脉冲阴极弧电源的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要阐述了脉冲阴极弧放电装置的设计与搭建,以及使用此装置实现真空弧放电及薄膜制备的过程。并试图通过对制备薄膜的观察与分析,来考察所设计装置的放电机制、真空弧和成膜之间的内在关系。
     本文从阴极电弧的发展与机理、电弧离子镀技术的现状说起,着重阐述了高压脉冲大电流电源的设计方案、三种触发脉冲阴极弧放电的方法和对不同电压、气压和电极间距条件下制备薄膜的形态分析。
     高压脉冲大电流电源由直流电源、脉冲成形网络、大电流开关和等离子负载等组成。本文对脉冲成形网络做了重点阐述和分析,脉冲成形网络需要一组或几组电容电感组成,我们分别对电容电感值的计算和选择做了说明。并且用数值模拟方法对三阶和十阶脉冲成形网络进行了模拟。在试验中选用了适当的电容电感值,产生了脉宽为500μs的脉冲,与模拟结果基本相符。另外,还设计了脉冲触发时序控制电路,用PLC来控制晶闸管作为脉冲开关,以实现脉冲放电,因为PLC只能实现脉宽为毫秒级的方波脉冲,为了实现所需脉宽为100μs的脉冲,设计了一个微分电路,用来产生窄脉冲去控制晶闸管的导通与关断。通过整机调试,整个高压脉冲大电流电源运行良好。
     为了实现对真空弧放电的触发,本文设想了三种触发放电装置进行试验。一种是辉光放电装置,此装置由可调变压器、隔离变压器、整流桥和滤波电路组成,输出电压最高可达300V。在几帕到几十帕的范围内,先产生一定的辉光等离子体,然后利用脉冲阴极弧放电装置进行弧光放电;另一种是高压点火触发装置,通过本装置,触发电压可升至5-15KV,实验证实,它比前一种方式更容易引发电弧;再一种是大功率脉冲触发电源电路,本文对整个设计思路及其参数计算,做了详细说明,包括三相全控桥式整流电路、晶闸管触发电路和脉冲成形网络的计算分析工作,此触发装置的脉冲成形网络为低阶的,可以得到窄脉冲。当电容电感取不同值时,最窄为可输出脉宽为1μs的脉冲,此时系统可以作为真空触发装置;当脉宽为10μs时,这个系统可以作为等离子体源离子注入负高压源,此电源具有较广泛的应用领域。最后,我们用碳棒作为阴极,带有基片的金属平台作为阳极,在真空室中进行了脉冲放电试验。
     我们利用高压脉冲大电流电源在真空室中进行了弧光放电,测得了当充电电压为200V和220V时的放电电压和放电电流,当充电电压为200V时,两极电压为78V,电流为562.5A,当充电电压为220V时,两极电压为80V,电流为750A,从中可以看出,弧光放电电流非常大。首先,根据阴极主弧位置的不同,在玻片上制备了C膜。通过测量薄膜的厚度,对沉积速率做了分析。从中可以知道,由于高压脉冲大电流电源放电电流相当大,相应的沉积速率也非常高。其次,在相同条件下,分别在玻片和硅片上进行镀膜,通过SEM观察其形貌,从SEM图中可以看出,在硅片上生长的薄膜结晶性要比玻片上好,这主要是因为硅片的表面取向性好于玻片。最后,在充电电压分别为180V、220V;真空室压强分别为16Pa、25Pa;电极间距分别为5cm、10cm的条件下,制备了薄膜并对薄膜进行了SEM观察和XRD分析。通过样品分析可以知道,随着放电电压、气压和电极间距的不同,所制备的薄膜有一定的差异性,当我们选取适当的放电电压、气压和电极间距的时候,可以制备出表面比较均匀、结晶性能比较好的薄膜。
     目前,整个装置已经搭建完成,并且进行了放电试验和薄膜制备,得到了表面比较均匀、结晶性能比较好的薄膜。结果表明,本装置满足设计要求。
This paper mainly discusses designing and building of pulse cathodic arc discharge device, we successfully achieve arc discharge and preparing films by this device. Further, we investigate the relations about discharge mechanism, vacuum arc and films through the observation and analysis to the films.
     This paper introduces the development of the mechanism of the cathodic vacuum arc and the development of arc ion plating technology, and studies three ways of pulse trigger methods, high-voltage pulse-current power and the difference of films which were prepared in different conditions.
     The high-voltage pulse-current power was composed by DC power supply, pulse forming network (PFN), large current switch, plasma load and etc. We focus on the instructions of pulse forming network, it composed of a group of capacitance and inductance, and illustrate the way of calculating and selecting about them. The discharge forming of third order and ten order PFN is simulated by the numerical method. The pulse width for 500 microseconds output when we choose the appropriate capacitance and inductance which is consistent with the simulation result. We designed time-sequence controller with PLC to control thyristor switch as to achieving the pulse discharge. Because the PLC just can produce millisecond monopulse itself, a differential amplifying circuit is made as to controlling thyristor which can produce 100 microseconds single pulse signal. The high-voltage pulse-current power performs perfectly after debug the whole machine.
     This paper conceived three trigger discharge devices for testing in order to achieve the trigger for vacuum arc discharge. The first is glow discharge device which composed with transtat, isolating transformer, rectifier bridge and filter circuit. The top output voltage can reach 300V. It produces glow plasma in the several Pascal gas pressure, and then the arc discharge can move on by using pulse cathodic arc discharge device. The second is high-voltage ignition triggering device whose trigger voltage can rise to 5-15KV, which can get start arc easier than the above way. The late one is high power pulse triggering power. We describe the detailed explanation about the whole design ideas and parameters calculation, including the calculation and analysis about three-phase full-bridge rectifier, thyristor trigger circuit and PFN. A narrow pulses is formed though the low-order PFN. The power can be triggered device in vacuum when pulse width is one microsecond as the capacitance and inductance take different values. And the power can be used as a negative high voltage source of plasma source ion implantation when pulse width is set up to ten microseconds. A pulse discharge test is practically carried on by using carbon rods as cathode and metal platform with chip as an anode.
     Discharge-voltage and discharge-current is measured when the charging voltage is 200V and 220V in the process of arc discharge. The voltage between the poles is 78V and 80V respectively. But arc current is 562.5A and 750A in obvious difference. The arc discharge current is very high. Using the device we structure the film preparing experiment. Firstly, we prepare films on glasses according to the different positions of cathode arc; and analyze the deposition rate by measuring the film thickness. The corresponding deposition rate also is very high due to the high voltage pulse power discharge current. Secondly, we prepare films in glass and silicon chip respectively under the same conditions. According to SEM observation, the crystallization of film prepared on silicon chip is better than the one prepared on the glass. The main reason is the surface orientation of the silicon is better than that of slides. Finally, we prepare films in different conditions, which are charging voltage as 180V,220V respectively; vacuum chamber pressure as 16Pa,25Pa respectively and the distance between cathode and anode as 5cm,10cm. These films are observed by SEM and XRD. Some characteristics of the films are different as discharging voltage, discharging pressure and the distance are different. But it is obvious that the uniform and crystallizing films can be prepared in appropriate voltage, air pressure and distance.
     Up to now, we have done experiments for discharging and preparing films after the whole device is build up. We obtained the films with evener surface and better crystallization properties. All these tests indicate that the high-voltage pulse-current power device meets design requirement.
引文
[1]Nakamura K, Suqai H. Negative ion measurements and etching in a pulsed power inductively coupled plasma in chlorine [J]. Plasma Sources Science and Technology,1996,5:139-144.
    [2]Peterson R R, Olson C L, Renk T J, et al. Chamber dynamic research with pulsed power [J]. Nucl Inst r and Meth in Phys Res A,2001,464 (123):172-179.
    [3]Hofmann D, Kunkel S, Schuessler H. Etching and sputter2ion plating using pulsed d. c [J]. Surface and Coatings Technology,1996,81 (223):146-150.
    [4]韩苗兴,何永夫.电镀用脉冲电源的应用推广[J].表面技术.2002,24(3):27-29.
    [5]郭丽芳.可控大功率脉冲电源的研究与设计[D].黑龙江:东北大学,2008.
    [6]黄俊,王兆安.电力电子变流技术[M].机械工业出版社.1996:78-88.
    [7]文亚凤,魏富真,问延棣.500A高速换向脉冲电镀电源的研制[J].电力电子技术.1999(5):32-34.
    [8]朱瑞安,郭振常.脉冲电镀[M].北京:电子工业出版社,1987.
    [9]向国朴.脉冲电镀的原理与应用[J].工业技术,1987(9):30-34.
    [10]Anders A, Yushkov G, Oks E et al. Rev Sci Instrum,1998,69(3):1332-1335
    [11]Anders A. Physical Review E,1997,35 (1):969-981.
    [12]Monteiro Othon R. Nuclear Instruments and Method in Physics Research B, 1999,148:12.
    [13]高玉,耿漫,黄遇明等.核聚变与等离子体物理,1996,16(1):31.
    [14]魏培平,董丽敏,杨嘉祥.脉冲电晕等离子体脱硫脱氮研究[J].哈尔滨师范大学学报自然科学版,2001,17(6):68.
    [15]Akiyama M, Minami K, Watanabe M, et al. De-NOx by bidirectional pulse corona discharge. Plasma Science,2000, ICO PS 2000, (2):107.
    [16]李胜利,李劲,王译文.用高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学,1996,16(1):73.
    [17]李劲,王译文,高秋华.放电等离子体处理技术中的放电问题[J].高电压技术.1997,23(2):7.
    [18]李胜利,李劲,王译文.脉冲电晕放电对印染废水脱色效果的实验研究[J].环境科学.1996,17(1):13.
    [19]李冬黎,何湘宁.脉冲放电源污水处理技术[J].高电压技术.2001,27(6):22.
    [20]王海宁,阮金良,余汉民.电除尘器脉冲供电电源及其应用研究[J].电力环境保护,2001,17(1):13-14.
    [21]张根保,甘克启.电除尘器脉冲供电电源的改进[J].中国电力,1997,30(4):41
    [22]Mar tin P J, Ben David A. Review of the filtered vacuum arc process and materials deposition [J]. Thin solid films,2001,394:12-15.
    [23]田民波,刘德令.薄膜科学与真空技术[M].北京:机械工业出版社,1997:111-122.
    [24]Coll B F, Sathrum P, Aharnoov R, et al. Diamond2like Car bon Films Synthesized by Cathodic Arc Evaporation[J].Thin solid films,1992,209: 165-173.
    [25]Leu M S, Chen S Y, Chang J J, et al. Diamond2like coatings prepared by the filtered cat hodic arc technique for minting application [J]. Surf. Coat. Technol., 2004,178:566-572.
    [26]Anders S, Rsoux S, Krihnan K, et al. Plasma dist ribu2 t ion of cathodic arc deposition systems [J]. J. Appl. Phys.,1996,79:67-85.
    [27]闻立时,黄荣芳.离子镀硬质膜技术的最新进展和展望[J].真空,2000,(1):2.
    [28]Olbrich W and Kamp Schulte G. Surf. Coat. Technol.1993,61:262.
    [29]信觉俗.多弧离子镀技术[J].真空.1987,Vol 6:43.
    [30]Stupak R.I.et al.U.K. Patent GB, Z106545A.1981.
    [31]Lunev, V. M. et al. Sov.Phys.Tech [M].Phys.1978, Vol.22:855.
    [32]Martin, P. I. et al, I.Vac, Sci [J]. Technol.1987, A5 (1), Feb:21.
    [33]白希尧,张芝涛,白敏东,韩慧.高气压强电离放电等离子体学科的形成及应用展望[J].自然杂志,2000,20(3):156-160.
    [34]古刚,向阳,张建革.国际电磁发射技术研究现状[J].舰船科学技术,2007,29(S1):156-158.
    [35]Harry D Fair.Progress in Electromagnetic Launch Science and Technology [C].IEEE Trans. on Magnetics,2007,43(1):93-98.
    [36]过增元,赵文华,电弧和热等离子体[M].科学出版社,1986:12-16.
    [37]徐学基,诸定昌.气体放电物理[M].上海,复旦大学出版社.1995,10:46-50.
    [38]Boxman R L, Goldsmith S, Greenwood A. Twenty-five years of progress in vacuum arc research and utilization[C].IEEE Trans. on Plasma Sci.1997, PS-25(6):1174-1185.
    [39]Daalder J E. Cathode spots and vacuum arcs [J]. Physics,1981,104c:91-106.
    [40]P.J.Martin, D.R.Mckenzie, R.P.Netterfield et al.Thin Solid Films 1987, 150:91-101.
    [41]Janusz Kutzner and H.Cuaigmiller,IEEE Transactions on plasma science 1989,17:688-694.
    [42]R.L.Boxman and S.Goldsmith Surf. Coat Technol 1992,52:39-50.
    [43]李刘合,夏立芳,阴极弧离子镀磁过滤器[J].真空.1999,3:14-19.
    [44]Vyskocil J, Musil J.Arc evaporation of hard coatings:process and film properties[M].Surf.Coat.Technol.1990,43/44:299-311.
    [45]St.John R M, Winans J G.Motion of arc cathode spot in a magnetic field [M].Phys. Rev.1954,94 (5):1097-1102.
    [46]Cobine J D and Farral G A. Experimental study of are stability[C] I J. Appl. Phy, 1960,13(12):2296-2304.
    [47]Lafferty J M. Triggered vacuum gaps[C]. Proc Of IEEE,1966,54(1):23-32.
    [48]周友苏,唐希源,赵双华,朱永林,崔凯.真空电弧放电稳定性[J].真空.1999,12(6):26-30.
    [49]李令奇,段智敏.机械系统实用计算机控制技术[M].哈尔滨,东北大学出版社.2003,10:117-120.
    [50]邱阿瑞,孙旭东.实用电动机控制[M].北京,人民邮电出版社.2009:229-235.
    [51]陈苏波,陈伟欣.三菱PLC快速入门实例提高[M].北京,人民邮电出版社.2008:42-66.
    [52]徐学基.气体放电物理[M].上海:复旦大学出版社,1996,1-49.
    [53]项双树.TC787A相位控制电路的原理及应用[J].电工技术.25-29.
    [54]吴坚,张茂青,胡庆何,秦强,陈德炯.基于专用芯片TC787的三相六脉冲晶闸管触发板的研制[J].电子工程师.2003,3:44-46.
    [55]佘艳.基于TC787的三相桥式全控整流电路试验装置的研制[J].安徽电气工程职业技术学院学报.2009.9[3]:48-50.
    [56]何立民.单片机应用技术选编[M].北京,北京航空航天大学出版社.1999:23-28.
    [57]张茂青,胡庆何,汪萍,陈齐汉.一种实用的三相六脉冲晶闸管触发板的研制[J].电工技术杂志.2003[7]:66-69.
    [58]Sathrum P, Coll B. F. Plasma and Deposition Enhancement by Modified Arc Evaporation Source[C]. Surf Coat Technol,1992,50:103-109.
    [59]周景龙,周兰波.电力电子技术[M].煤炭工业出版社.2009,49-55.
    [60]William H. Hayt, Jr., John A. Buck. Engineering Electromagnetics [M].2007, 255-280.
    [61]严一心,林鸿海.薄膜技术[M].北京:兵器工业出版社,1994:112-125.
    [62]惠迎雪,杭凌侠,徐均琪.磁控溅射薄膜沉积速率的研究[J].西安工业学院学报.2005,8,25:308-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700