基于头部特征提取的人体检测与跟踪及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体检测与跟踪是视觉人体运动分析的重要组成部分,在视频会议、医疗诊断、高级人机交互、智能视频监控、虚拟现实以及基于内容的图像存储与检索等方面都具有广泛的应用前景和潜在的经济价值。在人体检测与跟踪技术的部分应用领域中,如智能监控、客流检测等,由于图像采集设备的安装位置受到限制或为了尽可能避免人体间的相互遮挡等原因,只能获取检测区域的俯视图像(Vertical View Image)。在这类图像中人体的各个部位当中只有头部(尤其是头顶部)体现的较为完整,头部的俯视信息(如人体头顶部轮廓,头顶部区域颜色分布等)是唯一可以用来区分多个人体目标的特征。因此,头部特征的选择与提取就成为俯视图像中人体检测与跟踪的关键环节。本文紧密围绕复杂环境中的俯视图像人体检测与跟踪问题提出了借助局部人体运动估计人体整体运动的基于头部特征提取的局部人体检测与跟踪方法。同时为了在低端嵌入式平台上实时获取人体头部特征,提出了基于改进Hough变换的头部轮廓特征提取方法和基于目标视差获取的头部深度和透视特征提取方法,并将它们用于实现具有较高准确率要求的实时人体检测与跟踪系统。
     为了采用复杂度较低的算法准确的提取出俯视图像中的人体头部轮廓特征,最大程度的降低误识别和漏识别的可能性,本文在对目前工程中使用最为广泛的两种改进Hough变换进行比较后选取借助边缘梯度方向对圆心轨迹进行映射的GHT方法作为提取头部类圆轮廓的主要手段。同时,为了进一步降低GHT的时间消耗并且使得GHT能够提取出与人体头部轮廓曲线拟合最好的圆形轮廓,在保留GHT参数空间映射机制的基础上对GHT的参数空间累积过程和候选圆的确认过程进行了进一步的改进,提出了针对形变较大的头部类圆轮廓检测的TGHT算法和基于视知觉分组理论的最优拟合轮廓提取方法。算法的性能测试以及实验结果均表明基于TGHT的头部轮廓特征提取方法兼顾准确性与实时性,可以在有较高准确率要求的人体检测与跟踪领域获得实时的应用。
     针对基于头部轮廓特征提取的单目视觉头部识别方法面临的无法从多个与头部相似的类圆区域中正确的区分出所有头部区域的困难,本文在头部轮廓特征提取的基础上采用目标视差法获得候选头部区域的视差,并将头部区域视差与深度的对应关系以及头部区域的尺度与视差的透视比例关系作为头部区域的3D特征对候选头部区域进行确认判决以进一步提升头部识别的准确率。实验结果表明,由于去除了大量与头部区域相似的类圆区域形成的虚假头部区域,因而与基于头部轮廓特征提取的单目视觉头部识别方法相比,基于头部深度和透视特征提取的立体视觉头部识别方法具有更高的头部识别准确率。
     为了在头部识别基础上利用运动检测和基于头部特征提取的局部人体跟踪方法完成俯视序列图像中的人体检测与跟踪,本文在基于头部特征提取的单帧图像头部识别方法基础上提出基于序列图像运动检测的边缘背景减法和基于Kalman预测以及头部区域轮廓特征帧间匹配的头部跟踪算法。
     本文最后依据采用的头部特征提取方法的不同提出了基于低端DSP平台的两种嵌入式视觉人体检测与跟踪系统的实现方案,并分别给出了基于头部轮廓特征提取的单目视觉人体检测与跟踪系统应用于公交客流检测现场实验的实验结果和两种基于头部特征提取的视觉人体检测与跟踪方法应用于相同的仿真图像序列的比较结果。
The detection and tracking of human body is an important part of the visual analysis of human movement. It has a good prospect of application and potential economic value in video conference, medical diagnosis, interaction between man and machine, intelligent video monitoring, virtual reality, image storage and retrieval based on content and so on. In some application fields of the detection and tracking of human body, such as intelligent monitoring and passenger flow detection, only the vertical view images can be captured because of the restricted position of image capture device or to avoid occlusion among the human body as much as possible. In this kind of image, only the head, top of head in particular, will be shown completely among all of the human body parts and the information of heads in vertical view image, such as the contour of top of head and the color distribution in the head region and so on, is the only feature to distinguish the multiple human bodies from complicated circumstance. So the selection and extraction of head feature is the key of the detection and tracking of human body in vertical view image. Centering about the problem of the detection and tracking of human body in vertical view image and complicated circumstances, this dissertation presents a method to detect and track local human body based on head feature extraction and the global human body's motion will be estimated by using the detection and tracking of local human body. To obtain the head feature in a real-time low-end embedded platform, the head's contour feature extraction method based on modified Hough Transform and the bead's depth and perspective feature extraction method based on target disparity acquirement are presented. And these two methods are used to realize real-time vision-based human body detection and tracking system with higher demanding of accurate rate.
     To extract the head's contour feature in vertical view image exactly with lower complexity algorithm and avoid false and leak recognition as much as possible, this dissertation adopts GHT as the main technique to extract the head's quasi-circle contour. At the same time, to further lower the time consume of GHT and to assure the head contour curve's best fitting circle contour can be extracted, further modifications are introduced in the accumulation process in parameter space and the validation process of candidate circle on the basis of preserving the GHT's mapping principle in parameter space, i.e. the TGHT algorithm which aims at head's quasi-circle contour detection with larger distortion and the best fitting contour extraction method based on theory of perceptive grouping are presented. The TGHT's performance test and the experiment results show that the head's contour feature extraction method based on TGHT takes into account both the accuracy and the real-time performance and it can be applied in the field of real-time vision-based detection and tracking of human body with higher demanding of accurate rate.
     To solve the problem that head recognition method based on head's contour feature extraction can not distinguish true head regions from many false regions similar to true head region, this dissertation obtains the stereo disparity of candidate head region by using target disparity method on the basis of bead's contour feature extraction and the candidate head regions are validated to improve the accurate rate of head recognition by using the head's 3D feature composed of the correspondence between head's depth and disparity and the perspective relationship between heM's disparity and scale. The experiment results show that the head recognition method based on bead's depth and perspective feature extraction has higher accurate rate than the method based on head's contour feature extraction because most false head regions have been eliminated by using the head's 3D feature.
     After head recognition, to perform the detection and tracking of human body in vertical view image sequence by using the motion detection and local human body tracking based on head feature extraction, this dissertation presents two methods, i.e. the edge background subtraction method to eliminate the background edges which are out of the moving human body and the head tracking method based on Kalman prediction and head's contour feature matching between adjacent frames.
     At the end of this dissertation, according to different head feature extraction methods, two kinds of embedded vision-based human body detection and tracking system based on low-end DSP are introduced. The field test results of the vision-based human body detection and tracking system based on head's contour feature extraction applied to bus passenger flow detection and the comparison results of two kinds of vision-based human body detection and tracking method applied to the same simulation sequence image are both presented.
引文
[1] D. Gavrila. The visual analysis of human movement: A survey. Computer vision and image understanding, vol. 73(1), pp. 82-98, 1999.
    [2] 王亮,胡卫明.人运动的视觉分析综述,计算机学报,第25卷第3期:225-237,2002年3月.
    [3] A. Lipton, H. Fujiyoshi, R. Patil. Moving target classification and tracking from real-time video. Proceedings of the 4th IEEE Workshop on Applications of Computer Vision 1998 (WACV '98), pp. 8-14, Oct 1998.
    [4] 田京雷,毕胜.基于视频的客流计数系统的研究,第十二届全国图象图形学学术会议论文集:278-283,2005.
    [5] I. Haritaoglu, D. Harwood, L. Davis. W4: real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22(8), pp. 809-830, Aug 2000.
    [6] M, Kilger. A shadow handler in a video-based real-time traffic monitoring system. Proceedings of IEEE Workshop on Applications of Computer Vision 1992, pp. 11-18, 30, Nov-2, Dec 1992.
    [7] C. Stauffer, W. Grimson. Adaptive background mixture models for real-time tracking. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246-252, 1999.
    [8] S. Maybank, T. Tan. Introduction to special section on visual surveillance. Intemationai Journal of Computer Vision, vol. 37(2), pp. 173-173, 2000.
    [9] F. Bartolini, V. Cappellini, A. Mecocci. Counting people getting in and out of a bus by real-time image-sequence processing. Image and Vision Computing, vol. 12(1), pp. 36-41, 1994.
    [10] R. Collins et al. A system for video surveillance and monitoring: VSAM final report. Carnegie Mellon University: Technical Report CMU-RI-TR-00-12, 2000.
    [11] S. McKenna, Y. Raja, S. Gong. Tracking color objects using adaptive mixture models. Image and Vision Computing, vol. 17(3-4), pp. 225-231, Mar 1999.
    [12] R. Cutler, L. Davis. Robust Real-Time Periodic Motion Detection, Analysis, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22(8), pp. 781-796, August 2000.
    [13] A. Lipton. Local application of optic flow to analyse rigid versus non-rigid motion. http://www.eecs.lehigh.edu/FRA ME/Lipton/iccvframe.htm.
    [14] 蒋志凯.数字滤波与卡尔曼滤波,中国科学技术出版社,1993年3月.
    [15] M. lsard, A. Blake. CONDENSATION - conditional density propagation for visual tracking. International Journal of Computer Vision, vol. 29(1), pp. 5-28, Aug 1998.
    [16] V. Pavlovic, J. Rehg, Cham TJ, K. Murphy. A dynamic Bayesian network approach to figure tracking using learned dynamic models. Proceedings of the Seventh IEEE International Conference on Computer Vision 1999, vol.1, pp. 94-101, 1999.
    [17] I. Karaulova, P. Hall, A. Marshall. A Hierarchical Model of Dynamics for Tracking People with a Single Video Camera. Proceedings of British Machine Vision Conference, pp. 352-361, 2000.
    [18] S. Ju, M. Black, Y. Yacoob. Cardboard people: a parameterized model of articulated image motion. Automatic Proceedings of the Second International Conference on Face and Gesture Recognition 1996, pp. 38-44, Oct 1996.
    [19] S. Wachter, HH. Nagel. Tracking persons in monocular image sequences. Computer Vision and Image Understanding, vol. 74(3), pp. 174-192, June 1999.
    [20] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland. Pfinder: real-time tracking of the human body. IEEE transaction on Pattern Analysis and Machine intelligence, vol. 19(7), pp. 780-785, 1997.
    [21] N. Peterfreund. Robust tracking of position and velocity with Kalman snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21 (6), pp. 564-569, 1999.
    [22] R. Polana, R. Nelson. Low level recognition of human motion (or how to get your man without finding his body pans). Proceedings of IEEE Workshop on Motion of Non-Rigid and Articulated Objects 1994, pp. 77-82, Nov 1994.
    [23] J. Segen. A camera-based system for tracking people in real time. Proceedings of the 13th International Conference on Pattern Recognition 1996, vol.3, pp. 63-67, Aug 1996.
    [24] 李娜,方卫宁.基于视频流的地铁人群目标识别,北方交通大学学报,第30卷第1期:96-99,2006年2月.
    [25] Zhang XW, G. Sexton. Automatic human head location for pedestrian counting. Proceedings of Sixth International Conference on Image Processing and its Applications, Dublin, Institution of Electrical Engineers, vol. 2, pp. 535-540, 1997.
    [26] 汪亚明.基于动态图像序列的自动扶梯客流量的测量,华北工学院测试技术学报,第16卷第1期:14-16,2002.
    [27] 李和恒,张星明.基于小波神经网络的头部检测技术,计算机工程与应用,第39卷第4期:86-88,101,2003.
    [28] Lin SF, Chen JY, Chao HX. Estimation of number of people in crowded scenes using perspective transformation. IEEE Transactions on Systems, Man and Cybernetics, vol. 31(6), pp. 645-654. Nov 2001.
    [29] K. Narayanan, R. Kumaran, J. Gowdy. Stereo-based elliptical head tracking. Proceedings of European Signal Processing Conference 2005 (EUSIPCO 2005), pp. 1565-1568, 2005.
    [30] Huang XY, Li LY, T. Sim. Stereo-based human head detection from crowd scenes. Proceedings of International Conference on Image Processing, Singapore, pp. 1353-1356, 2004.
    [31] D. Beymer. Person counting using stereo. Proceedings of Workshop on Human Motion 2000, pp. 127-133, 2000.
    [32] K. Terada, D. Yoshida, S. Oe, J. Yamaguchi. A counting method of the number of passing people using a stereo camera. Proceedings of the 25th Annual IEEE Conference on Industrial Electronics Society 1999 (IECON '99), vol. 3, pp. 1318-1323, 1999.
    [33] M. Bertozzi, A. Broggi, R. Chapuis, F. Chausse, A. Fascioli, A. Tibaldi. Shape-based pedestrian detection and localization. Proceedings of IEEE Conference on Intelligent Transportation Systems 2003, vol. 1, pp. 328-333, Oct. 2003.
    [34] S. Krotosky, S. Cheng, M. Trivedi. Real-time stereo-based head detection using size, shape and disparity constraints. Proceedings of IEEE Symposium on Intelligent Vehicles, Las Vegas, pp. 550-556, 2005.
    [35] M. Devy, A. Girait, A. Marin-Hernandez. Detection and classification of passenger seat occupancy using stereovision. Proceedings of the IEEE Intelligent Vehicles Symposium 2000, pp. 714-719, 2000.
    [36] M. Clabian, H. Rotzer, H. Bischof, W. Kropatsch. Head Detection and Localization from Sparse 3D Data. Proceedings of 24th DAGM Symposium on Pattern Recognition, Zurich, Switzerland, vol. 2449/2002, pp. 395-402, September 16-18, 2002.
    [37] Luo RJ, Guo Y. Real-time stereo tracking of multiple moving heads. Proceedings of IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp. 55-60, 2001.
    [38] Luo RJ, Guo Y. Tracking of Moving Heads in Cluttered Scenes from Stereo Vision. Proceedings of International Workshop on Robot Vision 2001 (RobVis 2001), Auckland, New Zealand, vol. 1998/2001, pp. 148-156, February 2001.
    [39] M. Trivedi, S. Cheng, E. Childers, S. Krotosky. Occupant posture analysis with stereo and thermal infrared video: algorithms and experimental evaluation. IEEE Transactions on Vehicular Technology, vol. 53(6), pp. 1698-1772.
    [40] 章毓晋.图像工程(下册):图像理解与计算机视觉,清华大学出版社,2000年8月.
    [41] 李强,张钹.一种基于图像灰度的快速匹配算法,软件学报,第17卷第2期:216-222,2006年2月.
    [42] 章毓晋.图像工程(上册):图像处理和分析,清华大学出版社,1999年3月.
    [43] Yang MH, D. Kriegman, N. Ahuja. Detecting faces in images: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24(1), pp. 34-58, Jan 2002.
    [44] S. Barnard, M. Fischler. Computational Stereo. ACM Computing Surveys (CSUR), vol. 14(4), pp. 553-572, Dec 1982.
    [45] 游素亚,徐光祜.立体视觉研究的现状与进展,中国图象图形学报,第2卷第1期:17-23,1997年1月.
    [46] M. Brown, D. Burschka, G. Hager. Advances in computational stereo. IEEE Transactions on Pattern Analysis and machine Intelligence, vol. 25(8), pp. 993-1008, Aug 2003.
    [47] 徐奕,周军,周源华.立体视觉匹配技术,计算机工程与应用,第39卷第15期:1-5,2003年.
    [48] 周文晖.智能机器人视觉系统研究,浙江大学博士学位论文,2005.
    [49] N. Kim, A. Bovik. A contour-based stereo matching algorithm using disparity continuity. Pattern Recognition, vol. 21(5), pp. 505-514, 1988.
    [50] W. Grimson. Computational experiments with a feature based stereo algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-7, pp. 17-34, Jan 1985.
    [51] G. Medioni, R. Nevatia. Segment-based stereo matching. CVGIP, vol. 31(1), pp. 2-18, 1985.
    [52] V. Venkateswar, R. Chellappa. Hierarchical stereo and motion correspondence using feature groupings. International Journal of Computer Vision, vol. 15(3), pp. 245-269, Jul 1995.
    
    [53] A. Brint, M. Brady. Stereo matching of curves. Image and Vision Computing, vol. 8(1), pp.50-56,Feb 1990.
    
    [54] J. Daugman. High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15(11),pp. 1148-1161, Nov 1993.
    
    [55] E. Davies. A modified Hough scheme for general circle location. Pattern Recognition, vol.7(1),pp:37-43, Jan 1988.
    
    [56] L. Minor, J. Sklansky. The detection and segmentation of blobs in infrared images. IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-11, pp. 194-201, Mar 1981.
    
    [57] P. Hough. Methods and Means for Recognizing Complex Patterns. US Patent 3069654.
    
    [58] Xu Lei, H. Kalviainen, P. Hirvonen, O. Erkki. Probabilistic and non-probabilistic Hough transforms: overview and comparisons. Image and Vision Computing, vol. 13(4), pp. 239-252,May 1995.
    
    [59] A. Gupta, S. Chaudhury, G. Parthasarathy. New approach for aggregating edge points into line segments. Pattern Recognition, vol. 26(7), pp. 1069-1086, 1993.
    
    [60] Li HW, L. Mark A, L. Ronald J. Fast Hough transform: A hierarchical approach. Computer Vision, Graphics, and Image Processing, vol. 36(2-3), pp. 139-161, Nov/Dec 1986.
    
    [61] J. Princen, J. Illingworth, J. Kittler. A hierarchical approach to line extraction based on the Hough transform. Computer Vision, Graphics, and Image Processing, vol. 52(1), pp. 57-77,Oct 1990.
    
    [62] Xu Lei, O. Erkki, K. Pekka. A new curve detection method: randomized Hough Transform (RHT). Pattern Recognition Letters, vol. 11(5), pp. 331-338, May 1990.
    
    [63] G Roth, M. Levine. Extracting geometric primitives. CVGIP: Image Understanding, vol.58(1), pp. 1-22, 1993.
    
    [64] N. Kiryati, Y. Eldar, A. Bruckstein. A probabilistic Hough Transform. Pattern Recognition,vol. 24(4), pp. 303-316, 1991.
    
    [65] J. Bergen, H. Shvaytser. A probabilistic algorithm for computing Hough Transforms. Journal of Algorithms, vol. 12(4), pp. 639-656, 1991.
    [66] D. Ben-Tzvi, V. Leavers, M. Sandier. A dynamic combinatorial Hough Transform. Proceedings of the 5th International Conference on Image Analysis and Processing, Positano, Italy, pp. 152-159, Sep 1989.
    [67] R. Duda, P. Hart. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, vol. 15(1), pp. 11 - 15, Jan 1972.
    [68] C. Kimme, D. Ballard, J. Sklansky. Finding circles by an array of accumulators. Communications of the ACM, vol. 18(2), pp. 120-122, Feb 1975.
    [69] G. Gerig, F. Klein. Fast contour identification through efficient Hough Transform and simplified interpretation strategy. Proceedings of the 8th International Joint Conference on Pattern Recognition. Pads, France, pp. 498-500, 1986.
    [70] J. Illingworth, J. Kittler. The adaptive Hough transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9(5), pp. 690-698, September 1987.
    [71] P. Kierkegaard. A Method for Detection of Circular Arcs Based on the Hough Transform. Machine Vision and Applications, vol. 5(4), pp. 249-263, 1992.
    [72] D. Ioannou, W. Huda and F. Laine. Circle recognition through a 2D Hough Transform and radius histogramming. Image and Vision Computing, vol. 17(11), pp. 15-26, 1999.
    [73] R. Yip, P. Tam, D. Leung. Modification of Hough Transform for circles and ellipses detection using a 2-dimensional array. Pattern Recognition, vol. 25(9), pp. 1007-1022, 1992.
    [74] H. Yuen, J. Princen, J. Illingworth, J. Kittler. Comparative study of Hough Transform methods for circle finding. Image and Vision Computing, vol. 8(1), pp. 71-77, Feb 1990.
    [75] 束志林,戚飞虎.一种新的随机Hough快速圆检测算法,计算机工程,第29卷第6期:87-88,110,2003年4月.
    [76] 陈燕新,戚飞虎.基于随机Hough变换的快速圆检测方法,上海交通大学学报,第32卷第10期:17-20,1998年10月.
    [77] 林金龙,石青云.用点Hough变换实现圆检测的方法,计算机工程,第29卷第11期:17-18,160,2003年7月.
    [78] 王建锋,吴庆标.一种随机Hough变换检测圆的改进算法,计算机工程与应用,第41卷第14期:64-64,97,2005年.
    [79] 王强,胡建平,胡凯,陆志敏,胡维平。一种用于圆检测的快速Hough算法,小型微型计算机系统,第21卷第9期:970-973,2000年9月.
    [80] 孙亦南,刘伟军,王越超,孙亦蓬.一种用于圆检测的改进Hough变换方法,计算机工程与应用,第39卷第20期:35-37,2003.
    [81] T. Atherton, D. Kerbyson. Size invariant circle detection. Image and Vision Computing, vol. 17(11), pp. 795-803, 1999.
    [82] Xu Lei, O. Erkki. Randomized Hough Transform (RHT): basic mechanisms, algorithms, and computational complexities. CVGIP: Image Understanding, vol. 57(2), pp. 131-154, Mar 1993.
    [83] J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 8(6), pp. 679-698, Nov 1986.
    [84] E. Lyvers, O. Mitchell. Precision edge contrast and orientation estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10(6), pp. 927-937, Nov 1988.
    [85] R. Mohan, R. Nevatia. Perceptual Organization for Scene Segmentation and Description. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14(6), pp. 616-635, 1992.
    [86] 陈锋,韩世辉,朱滢.视知觉组织及其神经机制,心理科学,第26卷第2期:312-314,2003.
    [87] E. Walker, Kang HB. Fuzzy Measure of Uncertainty in Perceptual Grouping. Proceedings of the Third IEEE Conference on Fuzzy Systems, Orlando, vol. 3, pp. 2020-2024, 1994.
    [88] 孙即祥.现代模式识别,国防科技大学出版社,2002.
    [89] W. Ho, R. Yip. A dynamic programming approach for stereo line matching with structural information. Proceedings of the 13th International Conference on Pattern Recognition, Vienna, vol. 1, pp. 791-794, Aug 1996.
    [90] 崔巍,强文义,陈兴林.基于直线间结构信息的立体视觉图像动态匹配方法,控制与决策,第18卷第5期:633-636,2003.
    [91] Lee SH, Leou JJ. A dynamic programming approach to line segment matching in stereo vision. Pattern Recognition, vol. 27(8), pp. 961-986, 1984.
    [92] Li ZN. Stereo correspondence based on line matching in Hough space using dynamic programming. IEEE Transaction on Systems, Man and Cybernetics, vol. 24(1), pp. 144-152, Jan 1994.
    [93] Liu YC, Huang TS. Determining straight line correspondences from intensity images. Pattern Recognition, vol. 24(6), pp. 48%504, 1991.
    [94] Hu. MK. Visual pattern recognition by moment invadants. IEEE Transactions on Information Theory, vol. 8(2), pp. 179-187, Feb 1962.
    [95] 孙亦南,刘伟军,王越超.基于几何不变量的图像特征识别,计算机应用与软件,第 21卷第12期:1-3,115,2004年12月.
    [96] 卢强,陈泉林等.智能交通监视系统中路况图像背景去除算法研究,电子技术应用,第27卷第11期:35-36,2001.
    [97] 张玲,叶海炳,何伟.一种基于边缘信息的改进车辆检测方法,重庆大学学报:自然科学版,第27卷第11期:56-58,2004年11月.
    [98] 何志伟.基于模型的目标提取及其在智能交通中的应用,浙江大学博士学位论文,2006.
    [99] 周宏仁.机动目标跟踪,国防.[业出版社,1991年8月.
    [100] G. Legters, T. Young. A mathematical model for computer image tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-4, pp. 583-594, Nov 1982.
    [101] T. Cipra, R. Romera. Robust Kalman filter and its application in time series analysis. Kybernetika, vol. 27(6), pp. 481-494, 1999.
    [102] H. Nguyen, M. Worring, R. van den Boomgaard. Occlusion robust adaptive template tracking. Proceedings of the Eighth IEEE International Conference on Computer Vision 2001 (ICCV2001), vol. 1, pp. 678-683, 2001.
    [103] 汪颖进,张桂林.新的基于Kalman滤波的跟踪方法,红外与激光工程,第33卷第5期:505-508,2004年10月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700