溶液相转化法制备PSF超滤膜过程中的结构控制及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对聚合物超滤膜在较高压力下应用时很容易被压密的现象,通过调控铸膜液性质,制备系列密度梯度分布海绵状结构、耐压性好和通量高的聚砜(PSF)超滤膜。
     首先,设计粘度可调控的PSF/DMAC和PSF/DMAC/PVP共8个不同体系。通过研究铸膜液的粘度和浊点,相分离过程的光透实验,膜的表面和断面形貌,膜孔径、孔隙率及水通量等,发现对于由溶液相转化法制备得到的聚砜超滤膜而言,铸膜液的零切粘度是影响膜形貌、结构与通量的重要因素之一。
     其次,设计PSF/DMAC/PVP, PSF/DMAC/Ethanol和PSF/DMAC/Ethanol/PVP共12个不同添加剂含量的体系。通过研究膜的水通量,表面和断面形貌,耐压稳定性,膜耐压前后孔隙率的变化等,发挥PVP和乙醇对铸膜液的共同调控作用,得到了密度梯度分布海绵状结构、耐压性好和通量高的PSF超滤膜。
     最后,通过分散聚合法合成了系列不同单体组成比例的SiO2-PAMPS纳米粒子,并以SiO2-PAMPS为添加剂,制备PSF杂化超滤膜。通过考察杂化膜的水通量,孔径和孔隙率,表面和断面形貌,力学性能,耐压稳定性及杂化膜振荡前后的接触角等,发现SiO2-PAMPS纳米粒子在杂化膜表面非常稳定,杂化膜的水通量,力学性能,耐压性能明显提高。由PSF/DMAC/Ehanol/SiO2-PAMPS4(单体的摩尔比(MSiO2/MPAMPS)为15.3:1,浓度为0.3 wt%)体系所得的杂化膜,纯水通量在0.1 MPa为190 L/m2.h,拉伸强度和断裂伸长率分别为4.3 MPa和20.5%,断面结构在0.5 MPa下连续操作4h,没有压密现象发生。
The polymeric ultrafiltration membranes are easily compacted during the filtration applications under a relatively high pressure. In this work, polysulfone (PSF) ultrafiltration membranes with a density gradient of the sponge-like cross-section structure were prepared via the solution phase inversion process by controlling the properties of casting solution. These membranes have the good compressive strength and the high water flux.
     Firstly, in terms of effect of zero shear viscosity of the casting solution on the morphology and permeability of polysulfone ultrafiltration membranes, two systems were designed:the PSF/DMAC binary system and PSF/DMAC/PVP ternary system in which the viscosity was dominated by changing the concentration of PSF and the molecular weight of PVP, respectively. By measuring the viscosity and the cloud point of casting solutions, the phase-separation process, surface and cross morphologies, pore size and porosity and the water flux of membranes, it was found that the zero shear viscosity of casting solutions was one of the most important parameters for the morphology and permeability of polysulfone membranes.
     Secondly, in terms of fabrication of polysulfone ultrafiltration membranes of a density gradient cross section with a good compressive strength, three different kinds of systems including PSF/DMAC/PVP, PSF/DMAC/Ethanol ternary systems and PSF/DMAC/Ethanol/PVP quaternary system were used as casting solutions. By measuring the water flux, surface and cross morphology, the anti-pressure stability, the variation of the pore volumes between the fresh and pressurized membranes, it was found that the PSF ultrafiltration membrane with a density distribution structure possessing a good compressive strength and a relatively high water flux could be prepared by using PVP and ethanol together in PSF/DMAC/Ethanol/PVP solution.
     Lastly, in terms of influence of nano-sized SiO2-PAMPS fillers on the morphology and property of PSF ultrafiltration membranes, the different monomer ratios of SiO2-PAMPS nanoparticles were prepared by dispersion polymerization and then were used to fabricate the novel SiO2-PAMPS/PSF hybird ultrafitration membranes. By measuring the pure water flux, the porosity and the pore size, the surface and cross morphology, the stretching test, the compressive strength test and the water contact angles (before and after shaking) of membranes, it was found that the SiO2-PAMPS nanoparticles were excellently stable on the membrane surface. Meanwhile, the water flux, the mechanical property and the compressive strength of hybrid membranes were significantly improved. The hybrid membrane prepared by the PSF/DMAC/Ehanol/SiO2-PAMPS4 (the monomer mol ratio (MSiO2/MPAMPS) is 15.3:1, and the concentration of the nanoparticles is 0.3 wt%) casting solution had the water flux of 190 L/m2.h under 0.1 MPa, the tensile strength of 4.3 MPa, the breaking elongation of 20.5%, and the cross section of which was greatly stable even under the continuous operation with 0.5 MPa.
引文
[1]尹芳华, 钟璟,现代分离技术,化学工业出版社,2009年。
    [2]Mulder, M. Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht,1998.
    [3]时均,袁权,高从堦,膜技术手册,化学工业出版社,2001年。
    [4]徐又一,徐志康,高分子膜材料,化学工业出版社,2005年。
    [5]陈观文,徐平,分离膜的应用与工程案例,国防工业出版社,2007年。
    [6]G. S. Loeb, S. Sourirajian, Sea water demineralization by means of an osmotic membrane, Adv. Chem. Ser,38 (1963) 117-132.
    [7]R. E. Kesting, Synthetic polymeric membranes:A structure perspective, (2nd Ed), Wiley, NewYork,1985.
    [8]庞德聆,张晋华,任礼华,钱志林,黄刚,热敏智能径迹膜的研究.核技术,25(7)(2002)573-577。
    [9]I. M. Yamazaki, R. Paterson, L. R. Geraldo, A new generation of track etched membranes for microfiltration and ultrafiltration. Part I. Preparation and characterization. J. Membr. Sci.,118 (1996) 239-245.
    [10]韩春芬,雷新荣,多孔无机膜的制备和应用.化工新型材料,32(8)(2004)5-8。
    [11]周健儿,吴建清,刘阳,微孔无机膜的研究状况与展望.中国陶瓷工业,10(4)(2003)29-35。
    [12]L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes. Part I Study of macrovoid fomation. J. Membr. Sci,84 (1993) 93-106.
    [13]L. Zeman, T. Fraser, Formation of air-cast cellulose acetate membranes. Part II. Kinetics of demixing and microvoid growth. J. Membr. Sci,87 (1994) 267-279.
    [14]D. R. Lloyd, Microporous membrane formation via thermally induced phase separation. Ⅰ.solid-liquid phase separation. J. Membr. Sci.,52 (1990) 239-261.
    [15]D. R. Lloyd, S. S. Kim, K. E. Kinzer, Microporous membrane formation via thermally induced phase separation. Ⅱ.liquid-liquid phase separation. J. Membr. Sci., 64(1991)1-11.
    [16]H. Strathmann, K. Koch, The formation mechanism of phase inversion membranes. Desalination,21 (1977) 241-249.
    [17]H. Strathmann, K. Kock, P. Amar, The formation mechanism of asymmetrical membranes. Desalination,16 (1975) 179-203.
    [18]I. M. Wienk, R. M. Boom, M. A. M. Beerlage, A. M. W. Bulte, C. A. Smolders, H. Strathmann, Recent advances in the formation of phase inversiom membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci.,113 (1996) 361-371.
    [19]H. Strathmann, P. Scheible, R.W. Bake, Rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes, J. Appl. Polym. Sci.,15(4) (1971) 811-828.
    [20]C. Cohen, G.B. Tanny, S. Prager, Diffusion-Controlled formation of porous structures in ternary polymer systems, J.Polym.Sci:Polym.Phys.,17 (1979) 477-489.
    [21]A.J. Reuvers, J.W.A.van den Berg, C.A.Smolders, Formation of membranes by meanss of immersion precipitation. Part I. A model to describe mass transfer during immersion precipitation, J.Memb.Sci,34 (1987) 45-65.
    [22]A.J. Reuvers, C.A. Smolders, Formation of Membranes by Means of Immersion precipitation: Part II. The Mechanism of Formation of Membranes Acetate-Acetone-Water, J.Memb.Sci.,34 (1987) 67-86.
    [23]C.S. Tsay, A.J. Mchugh, Mass Transfer Modeling of Asymmetric Membrane Formation by Phase Inversion, J. Polym. Sci:Part B:Polym. Phys.28 (1990) 1327-1365.
    [24]C.S. Tsay, A.J. Mchugh, An Improved Numerical Algorithm For Ternay Diffusion With A Moving Interface, Chem. Eng. Sci.46(4) (1991)1179-1187.
    [25]L.Yilmaz, A.J. Mchugh, Modelling of Asymmetric Membrane Formation.1. Critique of Evaporation Models And Development of A Diffusion Equation Formalism For The Quench Period, J.Memb.Sci,28 (1986) 287-310.
    [26]L. Yilmaz, A.J. Mchugh, Modelling of Asymmetric Membrane Formation.Ⅱ. The Effects of Surface Boundary Conditions, J. Appl. Polym. Sci.,35 (1988) 1967-1979.
    [27]L.P. Cheng, Y.S, Soh, A.H. Dwan, An Improved Model For Mass Transfer During The Formation of Polymeric Membranes By The Immersion-precipitation Process, J.Polym.Sci:PartB:Polym.Phys.,32(8) (1994) 1413-1425.
    [28]何涛,江成璋.聚醚砜微孔膜制备中非溶剂添加剂作用研究[J].膜科学与技术,28(3)(1998)43-48。
    [29]M.L. Yeow, Y.T. Liu, K. Li, Morphological Study of Poly(vinylidene fluoride) Asymmetric Membranes:Effects of the Solvent, Additive, and Dope Temperature, J Appl Polym Sci,92 (2004)1782-1789.
    [30]B.K. Chaturvedi, AK. Ghosh, V. Ramachandhran, M.K. Trivedi, M.S. HanTa, B.M. Misra, Preparation, characterization and performance of polyethersulfone ultrafiltration membranes, Desalination,133 (2001) 31-40.
    [31]A.Bottino, The formation of microporous polyvinylidene fluoride membranes by phase seperation, J.Memb.Sci,57 (1991) 1-20.
    [32]J.H. Kim, B.R. Min et al, Phase behavior and morphological studies of polyimide/PVP/solvent/water systems by phase inversion, J Appl Polym Sci,81 (2001)3481-3488.
    [33]A. Bottino, G. Capannelli, S. Munari, Effect of Coagulation medium on properties of sulfonated PVDF membrane, J. Appl. Polm. Sci.,30 (1985) 3009-3022.
    [34]R. E. Kesting, Semipermeable membranes of cellulose acetate for desalination in the proicess of reverse osmosis. Ⅰ. Lyotropic swelling of secondary cellulose acetate. J. Appl. Polym. Sci.,9 (1965) 663-688.
    [35]S. Munari, A. Bottino, G. Capannelli, Casting and performance of PVDF based membranes. J. Membr. Sci.,16 (1983) 181-193.
    [36]B. Kunst, S. Sourirajan, Effect of casting conditions on the performance of porous cellulose acetate membranes in reverse osmosis, J Appl. Polym. Sci.,14 (1970) 723-733.
    [37]D.J. Lin, C. L. Chang, F. M. Huang, L. P. Cheng, Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system, Polymer,44 (2003) 413-422.
    [38]孔瑛,吴庸烈,杨金荣,彭曦,徐纪平,蒸馏膜用PVDF微孔膜的结构控制I.铸膜液中溶胀剂对膜形态结构的影响.水处理技术,18(1)(1992)11-15。
    [39]T. Uragami, Y. Natio, M. Sugihaha, Studies on synthesis and permeability of special polymer membranes 39. Permeation characteristics and structure of polymer blend membranes from poly(vinylidene fluoride) amd polyethylene glycol), Polym. Bull.,4 (1981) 617-622.
    [40]李战胜,江成璋,非溶剂添加剂对PES/NMP铸膜液性质的影响.膜科学与技术,21(5)(2001)1-6。
    [41]R. M. Boom, L. M. Wienk, Th. Van den Boomgaard, C. A. Smolders. Microstructures in phase inversion membranes. Part 2. the role of a polymeric additive. J. Membr. Sci.,73 (1992) 277-292.
    [42]R. M. Boom, Th. Van den Boomgaard, C. A. Smolders. Mass-transfer and thermodynamics during immersion precipitation for a two-polymer system-evaluation with the system PES-PVP-NMP-water, J. Membr. Sci.,90 (1994) 231-249.
    [43]Dongliang Wang, K. Li, W. K. Teo. Preparation and characterization of PVDF hollow fiber membrane. J. Membr. Sci.,163 (1999) 211-220.
    [44]陆茵,陈欢林,李伯耿,添加剂对PVDF相转化过程及膜孔结构的影响.高分子学报,5(2002)656-661。
    [45]I. Masselin, J.M. Laine, Membrane characterization using microscopic image analysis, J. Membr. Sci.,186 (2001) 85-96.
    [46]F.J. Tsain, J.M. Torkelson, Microporous poly(methyl methacrylate) membranes: eddect of a low-viscosity solvent on the formation mechanism, Macromolecular,23 (1990)4983-4989.
    [47]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.81-82.
    [48]S. Munari, A. Botino, G. Camera Roda, G. Capannelli, Preparation of ultrafiltration membranes. State of the art, Desalination 77 (1990) 85-100.
    [49]B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Effect of molecular weight of PEG on membrane morphology and transport properties, J. Membr. Sci.309 (2008) 209-221.
    [50]K. Ebert, D. Fritsch, J. Koll, C. Tjahjawiguna, Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes, J. Membr. Sci.233 (2004) 71-78.
    [51]G. Jonsson, Methods for determining the selectivity of reverse osmosis membranes, Desalination 24 (1978) 19-37.
    [52]R.E. Kesting, Synthetic Polymeric Membranes,2nd ed., Wiley,1985.
    [53]H. Ohya, An expression method of compaction effects on reverse osmosis membranes at high pressure operation, Desalination 26 (1978) 163-174.
    [54]P. Aerts, A. R. Greenberg, R. Leysen, W. B. Krantz, V. E. Reinsch, P. A. Jacobs, The influence of filler concentration on the compaction and filtration properties of Zirfon(?)-composite ultrafiltration membranes, Sep. Sci. Technol.22-23 (2001) 663-669.
    [55]K.M. Persson, V. Gekas, G. Tragardh, Study of membrane compaction and its influence on ultrafiltration water permeability, J. Membr. Sci.100 (1995) 155-162.
    [56]S. H. Yoo, J. H. Kim, J. Y. Jho, J. Won, Y. S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes:effect of PVP molecular weight, J. Membr. Sci.236 (2004) 203-207.
    [57]Ehsan Saljoughi, Mohammad Amirilargani, Toraj Mohammadi, Effect of Poly(vinyl pyrrolidone) Concentration and Coagulation Bath Temperature on the Morphology, Permeability, and Thermal Stability of Asymmetric Cellulose Acetate Membranes, J. Appl. Polym. Sci. 111 (2009) 2537-2544.
    [58]Y. Park. Jane, H. Acar. Metin, A Akthakul, W. Kuhlman, Anne M. Mayes, Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes, Biomaterials 27 (6), (2006) 856-865.
    [1]S. Loeb, S. Sourirajan, Seawater Demineralization by Means of a Semipermeable Membrane, Report No.60-60, UCLA Department of Engineering, July 1960.
    [2]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.123-141.
    [3]I.M. Wienk, R.M Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers, J. Membr. Sci.113 (1996) 361-371.
    [4](a) B. Keilin, Office of Saline Water report no.84, United States, Department of the Interior,1964. (b) B. Keilin, The mechanism of desalination by reverse osmosis, Office of Saline Water report no.117, United States, Department of the Interior,1964.
    [5](a) W.M. King and P.A. Cantor, Reverse osmosis and process and composition for manufacturing cellulose acetate membranes where in the swelling agent is a di-or tri-basic aliphatic acid, US Pat.,3,673,084,1972. (b) W.M. King, D.L, Hoernschemeyer and C.W. Saltonstall, Cellulose acetate blend membranes, in H.K. Lonsdale and H.E. Podall (Eds.), Reverse Osmosis Membrane Research, Plenum, New York,1972, pp.131.
    [6](a) R.E. Kesting and A. Menefee, The role of formamide in the preparation of cellulose acetate membranes by the phase inversion process, Kolloid-Z. Z. Polym., 230 (1969) 341-346. (b) R.E. Kesting and A.K. Fritzsche, Polymeric Gas Separation Membranes, Wiley, New York,1993, pp.77-91.
    [7]B. Kunst, D. Skevin, G. Dezelic and J.J. Petres, A light scattering and membrane formation study on concentrated cellulose acetate solutions, J. Appl. Polym. Sci.,20 (1976) 1339-1353.
    [8]K. V-sfirhelyi, J.A. Ronner, M.H.V. Mulder and C.A. Smolders, Development of wet-dry reversible reverse osmosis membranes with high performance from cellulose acetate and cellulose triacetate blends, Desalination,61 (1987) 211-235.
    [9]J.A. Ronner, S. Groot Wassink and C.A. Smolders, Investigation of liquid-liquid demixing and aggregate formation in a membrane-forming system by means of pulse-induced critical scattering (PICS), J. Membrane Sci.,42 (1989) 27-45.
    [10]M.A. Kraus, M. Nemas, M.A. Frommer, The effect of low molecular weight additives on the properties of aromatic polyamide membranes, J. Appl. Polym. Sci.23 (1979)445-52.
    [11]K. Darcovich,O. Kutowy, Surface tension consideration for membrane casting systems, J. Appl. Polym. Sci.35 (1988) 1769-1779.
    [12]R.M. Boom, I.M. Wienk, Th. Van den Boomgaard, C.A. Smolders, Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive, J. Membr. Sci.73 (1992) 277-292.
    [13]H.T. Yeo, S.T. Lee, M.J. Han, Role of polymer additive in casting solution in preparation of phase inversion polysulfone membranes, J. Chem. Eng. Jpn. 33 (2000) 180-185.
    [14]S. H. Yoo, J. H. Kim, J. Y. Jho, J. Won, Y. S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes:effect of PVP molecular weight, J. Membr. Sci.236 (2004) 203-207.
    [15]A.J.Reuvers and CA. Smolders, Formation of membranes by means of immersion precipitation. Part Ⅱ. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water, J. Membr. Sci.34 (1987) 67-86.
    [16]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.120-121.
    [17]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.170-172.
    [18]L.B. Ye, Z.J. Fan, J.X. Zhou, Comparison between two methods for determination of pore size of membrane, Sci. Technol.Membr. Sep.1 (1981) 24-30.
    [19]L.B. Ye, The orthogonal model of membrane pore structure, Technol. Water Treat.7(1981)11-17.
    [20]A. Ziabicki, Fundamentals of Fiber Formation, The Science of Fiber Spinning and Drawing, Wiley,1976, pp.300.
    [21]J.G. Wijmans, J. Kant, M.H.V. Mulder and CA. Smolders, Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation, Polymer.26 (1985) 1539-1545.
    [22]C.W.Yao, R.P. Burford, A.G. Fane, J.D. Fell, Effect of coagulation condition on structure and properties of membranes from aliphatic polyamides, J. Membr. Sci.38 (1988)113-125.
    [23]Yong Soo Kang, Hyo Jin Kim and Un Young Kim, Asymmetric membrane formation via immersionprecipitation method. I. Kinetic effect, J. Membr. Sci.60 (1991)219-232.
    [24]Jeong Hoon Kim, Kew Ho Lee, Effect of PEG additive on membrane formation by phase inversion, J. Membr. Sci.138 (1998) 153-163.
    [25]H. Strathmann, K. Kock, P. Amar, R.W. Baker, The formation mechanism of asymmetric membranes, Desalination.16(1975) 179-203.
    [26]H. Strathmann, Production of microporous media by phase inversion process, in: D.R. Lloyd (Ed.), Materials Science of Synthetic Membranes, ACS Symp. Ser., No. 269, American Chemical Society Washington, DC 1985, Chap.8.
    [27]A.J. Reuvers, J.W.A. van den Berg and C.A. Smolders, Formation of membranes by means of immersion precipitation. Part I. A model to describe mass transfer during immersion precipitation, J. Membr. Sci.34 (1987) 45-65.
    [28]J.G. Wijmans, J.P.B. Baaij, C.A. Smolders, The mechanism of formation of microporous or skinned membranes produced by immersion precipitation, J. Membr. Sci.14 (1983)263-274.
    [29]J. van't Hof, Wet spinning of asymmetric hollow fiber membrane for gas separation, Ph.D.Dissertation, The University of Twente, The Netherlands,1988.
    [30]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.130-132.
    [31]M.J. Han, S.T. Nam, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane, J. Membr. Sci.202 (2002) 55-61.
    [32]B. Jung, J. K. Yoon, B. Kim, H.W. Rhee, Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes, J. Membr. Sci.243 (2004) 45-57.
    [1]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.81-82.
    [2]S. Munari, A. Botino, G. Camera Roda, G. Capannelli, Preparation of ultrafiltration membranes. State of the art, Desalination 77 (1990) 85-100.
    [3]B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Effect of molecular weight of PEG on membrane morphology and transport properties, J. Membr. Sci.309 (2008) 209-221.
    [4]K. Ebert, D. Fritsch, J. Koll, C. Tjahjawiguna, Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes, J. Membr. Sci.233 (2004) 71-78.
    [5]G. Jonsson, Methods for determining the selectivity of reverse osmosis membranes, Desalination 24 (1978) 19-37.
    [6]R.E. Kesting, Synthetic Polymeric Membranes,2nd ed., Wiley,1985.
    [7]H. Ohya, An expression method of compaction effects on reverse osmosis membranes at high pressure operation, Desalination 26 (1978)163-174.
    [8]P. Aerts, A. R. Greenberg, R. Leysen, W. B. Krantz, V. E. Reinsch, P. A. Jacobs, The influence of filler concentration on the compaction and filtration properties of Zirfon(?)-composite ultrafiltration membranes, Sep. Sci. Technol.22-23 (2001) 663-669.
    [9]S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmotic membrane, Adv. Chem. Ser.38 (1962) 117-132.
    [10]H.K. Lonsdale, The growth of membrane technology, J. Membr. Sci.10 (1982) 81-181.
    [11]H. Strathmann, K. Koch, The formation mechanism of phase inversion membranes, Desalination 21 (1977) 241-255.
    [12]A.J.Reuvers and C.A. Smolders, Formation of membranes by means of immersion precipitation. Part II. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water, J. Membr. Sci.34 (1987) 67-86.
    [13]Y.S. Kang, H.J. Kim, U.Y. Kim, Asymmetric membrane formation via immersion precipitation method, I, Kinetic effect, J. Membr. Sci.60 (1991) 219-232.
    [14]K.M. Persson, V. Gekas, G. Tragardh, Study of membrane compaction and its influence on ultrafiltration water permeability, J. Membr. Sci.100 (1995) 155-162.
    [15]S. H. Yoo, J. H. Kim, J. Y. Jho, J. Won, Y. S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes:effect of PVP molecular weight, J. Membr. Sci.236 (2004) 203-207.
    [16]Ehsan Saljoughi, Mohammad Amirilargani, Toraj Mohammadi, Effect of Poly(vinyl pyrrolidone) Concentration and Coagulation Bath Temperature on the Morphology, Permeability, and Thermal Stability of Asymmetric Cellulose Acetate Membranes, J. Appl. Polym. Sci.111 (2009)2537-2544.
    [17]R.M. Boom, I.M. Wienk, T. Van den Boomgaard, C.A. Smolders, Microstructures in phase inversion membranes, Part 2, The role of a polymeric additive, J. Membr. Sci.73 (1992) 277-292.
    [18]J. J. Qin, F. S. Wong, Hypochlorite treatment of hydrophilic hollow fiber ultrafiltration membranes for high fluxes, Desalination 146 (2002) 307-309.
    [19]J. J. Qin, F. S. Wong, Y. Li, Y. T. Liu, A high flux ultrafiltration membrane spun from PSU/PVP(K90)/DMF/1,2-propanediol, J. Membr. Sci.211 (2003) 139-147.
    [20]A.J. Reuvers, J.W.A. van den Berg and C.A. Smolders, Formation of membranes by means of immersion precipitation. Part I. A model to describe mass transfer during immersion precipitation, J. Membr. Sci.34 (1987) 45-65.
    [21]S.J. Shin, J.P. Kim, H.J. Kim, J.H. Jeon, B.R. Min, Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive, Desalination 186 (2005) 1-10.
    [22]V. Laninovic, Relationship between type of non-solvent additive and properties of polyethersulfone membranes, Desalination 186 (2005) 39-46.
    [23]Z.S. Li, C.Z. Jiang, Investigation of the dynamics of poly(ether sulfone) membrane formation by immersion precipitation, J. Polym. Sci., Part B, Polym. Phys. 43(2005)489-510.
    [24]Z.L. Xu, F.A. Qusay, Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution, J. Membr. Sci.233 (2004) 101-111.
    [25]I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers, J. Membr. Sci.113 (1996) 361-371.
    [26](a) B. Keilin, Office of Saline Water report no.84, United States, Department of the Interior,1964. (b) B. Keilin, The mechanism of desalination by reverse osmosis, Office of Saline Water report no.117, United States, Department of the Interior,1964.
    [27](a) W.M. King and P.A. Cantor, Reverse osmosis and process and composition for manufacturing cellulose acetate membranes where in the swelling agent is a di-or tri-basic aliphatic acid, US Pat.,3,673,084,1972. (b) W.M. King, D.L. Hoernschemeyer and C.W. Saltonstall, Cellulose acetate blend membranes, in H.K. Lonsdale and H.E. Podall (Eds.), Reverse Osmosis Membrane Research, Plenum, New York,1972, pp.131.
    [28](a) R.E. Kesting and A. Menefee, The role of formamide in the preparation of cellulose acetate membranes by the phase inversion process, Kolloid-Z. Z. Polym., 230 (1969) 341-346. (b) R.E. Kesting and A.K. Fritzsche, Polymeric Gas Separation Membranes, Wiley, New York,1993, pp.77-91.
    [29]B. Kunst, D. Skevin, G. Dezelic and J.J. Petres, A light scattering and membrane formation study on concentrated cellulose acetate solutions, J. Appl. Polym. Sci.20 (1976) 1339-1353.
    [30]K. V-sfirhelyi, J.A. Ronner, M.H.V. Mulder and C.A. Smolders, Development of wet-dry reversible reverse osmosis membranes with high performance from cellulose acetate and cellulose triacetate blends, Desalination 61 (1987) 211-235.
    [31]J.A. Ronner, S. Groot Wassink and C.A. Smolders, Investigation of liquid-liquid demixing and aggregate formation in a membrane-forming system by means of pulse-induced critical scattering (PICS), J. Membr. Sci.42 (1989) 27-45.
    [32]Z.H. Zhang, Q.F. An, Y.L. Ji, J.W. Qian, C.J. Gao, Effect of zero shear viscosity of the casting solution on the morphology and permeability of polysulfone membrane prepared via the phase-inversion process, Desalination 260 (2010) 43-50.
    [33]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.120-121.
    [34]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.170-172.
    [35]L.B. Ye, Z.J. Fan, J.X. Zhou, Comparison between two methods for determination of pore size of membrane, Sci. Technol.Membr. Sep.1 (1981) 24-30.
    [36]L.B. Ye, The orthogonal model of membrane pore structure, Technol. Water Treat.7(1981)11-17.
    [37]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.123-129.
    [38]C.A. Smolders, A.J. Reuvers, R.M. Boom, Microstructures in phase-inversion membranes, Part 1:Formation of macrovoids. J. Membr. Sci.73 (1992) 259-275.
    [39]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.130-132.
    [40]M.J. Han, S.T. Nam, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane, J. Membr. Sci.202 (2002) 55-61.
    [1]W. Baker. Richard, Membrane Technology and Applications, Second Edition, 2004 John Wiley & Sons, Ltd., ISBN:0-470-85445-6
    [2]S. P. Nunes, K.-V. Peinemann, Membrane Technology in the Chemical Industry, 2001 Wiley-VCH Verlag GmbH, ISBNs:3-527-28485-0 (Hardcover); 3-527-60038-8 (Electronic)
    [3]Y. Yang, P. Wang, Q. Z. Zheng, Preparation and Properties of Polysulfone/TiO2 Composite Ultrafiltration Membranes, J. Polym. Sci., Part B:Polym. Phys,44 (2006), 879-887.
    [4]Y. Yang, H. Zhang, P. Wang, Q. Zhang, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of polysulfone UF membranes, J.Membr. Sci.288 (2007) 231-238.
    [5]K. Toyomoto, A. Higuchi, Microfiltration and ultrafiltration, in: T. Nakagawa (Ed.), Membrane Science and Technology, Marcel Dekker, New York,1992, p.289.
    [6]S.S. Kulkarni, E.W. Funk, N.N. Li, Ultrafiltration membranes, in: W.S.W.Ho, K.K. Sirkar (Eds.), Membrane Handbook, Van Nostrand Reinhold, New York,1992, p. 409.
    [7]A.V.R. Reddy, D.J. Mohan, A. Bhattacharya,V.J. Shah, P.K. Ghosh, Surface modification of of ultrfiltration membranes by preadsorption of a negatively charged polymer. I. Permeation of water soluble polymers and inorganic salt solutions and fouling resistance properties, J. Membr. Sci.214 (2003)211-221.
    [8]C. Guizard, A.J. Burggraaf, Fundamentals Inorg. Membr. Sci. Technol, Elsevier Science & Technology Publisher,1996, pp.227.
    [9]J. Kim, B. Van der Bruggen, The use of nanoparticles and nanotubes in polymeric and ceramic membrane structures:review of envisaged performance improvements for water treatment, Environ. Pollut.158 (2010) 2335-2349.
    [10]Z.J. He, I. Pinnau, A. Morisato,Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation, Desalination 146 (2002) 11-15.
    [11]G. Arthanareeswaran, T.K. Sriyamuna Devi, M. Raajenthiren, Effect of silica particles on cellulose acetate blend ultrafiltration membranes. Part Ⅰ, Sep. Purif. Technol.64 (2008) 38-47.
    [12]G. Bottino, V. Capannelli, D. Asti, P. Piaggio, Preparation, and properties of novel organic-inorganic porous membranes, Sep. Purif. Technol.22 (2001) 269-275.
    [13]L. Yan, Y.S. La, C.B. Xiang, S. Xianda, Effect of nano-sized alumina particle addition of PVDF ultrafiltration membrane performance, J. Membr. Sci.276 (2006) 162-167.
    [14]I. Genne, S. Kuypers, R. Leysen, Effect of the addition of ZrO2 to polysulfone based UF membranes, J. Membr. Sci.113 (1996) 343-350.
    [15]A. Bottino, G. Capannelli, A. Comite, Preparation and characterization of novel porous PVDF-ZrO2 composite membranes, Desalination 146 (2002) 35-40.
    [16]J. H. Li, Y. Y. Xu, L. P. Zhu, J. H. Wang, C. H. Du, Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance, J. Membr. Sci.326 (2009) 659-666
    [17]H.S. Xia, Q. W, Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation, J. Appl. Polym. Sci.87 (2003) 1811-1817
    [18]H.S. Xia, Q. W, Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites, Chem. Mater.,14 (5) (2002) 2158-2165
    [19]P. Aerts, E. Van Hoof, R. Leysen, I.F.J. Vankelecom, P.A. Jacobs, Polysulfone-Aerosil composite membranes Part 1. The influence of the addition of Aerosil on the formation process and membrane morphology, J. Membr. Sci.176 (2000) 63-73.
    [20]G. Arthanareeswaran, P. Thanikaivelan, Fabrication of cellulose acetate zirconia hybrid membranes for ultrafiltration applications:Performance, structure and fouling analysis, Sep. Purif. Technol.74 (2010) 230-235
    [21]Hilal N, Al-Khatib L, Atkin BP, Kochkodan V, Potapchenko N, Photochemical modification of membrane surfaces for (bio)fouling reduction:a nano-scale study using AFM, Desalination 158(2003) 65-72
    [22]Hilal N, Kochkodan V, Al-Khatib L, Levadna T Surface modified polymeric membranes to reduce (bio)fouling:a microbiological study using E. coli, Desalination 167(2004)293-300
    [23]Y. Park. Jane, H. Acar. Metin, A Akthakul, W. Kuhlman, Anne M. Mayes, Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes, Biomaterials 27 (6) (2006) 856-865
    [24]Z.H. Zhang, Q.F. An, Y.L. Ji, J.W. Qian, C.J. Gao, Effect of zero shear viscosity of the casting solution on the morphology and permeability of polysulfone membrane prepared via the phase-inversion process, Desalination 260 (2010) 43-50.
    [25]S.J. Shin, J.P. Kim, H.J. Kim; J.H. Jeon, B.R. Min, Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive, Desalination 186 (2005) 1-10.
    [26]V. Laninovic, Relationship between type of non-solvent additive and properties of polyethersulfone membranes, Desalination 186 (2005) 39-46.
    [27]Z.S. Li, C.Z. Jiang, Investigation of the dynamics of poly(ether sulfone) membrane formation by immersion precipitation, J. Polym. Sci., Part B, Polym. Phys. 43(2005)489-510.
    [28]Z.L. Xu, F.A. Qusay, Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution, J. Membr. Sci.233 (2004) 101-111.
    [29]Z. Y. Tang, N. A. Kotov, S. Magonov and B. Ozturk, Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nat. Mater., 1 (2002) 190-194.
    [30]Z.H. Zhang, Q.F. An, T.L, YZ, J.W. Qian, C.J. Gao, Fabrication of polysulfone ultrafiltration membranes of a density gradient cross section with good anti-pressure stability and relatively high water flux, Desalination doi:10.1016/j.desal.2010.10.066.
    [31]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.170-172.
    [32]L.B. Ye, Z.J. Fan, J.X. Zhou, Comparison between two methods for determination of pore size of membrane, Sci. Technol. Membr. Sep.1 (1981) 24-30.
    [33]L.B. Ye, The orthogonal model of membrane pore structure, Technol. Water Treat.7(1981)11-17.
    [34]B.Y. Du, Z. Cao, Z.B. Li, A.X. Mei, X.H. Zhang, J.J. Nie, J.T. Xu, Z.Q. Fan, One-Pot Preparation of Hollow Silica Spheres by Using Thermosensitive Poly(N-isopropylacrylamide) as a Reversible Template, Langmuir,25 (20) (2009) 12367-12373.
    [35]M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers,1997, pp.123-129.
    [36]C.A. Smolders, A.J. Reuvers, R.M. Boom, Microstructures in phase-inversion membranes, Part 1:Formation of macrovoids, J. Membr. Sci.73 (1992) 259-275.
    [37]S. H. Yoo, J. H. Kim, J. Y. Jho, J. Won, Y. S. Kang, Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes:effect of PVP molecular weight, J. Membr. Sci.236 (2004) 203-207.
    [38]E. Saljoughi, M. Amirilargani, T. Mohammadi, Effect of Poly(vinyl pyrrolidone) Concentration and Coagulation Bath Temperature on the Morphology, Permeability, and Thermal Stability of Asymmetric Cellulose Acetate Membranes, J. Appl. Polym. Sci.111(2009)2537-2544.
    [39]Eric.M. Vrijenhoek, Seungkwan Hong, Menachem Elimelech, Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes, J. Membr. Sci.188 (2001) 115-128
    [40]. M. Hirose, H. Ito, Y. Kamiyama, Effect of skin layer surface structures on the flux behaviour of RO membranes, J. Membr. Sci.121 (1996) 209-215.
    [41]Y.M. Yuan, Molly S. Shoichet, Surface Enrichment of Poly(trifluorovinyl ether)s in Polystyrene Blends, Macromolecules 33 (2000) 4926-4931
    [42]B. Baradie, Molly S. Shoichet, Insight into the Surface Properties of Fluorocarbon-Vinyl Acetate Copolymer Films and Blends, Macromolecules 36 (2003) 2343-2348
    [43]N.P. Chen, L. Hong. Surface phase morphology and composition of the casting films of PVDF-PVP blend, Polymer 43 (2002) 1429-1436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700