微波硫灯的仿真设计及动态测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波硫灯是上世纪90年代研制出来的新型光源。它是一种无极电光源,是通过磁控管产生电磁场能量激励谐振腔中的氩气和硫粉产生等离子体而发光,其光谱和太阳光谱非常接近。与其他光源相比,微波硫灯具有光效高,显色性能好,光通量高,绿色环保等性能,因此非常适合在大面积的室内照明和室外照明中使用。广东美的集团对微波进行了自主研发,其生产的硫灯基本达到国际同等水平。然而,由于微波硫灯的成本、散热、稳定性等问题制约了它的发展,导致目前微波硫灯还不能被广泛的使用。本论文是基于美的集团研发的微波硫灯基础之上做的研究。本论文介绍了微波硫灯的背景和国内外发展动态,并对微波硫灯的组成结构及各部分作用作了详细的阐述。另外还从理论上对发光机理进行了研究。本人的工作主要有以下几个方面:
     1.对微波硫灯冷状态下的高频系统进行了仿真优化。通过仿真得到谐振腔和波导的电磁场分布,确定谐振腔的模式为TE111模,并对网罩壁烧黑现象原因进行了分析。通过对谐振腔的高度优化,得到当频率为2.458GHz时,在冷状态下灯泡周围的电场强度最大为3722V/m。此时谐振腔高度为131.5mm。对调谐块的尺寸优化得到调谐块尺寸为:宽21mm,厚度为9.5mm,高度为40mm时,灯泡周围电场强度达到3781V/m。
     2.对微波硫灯热状态进行动态测试。结合测试得到的输入驻波系数和微波硫灯的发光原理对微波硫灯的启动过程进行了研究,将微波硫灯的启动过程分为四个阶段:准备期、快速放电期、硫等离子体发光期和稳定期。分析了启动过程中的准备期和快速放电期对硫灯的磁控管以及网罩造成的影响,并分别提出了保护磁控管和网罩的解决方法。另外本文还针对微波硫灯散热困难,电源效率低等缺点,提出了采用开关电源代替双变压器电源并进行了对比测试,通过测试得到微波硫灯在开关电源下工作的性能比在双变压器电源下的性能更好。
     3.对微波硫灯进行了热状态仿真。根据热状态测试得到的驻波系数等参数对热状态下灯泡内等离子体的参数进行模拟仿真,使得模拟结果和实验结果一致时对应的等离子体参数即为热状态等离子体的等效参数。其等效值为:等离子体频率9.5GHz,碰撞频率12GHz.对微波硫灯热状态下最小反射系数的条件做了探索。
Microwave sulfur lamp was a new light source developed in the 1990’last century. It’s a kind of electrodeless electrical light source which producing light by microwave energy inciting the argon and sulfur in the resonator to generate plasma .Compared with other light sources, microwave sulfur lamp light has many features such as high efficiency and good color performance, high luminous flux, green and environment protection, so it is suitable for large indoor lighting and outdoor lighting. Midea company has independently carried out the development of microwave sulfur lamp which has basically reached the International level. But due to the cost, heat elimination, stability and so on, have constrained its development, led to the t microwave sulfur lamp can not be widely used until now. This paper is based on the previous research of microwave sulfur lamp by Midea company. The background and the development at home and abroad of microwave sulfur lamp was described and the composition structure of the lamp and the role of all part are also Detail elaborated in this paper. In addition the mechanism of the illumination has researched. Main contents of this article include the following aspects:
     First, simulate and optimize the RF system of Microwave sulfur lamp at the cool state. From the distribution of electromagnetic field in the resonator, we can judge the mode is TE111. the reason of burning the resonator cavity is analyzed. Through optimizing the height of resonator, the electric field around the lamp reached to the maximum (3722V/m), when the frequency is 2.458GHz and the height is 131.5mm. Optimizing the size of the tuning block to gain the best size: width 21mm, thickness 9.5mm, height 40mm, for that the electric field around the lamp reach to 3788V/m.
     Second, measure the microwave sulfur lamp dynamically in the thermal state. According to the input the voltage standing wave ratio (VSWR) and the emitting principle of the lamp, the whole working process of the lamp can be divided into four phases as follows: preparation phase, quick discharge phase, sulfur plasma lighting phase and stable phase. From analysis of the result gain that the reflection of microwave energy is large in phases of preparation and quick discharge, at which will most likely damage the magnetron. We propose to use switching power to replace two-transformer power for the present product’s efficiency is low and it is hard to distribution heat. From the test we find that the performance of microwave sulfur lamp is better when powered by the switching power.
     Third, simulate the microwave sulfur lamp at the thermal state. The thermal state simulation is based on the parameter VSWR from the thermal state test. If the result of simulation is corresponding to the test result, then the parameter is the plasma equivalent parameter. We gain the equivalent parameter of plasma: plasma frequency 9.5GHz, collision frequency 12GHz. At last, we explored the best condition for the minimum reflection coefficient of microwave sulfur lamp.
引文
[1]王水成,李中新.电光源的种类及特点.现代商贸工业,2007,19(12):280-281
    [2]王尔镇.新型荧光灯的发展动向.灯与照明,1997,5(2):14-20
    [3]杨深,石挺,唐效峰,等.无汞光源研究进展.中国照明电器,2010,7(2):6-11
    [4]王永根.一种节能环保型照明装置—微波硫灯.实用节能技术,2001,4(5):15-17
    [5]陈大华.微波硫灯的研究.照明工程学报,1997,8(3):17-18
    [6] Dolan J T , Ury MG and Wood C H .A novel high efficiency microwave powered 1ight source. 6th Int. Symp. on the Science and Technology of Light Source, Budapest University of Technology, 1992,4(6):20-25
    [7]马开,陈剑慧,许崇杰.微波硫灯系统及其进展.真空电子技术,2000,3(5):31-34
    [8] Florentine.F.A. Lighting High Bay Areas with Electrodeless Lamps. Journal of the Illuminating Engineering Society.1997,26(1):369-371
    [9] Edmiston Gregory, Krile John, Neuber Andreas, Diekens James, Krompholz Hermann High-Power microwave surface flashover of a gas-dielectric interface at 90-760 torr IEEE Transactions on Plasma Seienee 34(5):2006:1782-1788
    [10] Colin William Johnston. Transport and equilibrium in molecular plasmas:the sulfur lamp. Eindhoven:Eindhoven University of Technology,2003,1-50
    [11] A Didenko, A Prokopenko, B Zverev. Sulfur light sources with minimal Microwave power. In:Vl Int.Workshop on Microwave Diseharges: Fundamental And Applications, Zvenigorod, Russia, 2006, 6(9):11-15
    [12]陈大华等.微波硫灯技术的进展.电工资讯,1998,8(1):29-31
    [13]金大志.微波硫灯的工作机理.真空电子技术,2002,(2):48-50
    [14]聂杨.微波硫灯的研究:[硕士学位论文].成都:电子科技大学,2006,1-76
    [15]杨捷,陈大华,蔡伟新,等.微波硫灯机制和试验的探讨.复旦学报, 1999, 38(3):312-316
    [16]王文祥.微波工程技术.成都:电子科技大学出版社,2006,432-442
    [17]傅君眉,冯恩信.高等电磁理论.西安:西安交通大学出版社,2000,109-111
    [18]张肇仪,周乐助.微波工程.北京:电子工业出版社,2008-5,90-103
    [19]陈飞.微波驱动硫灯发光的研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2007,35-60
    [20]聂杨.微波硫灯的发展动向和制作方法.真空电子技术,2005,6(8):39-42
    [21]诸葛天祥,杨中海.微波等离子等谐振腔及材料的研究与分析.材料导报,2008, 3(3):8-11
    [22]王楚,徐宇杰,左春兰,等.微波光源发光物质的实验研究.光源与照明,2000, 10(2): 20-22
    [23]杨斌.全密封微波等离子硫灯.中国专利,200820086765.1 ,2008-05-05.
    [24] Yuming Chen, Dahua Chen. Study the buffer gas for microwave sulfur lamp.IEEE, 2006, 2(2): 1781-1783
    [25]刘晓亚.铀化合物反应机理与微波激励硫发光的原子分子机理[博士学位论文],成都:四川大学,2001,50-62
    [26] C W Johnston, H W P van der Heijden, A Hartgers, A Hartgers,etal. An improved LTE model of a high pressure sulfur discharge.Phys. D:Appl.Phys.,2004,37(1):211-220
    [27]诸葛天祥,杨中海.微波等离子灯可见光辐射的研究.照明工程学报,2010,21(3):25-29
    [28]侯谷一.微波硫等离子光源能量平衡过程的研究[硕士学位论文].上海:复旦大学,2004
    [29]龙奇,陈大华.微波光源发光原理及其应用前景.中国照明电器, 2004, 14(4),1-6
    [30] K.J.N.BADURA AND J.T.VERDEYEN. Radiative Efficiencies of Radio Frequency Sulfur Discharges. IEEE Journal of Quantum Electronics. 1985,21(7):748-750
    [31]张敏.CST微波工作室用户全书.成都:电子科技大学,2004,20-40
    [32]诸葛天祥.微波等离子体灯的仿真优化设计[硕士学位论文].成都:电子科技大学,2008,1-80
    [33]廖承恩.微波技术基础.西安:西安电子科技大学,2005,33-80
    [34]任子龙,王晓远.小驻波微波器件驻波比的测量方法及不确定度分析.计测技术, 2006, 12(4):37-39
    [35] S.Krasik, D.Alpert, A.O.McCoubery. Breakdown and Maintenance of Microwave Discharge in Argon[J].Phys.Rev,1949,76(6):722-730
    [36]黎晓云,傅文杰,张兆镗.微波炉及磁控管动态阻抗及特性参数综合测试台的研发.材料导报, 2009-11,23(IIA):140-142
    [37]张玮,杨景发.硅光电池特性的实验研究.实验技术与管理,2009,26(9):42-46
    [38]杨捷.EMD照明系统的设计[硕士学位论文].上海:上海复旦大学,1999,40-57
    [39] E F Dawson, S Lederman. Pulsed microwave breakdown in gases with a low degree of preionization [J]. Journal of Applied Physics,1973,44(7):3066-3073
    [40] J.R.罗思.工业等离子体工程基本原理.北京:科学出版社,1998,80-97
    [41] Heald MA,Wharton C B.Plasma Diagnostics with Microwave. New York:Krieger,1978,29-45
    [42] Liu Jun-ping, Mao Geng-wang, Tan Jin-lan, Yang Juan. Experimental and Numerical Studies on 0.1KW Microwave Plasma Thurster. Journal of Solid Rocker Technology,2006,6:416-421
    [43]袁忠才,时家明.非磁化等离子体中的电子碰撞频率.核聚变与等离子体物理,2004, 24(2) :157-160
    [44]侯谷一,左春兰,陈育明.充Kr85对微波硫灯启动和光电性能的影响.灯与照明,2005,29(3):46-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700