. Vol. 6(6) 1984, pp. 661-674.
    108 E. Ebert, Analysis of polar clouds from satellite imagery using pattern recognition and a statistical cloud analysis scheme, J. of Appl. Meteor. 28(1989) 382-399.
    109 Legrand P, Vehel L J. "Local regularity-based image denoising". IEEE International Conference on Image Processing. Vol. ICIP03. 2003, pp. 377-380.
    110 Ma Zhaomian, Tao Chunkan. "Artificial object detection in natural backguoud". Chinese Journal of Lasers., Vol. A27(3), 2000, pp. 237~242.
    111 J. Arrault, A. Arn'eodo, A. Davis, A. Marshak, Wavelet-based multifractal analysis of rough surfaces: pplication to cloud models and satellite data, Phys. Rev. Lett. 79 (1997) 75-79.
    112 Y. Arnaud, M. Desbois, J. Maizi, Automatic tracking and characterization of african convective systems on Meteosat pictures, J. of Appl. Meteor. 31 (1992) 443-493.
    113 A. Baraldi, F. Parmigianni, An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters, IEEE Trans. on Geosc. and Rem. Sens. 33 (2) (1995) 293-304.
    114 Vehel L J. Multifractal segmentation[J]. Fractals, 1994, 2(3): 371-377.
    115 Decoster N. Roux S G. Arneodo A. A wavelet-based method for multifractal image analysis. Il. Application to synthetic multifractal rough surface[J]. European Phisical Journal B. 2000, 3(15): 704-739.
    116 吴更石,梁德群,田原,基于分形维数的纹理图像分析[J]。计算机学报,1999,22(10):1109-1113.
    117 Turiel A, Parga N. The multi-fractal structure of contrast changes in natural images: from sharp edges to texture[J]. Neural computation. 2000, 12(4): 763~793.
    118 Turiel A, Mato G. The self-similarity properties of natural images resemble those of turbulent flows[J]. Physical Review Letters. 1998, 80 (5): 1098-1101.
    119 Turiel A, Pozo A D. Reconstructing images from their most singular fractal manifold[J]. IEEE trans. on image processing, 2002, 11(4): 345-350.
    
    120 C.-K. Lee, C.-C. Ho, D.-S. Yu, C.-C. Wang, Fractal analysis of temporal variation of air pollutant concentration by box counting, Env. Model, and Soft. 18 (3) (2003) 243-251.
    
    121 J. Grazzini, A. Turiel, H. Yahia, Entropy estimation and multiscale processing in meteorological satellite images, in: Proc, of Int. Conf. on Patt. Recogn., Vol. 3, 2002, pp. 764-768.
    122 A. Nevado, A. Turiel, and N. Parga: Scene dependence of the non-gaussian scaling properties of natural images Network: Computation in Neural Systems. 2000 11 (2):131-152.
    123 Jiang Lihui, Zhao Chunhui, Wang Qi. Algorithm about Suppressing Speckle Noise in Coherent Laser Radar lmagery[J]. Acta Optica Sinica. 2003,23(5): 541-546.
    124 WangQuquan, LiLin, HouYong et al.. Spectrum Enlargement and Wavelet Transform on Planar Fractal by Improved 4f Fourier Optical System[J]. Acta Optica Sinica. 2000, 20(2):219-223.
    125 Li Ming, Wu Yan, Wu Shunjun. Multiple Feature Data Fusion Method in Color Texture Analysis[J]. Acta Optica Sinica. 2004. 24(12):1617-1622.
    126 Guiheneuf B and Vehel L J. Image enhancement through multifractal analysis[R]. Technical report. INRIA, 1996.
    127 Lyvers E P, Mitchell O R, Mark L, etal. Subpixel Measurement using a moment-based edge operator.. IEEE Transaction on Pattern Analysis and Machine Intelligence. 1989 11 (12):1293-1308.
    128 Turiel A, Mato G, et al. The self-similarity properties of natural images resemble those of turbulent flows. Physical Review Letters, 1998, 80 (5): 1098-1101.
    129 Decoster N, Roux S G and Arneodo A. A wavelet-based method for multifractal image analysis.II.Application to synthetic multifractal rough surface. The European Physical Journal B,2000,15:739-704.
    130 S. Mallat and S. Zhong, "Wavelet transform maxima and multiscale edges," in Wavelets and their applications,Ruskai M. B. et al, Ed. Jones and Bartlett, Boston, 1991.
    131 A. Turiel, C.J. Perez-Vicente and J. Grazzini, "Numerical methods for the estimation of multifractal singularity spectra on sampled data: A comparative study" Journal of Computational Physics, 216, 362-390(2006)
    132 J. Grazzini, A. Turiel, H. Yahia, Analysis and comparison of functional dependencies of multiscale textural features on monospectral infrared images, in: Proc. of Int. Geosc. Rem. Sens. Symp., Vol. 3,2003, pp. 2045-2047.
    133 W.K. Pratt,Digital Image Processing, Wiley-Interscience, New York, 1978, 497-499
    134 Turiel A, Pozo A D. "Reconstructing images from their most singular fractal nanifold" IEEE trans. on image processing, Vol.11(4), 2002,pp.345~350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700