陶瓷膜成套装备与工程应用技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高膜渗透通量、降低陶瓷膜设备的运行成本为目标,以亚微米、纳米粒子的固液分离以及医药、生化工业的发酵液除菌分离为应用背景,分析了无机陶瓷膜在液相分离领域的应用现状,提出了以强化陶瓷膜过程为手段,解决膜应用过程中的成套装备问题,以实现陶瓷膜在相关领域的工程应用。
     在强化陶瓷膜过程的研究中,系统考察了湍流促进器结构、形状对膜的强化过程,认为缠绕式湍流促进器可显著提高膜的渗透通量,降低膜污染,并对其强化机理进行了阐述;研究反冲过程对膜系统的作用机理,并优化了反冲操作条件,为反冲技术的在陶瓷膜工程中的应用奠定了基础。
     在膜污染和清洗方法研究中,针对油田采出水这一复杂体系,采用扫描电子显微镜(SEM)和能谱分析(EDX)研究膜表面和断面污染物的形态和成分;采用电渗法和电泳法测定膜材料和废水之间的电位变化关系,认为硫和硅等在膜面发生特征吸附,导致膜污染加重,并随着污染物的累积,导致渗透通量持续下降;采用膜面预处理减弱特征吸附,可有效抑制膜污染的形成;采用酸、表面活性剂、碱并配以合适的脉冲清洗,有效恢复膜的渗透通量。通过对膜污染机理和清洗方法的研究,为陶瓷膜成套装置的长期稳定运行提供了保证。
     在亚微米、纳米粒子的固液分离过程中,针对颗粒体系的微滤过程,考察膜孔径、膜厚度等结构参数对膜通量的影响,结合阻力模型分析计算了颗粒体系膜污染的形成过程,认为颗粒体系微滤污染主要由堵塞和滤饼两部分组成;通过对钛白粉水洗液废水处理以及纳米TiO_2粉体的洗涤浓缩过程的研究,建立了粉体洗涤过程的数学模型,优化了洗水过程;设计了年生产500吨的纳米TiO_2生产过程中的陶瓷膜洗涤成套装置,实现了反冲过程的系统控制和洗水方式的自动控制,该装置已稳定运行两年,取得了很好的经济和社会效益,本研究结果已在钛白粉废水处理、纳米粉体的生产中推广应用。
     在医药、生化工业的发酵液除菌分离中,对陶瓷膜用于肌苷发酵液的处理进行了深入的研究,开发出絮凝预处理和陶瓷膜分离结合的肌苷除杂新工艺。实验表明,ZrO_2膜处理肌苷发酵液的合适条件为pH=3、操作压力为0.1MPa、膜面流速3m/s、温度大于70度,此时可以获得平均渗透通量150L/m~2h,但由于酸性条件、高温下肌苷降解,导致肌苷收率有所降低,但仍高于传统肌苷提取方法得到的收率;为进一步提高肌苷得率,缩短提取工序,实验研究了絮凝剂预处理发酵液,解决碱性条件下由于蛋白析出导致膜污染加重的问题,研究表明采用CaCl_2絮凝并调节pH=11,可以获得平均渗透通量为180L/m~2h,肌苷得率大于95%;比较了三种肌苷提取工艺得到的产品质量,采用预处理与陶瓷
    
    南京工业大学博士学位论文
    膜分离结合的除杂工艺得到的粗昔质量与陶瓷膜分离、离子交换及活性炭吸附
    工艺生产的粗普质量相当,均优于传统的提取工艺;设计了每小时处理12一巧
    吨肌普发酵液的陶瓷膜成套装置,采用部分内循环的方式降低设备的能耗,简
    化了肌昔提取方式,提高了产品的收率和得率,由于减少离子交换和活性炭吸
    附,使得工厂废水排放量降低30一40%,降低酸、碱用量,有利于环境保护。
    该应用技术和成套装备己在食品、生物化工、医药工业推广应用。
     综上所述,通过对陶瓷膜强化过程、膜污染和清洗方法的研究,亚微米、
    纳米粒子的固液分离以及医药、生化工业的发酵液除菌分离等行业的成套陶瓷
    膜装置的建设和应用技术的开发,极大地推动陶瓷膜技术的发展,夯实了我国
    陶瓷膜工程应用的基础,促进了相关行业的技术进步。
The aim of this paper is to enhance the permeate flux of the ceramic membrane and lower the operation cost of the membrane equipment, in the area such as the separation of submicron and nanometer particles, and removal of biomass from fermentation broth in pharmaceutical industry and biochemical engineering. By analyzing the application of ceramic membranes in liquid separation, we proposed a way of membrane separation process intensification to solve some problems in whole set equipment, so that the commercial application of ceramic membrane in these areas on the membrane separation process could be realized. The influences of the configuration and appearance shape of turbulence promoter were systematically investigated. It was founded that the winding turbulence promoter could effectively increase the membrane permeate flux and reduce membrane fouling. The mechanism of intensifying the filtration process was elucidated. On the other hand, the influences of backflushing on flux were examined and the operati
    onal conditions were optimized.
    To investigate the mechanism of membrane fouling and cleaning method, oilfield produced water, a complex system, was selected as a research object. Contaminant on membrane surface and cross section were analyzed by the scanning electron microscopy and EDX. The electric potential of membrane material and waster water was measured with electroosmosis and electrophoresis. It confirmed that sulfur and silicon were selectively adsorbed on the membrane surface, which result in more membrane fouling. With the accumulation of the contaminants, the permeation flux decreased continuously. The adsorption could be receded and the fouling could be controlled through pretreatment to membrane. The permeation flux can be recovered by washing with acid, surfactant and base as well as appropriate pulse washing. The determination of the method to investigate the membrane fouling mechanism and to clean the membrane gave the long-term stable operation of the membrane equipment. The effects of the structure parameters of the memb
    rane, such as the pore size and the thickness on the permeation flux were examined in the MF process of submicron and nanometer suspensions. The process of membrane fouling in this kind of separation process was simulated based on the resistance model. It was thought that the membrane fouling in a particle system was composed of the blockage of the process the filtration cake. Wastewater containing titanium pigment was treated by microfiltration membrane, Nanometer titanium can be purified and concentrated by use of microfiltration. Operational conditions were optimized and the model was built. Finally, the amount of wash water was reduced. Based on the above research, the whole set equipment was designed, which can meet the needs in a titanium industry with a capability of 500 ton per year. Backflush and automatic control were used in the equipment, which has been steadily run two years, has been widely adopted in titanium industry. The technology has been widely adopted in titanium industry.
    
    
    In the recent years, whole set equipment of ceramic membrane was increasingly used in the recovery of desired production from fermentation broth in China. A new membrane process integrated with pretreatment of flocculation or coagulation was exploited to recover Inosine. ZrO2 ceramic membrane was used in the work, and the average permeation flux could reach 150L/m2.h under pH value of 3, transmembrane pressure 0.1MPa, CFV 3m/s, and temperature higher than 70C. The recovery ratio of inosine is higher than traditional recovery method, although inosine degraded under acidic and high temperature condition. To improve the recovery ratio of inosine and shorten the process, microfiltation under basic condition was investigated. Generally, proteins prefer to precipitate under basic condition, which would result in membrane fouling. Membrane fouling could be decreased and permeation flux could be effectively improved by adding coagulant. When CaCl2 was added in the fermentation broth
引文
1. 邢卫红,徐南平,时钧.无机膜分离技术在食品、发酵行业中的应用。膜科学与技术.1997,(19) :6
    2. Bhave R R. Inorganic membranes synthesis, characteristics and applications. Van Nostrand Reinhold, New York, 1991
    3. Hsieh H P. Inorganic Membranes for Separation and Reaction. Elsevier Science B.V. Amsterdam, 1996
    4. Merin U, Daufin G. Separation processes using inorganic membranes in the food industry. Proc. 1st Intl Conf Inorg Membr, Montpellier, France, 1989: 271
    5. Daufin G, Labbe J P, Quemeranis A, et al. Porous glass UF-membrane in biotechnology. Proc. 1st Int. Conf. Inorg Membr, Montpellier, France, 1989: 249
    6. Maubois J L. Aaust. New application of membrane technology in the dairy industry Aaust. J Dairy Technology, 1991, 46:91
    7. Malmberg R, Holm S. Low Bacteria Skim Milk by Microfiltration. North European Food Dairy J. 1988, 1:75
    8. Cheryan M. Membranes in food processing. Effective Industrial Membrane Processes: Benefits and Opportunities. Elsevier Applied Science. 1991:157
    9. Goudedranche H, Maubois J L, Ducruet P, et al. Utilization of the New Mineral UF Membranes for Making Semi-hard Cheese. Desalination. 1980, 35:243
    10. Tarodo, B de la Fuente, Lecornu C. Characterization of new ultrafiltration membranes, parts Ⅰ and Ⅱ. University of Montpellier, Montpellier, 1988
    11. Attia H, Bennasar M, Tarodo B de la Fuente. Ultrafiltration on a Mineral Membrane of Biologically or Chemically Acidified Milk(with Varying pH)and of Lactic Coagulum(in French). Le Lait, 1988,68:13
    12. Attia H, Bennasar M, de la Feunte B.T. Study of the Fouling of Inorganic Membranes by Acidified Milks Using Scanning Electron Microscopy and Electrophoresis. I. Membrane with Diamter 0. 2 u m. J. Dairy Research, 1991, 58:39
    13. Attia H, Bennasar M, Tarodo B de la Fuente. Study of the Fouling of Inotganic Membranes
    
    by Acidified Milks Using Scanning Electron Microscopy and Electrophoresis. I. Membranes with Pore Diameter 0. 8 u m. J. Dairy Research, 1991, 58:51
    14. Van der Horst M, Timmer H C. Piersma I. Microfiltration in Whey Processing. Proc. 3rd Int. Conf. Inorg. Membrane, Worcester, MA. USA. 1994
    15. Venkataraman K, Silverberg P K, Giles M.T. Ceramic Membrane Applications in Juice Clarification-A case Study. The 2nd Intl Conf of North Amercian Membrane Society, Syracause, 1988
    16. Guibaud J. Some Applications of Membralox Ceramic Membranes. Proc. 1st Int.Conf. Inorg. Membr. Montpellier, 1990: 343
    17. Baur W, Goltkehaskamp L, Oechsle D, et al. Filtrieren Separieren, 1992, 6:141
    18. Alvarez V, Audres L J, Riera F A, et al. Proc. 3rd Int. Conf. Inorg. Membrane, Worcester, MA. USA, 1994
    19. Thomas R L, Westfall P H. Louvieri ZA,et al. Production of Apple by Single Pras Membrane Filtration. J Food Sci. 1987, 52:1263
    20. 邢卫红,刘飞,徐南平等.陶瓷膜在苹果汁澄清中的应用研究.食品工业科技,2001,(6) : 12
    21. Bottinoa A, Capannellia G, Turchinia A, et al. Understanding the operation of industrial MSF plants Part II: Optimization and dynamic analysis Desalination, 2002, 148:73
    22. Tarodo, B.de la Fuente. Clarification of strawberry and kiwifruit purees using mineral membranes . University of Montpellier. .Montpellier. (Unpublished work), 1990
    23. Thomas R L, Titus T C, Brandon A. US Patent 4,716,044. 1987
    24. Swientek R J. Metallic Membrane Filtration. Food Processing, 1987, 48 :74
    25. Rios. G. M., B. Tarodo. de la Fuente., M. Beunnasar and C. Guizard. Crossflow filtration of biological fluids on inorganic membranes: a first state of the art. in : Developments in food presrevation, ed. S .Thorne, Elsevier science publishing Co. New York. 1989: 131
    26. Kilham O W. Wine separation: Membranes applications paper read at the 5th Annual membrane technology/planning conference. Cambridge, MA , 1987
    27. Castelas B, Serrano M. Utilization of Mineral Membranes for the Treatment of Wine(in French). Proc. 1st. Intl. Conf. Inorganic membranes. Montpellier. July, 1990: 282
    28. Belleville M P, Brillouer J M, Tarodo de la Fuence B, et al. Polysaccharide Effets on Crossflow Microfiltration of Two Red Wines with a Microporous Alumina Membrane. J Food Sci, 1990,55: 1598
    29. Poirier D, Maris F, Bennasar M, et al. Clarification and Stabilization of Wines by Tangential Ultrafiltration Using Mineral Membranes(in French). Ind. Alim. Agric. 1984, 101:481
    30. 褚良银,陈文梅,刘培坤等.生啤酒膜滤除菌技术试验研究.食品与机械,1999,(1) :18
    31. Meunier J P. Use of Croasflow Filtration for Processing Beer Yeast and Tank Bottoms. Proc. 5th World Filtration Congress. Nice. 1990:26
    32. Finigan T, Shackleton R, Skudder P. Filtration of beer and recovery of extract from Brewry Tank Bottoms Using Ceramic Microfiltration. Proc. Filtech. Conf, Utrecht, 1987: 533
    33. Shackleton R. the Application of Ceramic Membranes to the Biological Industries. J. Chem Tech, Biotechnol. 1987, 37: 67
    34. Burggraaf A J, Cot L. Fundamentals of inorganic membrane science and technology. Elsevier
    
    Science B V, 1996
    35. Bolduan Dipl-Ing. P, Michael Latz Dipl-Ing P. Ceramic membranes and their application in food and beverage processing Filtration and Separation, 2000, 37(3) :36
    36. Punidadas P, Decloux M, Trystram G. Ind Alim Agricol, 1990: 615
    37. Hamachi M, Gupta B B, Ben Aim R. 7th Intl.. Conf.. Inorg.. Membr, Dalian, China, June, 2002:260
    38. Castelas B, Rumeau R, L. Cot. C. Guizard and J.A.Alary. Application de la filtration tangentielle sur membrane minerale a la decontamination bacterienne deseaux, Presented at 4 erne journees information eaux. Poitiers, France, 1984
    39. Duclert F, Moulin C, Rurneau M. Results for Six Years of Practical Experience in the Potabilization of Water by Ulitirafiltration. Proc 5th World Filtration Congress, Nice, France, 1990:70
    40. Bourdon F, Bourbigot M M, Faivre M. Crossflow Microfiltration of Groundwaters of Karstic Origin(in French). L'Eau Industrie les Novisances, 1988, 121: 35
    41. Pain A T, Moulin C, Bourbigot, Faivre M, er al. Iron Removal in Groundwater by Crossflow Micro-and Ultrafiltration. Proc 5st Intl Conf Inorganic Membranes, Montpellier, France,1990:29
    42. M.Cheryan, Rajagopalan. Membrane processing of oily steams wastewater treatment and waste reduction . J Membr Sci, 1998 ,151:13
    43. Bransal I R. Ultrafiltration of oily wastes from process in dustries. AICHE Symp Ser, 1975,71 (151) :93~97
    44. Bansal I R. Concentration of oil and latex waste waters using Ultrafiltration inorganic membranes. Ind..Water Eng, 1976 ,13(5) :6~11
    45. Chen A S, Flynm J T, Cook R G, et al. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration. SPE Production Engineering ,1991 (6) :131~136
    46. Humphery J L, Goodboy K P, Casaday A L. Ceramic membranes for the treatment of waters produced by oil wells. Am Chem..Soc.. 197th..National Meeting, Dallas, 1989
    47. 王杯林,王忆川,姜建胜等.陶瓷微滤膜用于油田采出水处理的研究.膜科学技术,1998,18(2) :59~64
    48. Simms K M, Liu T H, Zaidi S A. Recent advances in the application of membrane technology to the treatment of produced water..in..Canada. Water ..Treat, 1995,10:135~ 144
    49. Bhave R R, Fleming H L. Removal of oily contaminants in waste water with microporous..alumina..membranes. AICHE Symp Ser, 1988,84(261) :19~27
    50. Shimizu..Yasntoshi.., Shamyn ..Takashi. Treatment of oil-containing waste water. Jpn Kokyo Koho, 05 2450427,1992
    51. Stanley R K, Miched M. An examination of paybacks for an aqueous cleaner recovery. Planting and Surface Finishing , 1993, 9:56-58
    52. Chen A S C. Evaluating a ceramic Ultrafiltration system for aqueous alkaline cleaner recycling. Report to SEPA ,68-CO-0003,1994
    53. Chen A S C. Using ceramic crossflow filtration to recycle spent nonionic
    
    aqueou-based...metal-cleaning solutions. Report to US Naval Facilities Engineering Service Center, CR-96. 004,1994
    54. Chen A S C. Using ceramic crossflow filtration to recycle a nonionic a aqueou-based..metal-cleaning lutions pilot-scale testing. Report to US Naval Facilities Engineering Service Center, CR-97. 004,1994
    55. 张国胜.无机陶瓷膜处理冷轧乳化液废水的研究.南京化工大学硕士论文,1997
    56. Chen A S C. Using ceramic membranes to recycle two nonionic alkaline metal-cleaning solutions. Journal of Membrane Science, 1999( 162) : 219-234
    57. Lahiere R J, Goodboy K P. Ceramic membrane treatment of petrochemical waste water. Envir Prog, 1993,12(2) :86-89
    58. 邢卫红,张伟,徐南平等.陶瓷微滤膜脱除焦化废水中的焦粉的研究.南京化工大学学报, 1998,20(3) :10~13
    59. 樊栓狮,王金渠.无机膜处理含油废水.大连理工大学学报, 2000,40(1 ):61-63
    60. Bauer J M, Elyassini J, Moncorge G, et al. New developments and applications of carbon membranes. Proc and Intl Confon..Inorg..Membr..Montpellier,1991:207-212
    61. 李红,钟璟,邢卫红等.硫酸法钛白粉生产工艺中的偏钛酸回收新技术研究.水处理技术,1995, 21(6) :325~329
    62. 钟璟,赵宜江,李红等.陶瓷微滤膜处理钛白产中的废酸.膜在环保领域应用研讨会,井岗山,1997
    63. Hasegawa H, Ishikawa K, Wakada M. Application of ceramic membrane CEFI-LT-MF, UF . Proceeding of the 2nd International Conference on inorganic Membranes, Montpellier, 1991:153-162
    64. 童金忠,邢卫红,徐南平等.陶瓷微滤膜处理钛白粉水洗液的过程强化研究.高校化学工程学,1999,13(5) :421-427
    65. Mir L, Eykamp W, Goldsmith R L. Current and developing applications for ultrafiltration. Ind. Water Eng , 1997,14 (3) :14-19
    66. Gaston C. Textile size reclamation through ultrafiltration (product brochure). 1979
    67. Soma C, Rumeau M, Sergent C. Use of mineral membranes in the treatment of textile efflux-entts. Proc 1st Intl Confon Inorg Membr. Montpellier, 1989: 523-526
    68. Nooijen W F J M, Muilwijk F. Paint / water separation by ceramic microfiltration. Filtr&Sep, 1994,31:227-229
    69. D.Abdessemed, GNezzal, R.Ben Aym. Treatment of waste water by ultrafiltration. Desalination ,1999,126:1-5
    70. Neytzll-de-Wi!de F G, Toensend R B, Buckley C A. Proc. St Intl. Conf. on inorganic Membranes. France, Montpellier,1989:113
    71. Jonsson A , Petersson E. Treatment of C-stage and E-stage effluents from a bleach plant us-ing a ceramic membrane. Nordic Pulpand Paper Res J, 1988, 1:4-7
    72. Barnier H, Maurel A, Pichon M. Separation and concentration of lignosulfonates by ultrafiltration an mineral membranes. Paperi Ja Puu, 1987,69:581
    73. Cumming I W, Turner a D. Optimization of an UF pilot plant for the treatment of radioactive waste. Proc Future Ind Prospects Membr Proc Conf. Brussels, 1988:163
    74. Visvanathan C, Muttamara S, Babel S. Treatment of landfill leachate by crossflow
    
    microfiltration and ozonation. Sep Sci&Tech, 1994, 29: 315~332
    75. Boldnan P, Florke J. Microfiltration of flue gases using ceramic membranes. Filtr&Sep, 1994, 31(6): 597~603
    76. Shen X, Parkand J K, Kim B J. Separation of nitrocellu-lose-manufacturing waste water by bench-scale flat-sheet crossflow microfiltration units. Sep Sci &Tech, 1994, 29: 333~336
    77. Goemans M G E, Li L, Gioyna E F. Separation of metal oxides from supercritical water by crossflow microfiltration. J Membr. Sci, 1997, 124(1): 129~145
    78. Cassano, R. Molinari, M. Romano, E. Drioli. Treatment of aqueous effluents of the leather industry by membrane processes a review. J Membr. Sci. 2001, 181: 111~126
    79. Kyu-Hong Ahn, Ji-Hyeon Song and Ho-Yang Cha. Application of tubular ceramic membranes for reuse of wastewater from buildings. Wat. Sci. Tech, 1998, 38: 373~382
    80. Sondhi. R, Lin. Y. S, Alvarez. F. Crossf-low filtration of chromium hydroxide suspension by ceramic membranes: fouling and its minimization by backpulsing. J Membr. Sci. 2000, 174(1): 111~122
    81. Anna P, Ann-Soft J, Guido Z. S. Separation of Lactic Acid-producing Bacteria from Fermentation Both Using a Ceramic Micro-Membrane with Constant Permeate Flow. Biotech&Bioeng. 2001, 72(3): 269
    82. Carrère Hélène; Blaszkow Frédéric. Comparison of operating modes for clarifying lactic acid fermentation broths by batch cross-flow microfiltration. Process Biochemistry. 2001, 36(8-9): 751
    83. Tsuda M, Ohta K, Nara K. US 4374981, 1983
    84. Tanabe T, Nakamura T. US 5814513, 1998
    85. Adikane H V, Singh R K, Nene S. Recovery of penicillin G from fermentation broth by microfiltration. J Membr. Sci, 1999, 162: 119
    86. Ding, Weidong, Ellestad. US 5338729, 1994
    87.邢卫红,徐南平.全国医药行业膜技术应用研讨会论文集,大连,1998
    88.赵宜江,邢卫红,徐南平等.陶瓷微滤膜澄清中药提取液的研究.水处理技术,1999,25(4):199
    89.刘陶世,郭立玮,袁铸人等.无机陶瓷膜微滤技术精制7种根及根茎类中药水提液的研究中成药.2001,23(7):473
    90. Malchesky P S, Horiuchi T, Lewandowski J J, et al. Membrane Plasma Separation and the Online Treatment of Plasma by Membranes. J Membr. Sci, 1989, 44: 55
    91. Sakai K, Ozawa K, Ohashi K et al. Low Temperature Plasma Separation by Crossflow Filtration with Microporous Glass Membranes. Ind Eng Chem Res, 1989, 28: 57
    92. Ozawa K, Kim M B, Sakurai M, et al. In Progress in Artificial Organs. Eds. Nose Y, et al. ISAO Press, Cleveland, 1985
    93. Matsumoto K, Kawahara M, Ohya H. Crossflow Filtration of Yeast by Microporous Ceramic Membrane with Backwashing. J. Ferment. Technol, 1988, 66(2): 199
    94. Matsumoto K, Katsuyama M, Ohya H. Crossflow filtration of yeast by microporous ceramic membrane with backwashing. J Ferment Technol, 1988, 66: 99
    95.时钧,袁权,高从堵.膜技术手册.化学工业出版社,2001
    96.赵宗艾,钟富优.电场作用下的十字流膜滤的研究现状.过滤与分离,1994,3:1~5
    
    
    97.朱长乐,刘末娥,陈欢林.超滤过程的膜污染和浓差极化.第一届全国膜和膜过程学术报告会论文集,大连,1991:33~38
    98. Bhave R R. Inorganic Membranes: Synthesis, Characteristics and Application. Van nostrand Reinhold, New York, 1991
    99. Winston W S, Sirkar K K. Membrane Handbook. Van Nostrand Reinhold, New York, 1992
    100. Marshall A D, Munro P A, Tragardh G. The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review. Desalination, 1993, 91: 65~108
    101. Bhave R R, Fleming H L. Removal of oily contaminants in wastewater with microporous alumina membranes. AICHE Syrup. Ser, 1988, 84(261): 19~27
    102. Chen A S, Flynm J T, Cook R G, Casaday A L. Removal of oil grease and suspended solids from produced water with ceramic crossflow microfiltration. SPE prodution engineering, 1991
    103. Richard J, Lahiere K, Goodboy P. Ceramic membrane treatment of petrochemical wastewater. Environmental Progress, 1993, 12(2): 86~95
    104. Broom G P, Squire R C, Simpson M P J, Martin I. The treatment of heave metal effluents by crossflow microfiltration. J Membrane Sci, 1994, 87: 219~230
    105. Harris J L, Dobos M. Enhanced ultrafiltration flux rates by enzymatic hydrolysis in protein recovery from wheat starch effluent. J Membrane Sci, 1989, 41: 87~102
    106. Chen V, Fane A G, Fell C J D. The use of anionic surfactants for reducing fouling of ultrafiltration membranes: their effect and optimization. J Membrane Sci, 1992, 67: 249~261
    107.吴惠珍,Chen V,孙培松,Fane A G.阴离子表面活性剂对降低超滤膜污染的影响.水处理技术,1994,20(2):85~88
    108. Bauser H, Chmiel H, Stroh N, Walitza E. Interfacial effect with microfiltration membrane. J Membrane Sci, 1982, 11: 321~332
    109.许晓鹏,郑领英.聚砜超滤膜的表面改性.水处理技术,1993,19(6):330~335
    110. Nystrom marianne, Jarvinen pia. Modification of polysulfone ultrafiltration membranes with UV irradiation and hydrophilicity increasing agents. J Membrane Sci, 1991, 61: 275~296
    111.邢丹敏,武冠英,胡家俊.改性聚氯乙烯超滤膜的研究(1)—等离子体改性膜结构和性能的研究.膜科学与技术,1996,16(1):49~55
    112.王雯,贾巍.PAN超滤膜的性能改进.膜科学与技术,1992,12(3):1~7
    113. Bhattacharjee S, Sharma A, Bhattacharya P K. A unified model for flux prediction during batch cell ultrafiltration. J Membrane Sci, 1996, 111: 243
    114. Tarleton E S, Wakeman R J. Understanding flux decline in crossflow microfiltration Part Ⅰ: effect of particle and pore size. Chem. Eng. Research & Design, 1993, Part A, 71: 399~411
    115. Thomas D G. Forced convection mass transfer in hyperfiltration membrane. Ind. & Eng. Chem. Fundam, 1973, 12(4): 396~405
    116. Belfort G. Fluid mechanics in membrane filtration: recent developments. J Membrane Sci, 1989, 40: 123~147
    
    
    117. Heinz B, Winzeler, Belfort G. Enhanced performance for pressure driven membrane process: the argument for fluid instabilities. J Membrane Sci, 1993, 80: 35~47
    118. Vander Wall M J, Racz I G. Mass transfer in corrugated-plate membrane module I : Hyperfiltration experiments. J Membrane Sci, 1989, 40: 243-260
    119. Vander Wall M J, Racz I G. Mass transfer in corrugated-plate membrane module II: Ultrafiltration experiments. J Membrane Sci, 1989,40: 261-275
    120. Jeffree M A, Peakock J A, Sobey I J, Belhouse B J. Gel layer limited haemofiltration rates can be increased by vortex mixing. Clin. Exp. Dias. Apherrasis, 1981, 5: 373-380
    121. Poyen S, Quemeneur F, Bariou B. Improvement of the flux of permeate in ultrafiltration by turbulence promoters. Int. Chem. Eng, 1987, 27: 441-447
    122. Mavrov V, Nikolov N D, Islam M A, Nikolova J D. An investigation on the configuration of inserts in tubular ultrafiltration module to control concentration polarization. J Membrane Sci, 1992, 75: 197-201
    123. Gupta B B, Howell J A, Wu D, Field R W. A helical Baffle for cross-flow microfiltration. J Membrane Sci, 1995, 102: 31-42
    124. Walker G, Millward H R, Bellhouse B J. Screw thread flow promoter: an experimental study of ultrafiltration and microfiltration performance. J Membrane Sci, 1995, 106: 269-279
    125. 童金忠,强化陶瓷膜微滤过程的研究.南京化工大学硕士论文,1999
    126. Kennedy T J, Merson R L, Mccoy B J. Improving permeation flux by pulsed reverse osmosis. Chem. Eng. Sci, 1974, 29(9) : 1927-1937
    127. Jaffrin M Y, Gupta B B. Energy saving pulsatile mode crossflow filtration. J. Membrane Sci, 1994,86:281-290
    128. Gupta B B, Blanpain P, Jaffin M Y. Permeate flux enhanced by pressure and flow pulsation in microfiltration with mineral membrane. J Membrane Sci, 1992, 70: 257-266
    129. Rodgers V G J, Sparks R E. Effect of transmembrane pressure pulsating on concentration polarization. J Membrane Sci, 1992, 68: 149-168
    130. Rodgers V G J, Sparks R E. Reduction of membrane fouling in the ultrafiltration of binary protein mixtures. AICHE, 1991, 37: 1517-1528
    131. Ilias S, Govind R. Potential application of pulsed flow for minimizing concentration polarization in ultrafiltration. Separation Science and Technology, 1990, 25: 1307-1324
    132. Spiazzi E, Lenoir J, Grangeon A. A new generator of unsteady-state flow regime in tubular membranes as an antifouling technique: a hydrodynamic approach. J Membrane Sci, 1993, 80: 49-57
    133. Holeschovsby U B. Quantitative description of ultrafiltration in a rotating filtration device. AICHEJ, 1991,37(18) : 1219-1226
    134. Kroner K H, Nissinen V. Dynamic filtration of microbial suspensions using a axially rotating filter. J Membrane Sci, 1985, 36: 85-100
    135. Murase T, Ivitani E, Chidphong P, Kano K, Ansumi K, Shirato M. High-speed microfiltration using a rotating cylindrical ceramic membrane. Int. Chem. Eng, 1991, 31(2) : 370-378
    
    
    136. Brewster M, Chung K Y, Belfort G. Paper presented at the ICIAM'91. Annual Meeting, Washington DC, July, 1991
    137. Moulin P, Rouch J C, Serra C, Clifton M J, Aptel P. Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes. J Membrane Sci, 1996, 114: 235-244
    138. Chung K Y, Edelstem W A, Belfort G. Dean vortices with wall flux in a curved channel membrane system 6: Two dimensional magnetic resonance imaging of the velocity field in a curved impermeable slit. J Membrane Sci, 1993, 81: 151~162
    139. Lahiere R J, Goodboy K P. Ceramic membrane treatment of petrochemical wastewater. Environmental Progress, 1993, 12(2) : 86
    140. Matsumoto K, Katsutyama S, Ohya H. Crossflow filtration of yeast by microporous ceramic membrane with backwashing. J Ferment Technology, 1988, 66: 199
    141. Belfort G, Davis R H, Zydney A L. The behaviors of suspensions and macromolecule solution in crossflow microfiltration. J Membrane Sci, 1994, 96: 1~58
    142. Kim K J, Sun P, Chen V, Wiley D E, Fane A G. The cleaning of ultrafiltration membranes fouled by protein. J Membrane Sci, 1993, 80: 241
    143. Chong R, Jelen P, Wong W. The effect of cleaning agents on a noncellulosic ultrafiltration membrane. Separation Science and Technology, 1985, 20: 393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700