轮式移动弹跳机器人研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹跳机器人可以越过尺寸远大于自身尺寸的障碍物,具有较强未知地形适应能力,在考古探测、抢险救灾、军事侦察等领域具有广泛的应用前景。将轮式运动与弹跳运动相结合,弹跳机器人可以根据地形需要选择合适的运动方式,提高能源利用率,扩大机器人活动范围。因此轮式移动弹跳机器人具有十分重要的研究价值。
     根据现有两种类型弹跳机构性能的比较,确定了弹跳机构的能源类型。在对内能驱动型弹跳机构原理进行分析的基础上,运用三维参数化建模软件Pro/E完成了间歇式单动内燃机弹跳机构的结构设计,并制造出物理样机。
     根据弹跳机构的要求确定丙烷和笑气(N2O)为燃料,对混合燃料气体的爆炸极限、爆温、爆压等进行了分析计算,为间歇式单动内燃机弹跳机构的分析与试验提供依据。运用有限元分析软件ANSYS高级分析技术APDL开发了专用的分析程序,对间歇式单动内燃机锁紧机构锁紧力与活塞位移关系及活塞在高压下的结构应力应变进行了有限元仿真分析,为弹跳机构的设计提供依据。
     以间歇式单动内燃机作为弹跳机构,对复合了轮式移动运动方式的弹跳机器人的原理和结构进行了设计,制造出了轮式移动弹跳机器人物理样机。
     对间歇式单动内燃机弹跳机构和轮式移动弹跳机器人进行了试验验证。对间歇式单动内燃机弹跳机构的气密性、柱塞复位、锁紧机构最大锁紧力、热火头点火冷启动等进行了试验研究。在此基础上,进行了机器人轮式移动试验与弹跳越障试验。试验结果表明:机器人具有弹跳与轮式运动两种运动方式,弹跳运动可靠,弹跳高度可达1.5m,弹跳距离达1.5m。
Hopping robot can get across the barrier whose size is much larger than hopping robot’s size, it adaptes well to to unknown terrain and has extensive application prospect in field of archeological exploration, emergency service and disaster relief, military reconnaissance and so on. Puting the wheeled motion and hopping motion together, hopping robot can choose the right motion mode according to the terrain to improve the energy utilization efficiency and enlarge the range of motion of robot. So, wheeled hopping robot has very important research value.
     According to the capability comparison of two type of hopping mechanisms, type of hopping robot’s energy sourse is confirmed. Based on the analysis of principle of internal-energy-driven hopping mechanism, the structure of intermittent single-action internal-combustion engine hopping mechanism is designed by using three dimension parametric design software Pro/E, and then the physical prototype of intermittent single-action internal-combustion engine is manufactured.
     According to the needs of hopping robot, propane and laughing gas (N_2O) are choosed as fuel and explosion limit, detonation temperature, detonation pressure of mixed fuel gas are analysed and calculated to provide evidence for analysis and experiment of intermittent single-action internal-combustion engine hopping mechanism.
     ANSYS’s advanced analysis technology-APDL (ANSYS Parametric Design Language) is used to develop special analysis programs for the parametric finite element analysis of force-displacement curve of locking mechanism and maps of stress and stain of piston under high pressure, which provide evidence for the design of hopping mechanism.
     Using intermittent single-action internal-combustion engine as hopping mechanism, the working principle and structure of hopping robot with wheeled motion are designed, and physical prototype of intermittent single-action internal-combustion engine is also manufactured.
     Experimental verification of intermittent single-action internal-combustion engine hopping mechanism and wheeled hopping robot are done. Experimental researches on air tightness, replacement of plunger piston, maximal locking force of locking mechanism, glow plug ignition cold start and so on of Intermittent single-action internal-combustion engine are done. On this basis, the ability of the wheeled motion and hopping motion across the barrier of wheeled hopping robot are also experimentally studied. The results show that the robot has the ability of wheeled motion and hopping motion, and the hopping motion is reliable, the hopping height is about 1.5meter, the hoppinig displacement is also about 1.5meter.
引文
[1]蔡自兴.机器人学基础[M].北京:机械工业出版社,2009:7.
    [2]刘壮志.弹跳机器人若干关键技术研究[D].南京:南京航天航大学,2005.
    [3] R.西格沃特,I.R.诺巴克什.自主移动机器人导论[M].西安:西安交通大学出版社,2006:31.
    [4]赵春光,赵继.微小研抛机器人运动与加工系统研究[D].吉林:吉林大学,2009.
    [5] Matthew C. Birch, Roger D. Quinn, Geon Hahm, et al. Design of a cricket microrobot [A]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA. April 2000:1109~1114.
    [6] Sathaporn Laksanacharoen, Alan J.Pollack, Gabriel M.Nelson, et al. Biomechanics and simulation of cricket for microrobot design[A].Proceedings of the 2000 IEEE International Conference on Robotics & Automation[A], San Francisco, CA. April 2000:1088~1093.
    [7] N.Ueno, 1999,“A Study on efficient vertical movement of Robotic Systems In spired by Cat’s Jumping,”Bachelor thesis, Dept. of Control and Systems Eng.Tokyo Inst. of Tech.
    [8] M.H.Kaplan, H.Seifert. Hopping Transporters for Lunar Exploration [J]. Journal of Spacecraft and Rockets, 1969, 6(3):917~922.
    [9]钦俊德.动物的运动[M].北京:清华大学出版社,2000:77~84.
    [10] H.S.Seifert. the Lunar Pogo Stick [J].Journal of Spacecraft and Rockets, 1967, 4(7):941~943.
    [11] M.H.Kaplan, H.Seifert. Hopping Transporters for Lunar Exploration [J]. Journal of Spacecraft and Rockets, 1969, 6(3):917~922.
    [12] M.H.Raibert. Legged robots that balance [M], The MIT Press, Cambridge, MA, 1986.
    [13] M.H.Raibert. Dynamic stability and resonance in a legged hopping machine [A]. Conference on Theory and Practice of Robots and Manipulators, 1983:352~367.
    [14] G.Pratt. Legged robots at MIT-What’s new since Raibert. Clawer News, N.4, 2000:4~7.
    [15] Paolo Fiorini, Samad Hayati, Matt Heverly, et al. A Hopping Robot for Planetary Exploration [J]. In Proc. of IEEE Aerospace Conf., March 1999:153~158.
    [16] E. Hale, N. Schara, J. Burdick, et al. A minimally actuated hopping rover for exploration of celestial bodies [J]. In ICRA’2000:420-427.
    [17] Paolo Fiorini, Joel Burdick. The Development of Hopping Capabilities for Small Robots [J]. Autonomous Robots, 14, 2003:239~254.
    [18] Mirko Confente, Claudio Cosma, Paolo Fiorini, et al. Planetary Exploration Using Hopping Robots [A]. 7th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA2002'ESTEC, Noordwijk, the Netherlands, November 19~21, 2002:1~8.
    [19]英国《新科学家》杂志.弹跳机器人将加入美国军队.科幻世界,N.7,2009.
    [20] Fischer G J, Spletzer B. Long range hopping mobility platform[C] //Unmanned Ground Vehicle Technology. Bellingham: SPIE, 2003:83-92.
    [21] Gary J. Fischer. Wheeled Hopping Mobility [J]. Proceedings of SPIE, 2005, Vol. 5986 59860H-1~9.
    [22] Tsukagoshi H, Sasaki M, Kitagawa A, et al. Jumping robot for rescue operation with excellent traverse ability[C].ICRA05 Proceedings, 12th international conference on advanced robotics,2005:841~8.
    [23]刘壮志,朱剑英,吴洪涛.间歇性单足弹跳机器人落地冲击及稳定性分析[J].机械科学与技术,2004,23(9):1068~l071,1075.
    [24] Liu Z Z , Zhu J Y Research on jumping sequence planning issues of hopping robots[J],Transactions of Nanjing University of Aeronautics and Astronautics,2004,2l(2):l16~121.
    [25]李保江,朱剑英,弹跳式机器人研究综述[J].机械科学与技术,2005,24(7):803~807.
    [26]郭坚毅,朱剑英,王化明,等.单动发动机式弹跳机构的控制与实现[J].机械科学与技术,2009,28(1):41~44.
    [27]赵杰,韩庆虎,刘刚峰.小型弹跳机器人的研究[J].制造业自动化,2007,29(9):41~44.
    [28]柏龙,葛文杰,陈晓红,等.用于行星探测的跳跃机器人研究[J].机器人,2009,31(4):311~319.
    [29] Thomas J.Allen, Roger D.Quinn, Richard J.Bachmann. Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles, IEEE Intl. Conference on Intelligent Robots and Systems, Las Vegas, Nevada, 2003:1370~1375.
    [30]林波,李兴虎.内燃机构造[M].北京大学出版社,2008:1~10.
    [31]陈家瑞.汽车构造[M].北京:机械工业出版社,2009:26~30.
    [32]成大先.机械设计手册(第三版、第二卷)[M].北京:化学工业出版社,2000.
    [33]吴兆汉,汪长民,林桐藩,等.内燃机设计[M].北京:北京理工大学出版社,1990:374~388.
    [34]崔克清.安全工程燃烧爆炸理论与技术[M].北京:中国计量出版社,2005:38~85,377~403.
    [35]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996:23~45.
    [36]博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004:1.
    [37]小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004:1.
    [38]博弈创作室.ANSYS9.0经典产品基础教程与实例祥解[M].北京:中国水利水电出版社,2006:37.
    [39]汤双清,陈习坤.永磁体空间磁场的分析计算及其在永磁磁力轴承中的应用[J].大学物理,2005,24(3):32~36.
    [40]周寿增,董清飞.超强永磁体(第2版)[M].北京:冶金工业出版,2004:2~3.
    [41]博弈创作室.ANSYS9.0经典产品高级分析技术与实例祥解(第一版)[M].北京:中国水利水电出版社,2005:153.
    [42]孙明礼,胡仁喜,崔海蓉.ANSYS10.0电磁学有限元分析实例指导教程(第一版)[M].北京:机械工业出版社,2007:14~16.
    [43]尚晓江,邱峰,赵海峰,等.ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社,2006:6.
    [44]张毅,罗元,郑太雄.移动机器人技术及其应用[M].北京:电子工业出版社,2007:5.
    [45]付平,常德功.密封设计手册[M].北京:化学工业出版社,2009:2.
    [46]刘令勋,刘英贵.动态密封设计技术[M].北京:中国标准出版社,1993:28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700