应激对肝脏功能的影响及机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于一些常见威胁生命的疾病发病率的增加,应激被认为是一种主要的危险因素。近年来,人们逐渐认识到应激反应不但可以造成一些神经系统依赖的精神疾病,损害空间学习和记忆能力,而且可以造成如心、肝等非神经系统的结构改变,影响心脏和肝脏的功能。到目前为止,关于肝脏功能的损害是继发于脑功能损害或是与脑功能损害同时发生还知之甚少,同时,应激反应对于生命的重要性显而易见,但关于应激病理生理学的细胞分子机制,尤其是那些非神经系统器官而言,尚知之甚少。对肝脏来说,应激对于其功能影响很大而且病情发展相对较快,但是我们对于其病理生理学的分子机制的了解甚至不如心血管系统。仅仅在最近有一些证据阐述了应激反应如何对肝脏疾病产生影响,但到目前为止,对于应激反应如何影响正常肝脏的功能以及隐含的分子机制仍不明了。
     研究目的:本实验旨在阐明应激反应对于脑功能和肝脏功能的影响之间的关系以及应激对于肝脏功能影响的分子机制,从而更好地为我们针对性地处理和治疗应激所造成的各器官功能损害提供理论依据。
     研究方法:在应激对于脑功能和肝脏功能影响关系研究中,我们在14天的慢性束缚应激实验(6h/d)模型过程中应用经典的抗抑郁药物帕罗西丁(20mg/kg)和被证明可以保护肝脏功能的中药四逆散(100mg/kg)观察其对脑功能及肝脏功能的保护作用。我们监测不同处理条件下体重的变化情况,同时分别监测血清谷丙转氨酶(GPT)和碱性磷酸酶(ALP)以及Morris水迷宫来分别评价肝脏功能和脑空间学习和记忆功能。在应激对肝脏功能影响的分子机制研究中,我们将BDNF,KDR和Bax作为有可能参与束缚应激肝脏反应的候选分子来研究。为了检验急性和重复/慢性束缚应激的不同作用,我们通过半定量反转录PCR(RT-PCR)检测了受到急性或者15天重复束缚应激的大鼠肝脏内BDNF、KDR和Bax分子的mRNA水平。
     实验结果:通过体重监测我们发现慢性束缚应激可以明显使大鼠生长速度放缓(P<0.05),而帕罗西丁和四逆散预处理可以逆转慢性束缚应激对体重的影响(P>0.05);慢性束缚应激可以造成大鼠血清谷氨酸氨基转移酶(GPT)和碱性磷酸酶(ALP)水平明显升高(P<0.05)以及大鼠空间学习和记忆能力明显下降(P<0.05);14天帕罗西丁预处理可以提高大鼠空间学习和记忆能力(P<0.05),而对血清谷氨酸氨基转移酶(GPT)和碱性磷酸酶(ALP)的酶活性没有影响(P>0.05);另一方面,14天四逆散预处理对慢性束缚应激大鼠空间学习和记忆能力没有影响(P>0.05),而可以逆转慢性束缚应激造成的血清GPT和ALP酶活性的下降(P<0.05)。在实验二中我们发现:急性束缚应激刺激后,KDR mRNA的水平明显(P < 0.01)增加,慢性/重复束缚应激后,肝脏内BDNF mRNA水平明显(P < 0.01)下降,而,Bax无论在急性还是在慢性/重复束缚应激条件下都保持在正常水平(P>0.05)。实验结论:束缚应激造成的肝脏功能损害与脑功能损害是伴随发生的,慢性束缚应激通过不同的机制损害肝脏和脑功能。BDNF和KDR分别参与了肝脏急性和慢性束缚应激的反应,出乎我们意料的是,对于肝脏急性和慢性束缚应激的反应,Bax似乎不起作用。
Stress is one of the major risk factors which accounts for the increased incidence of a number of common life-threatening disorders. It is now getting highlight in that stress not only produces some nervous system depended mental problems, but also results in some substantial structure change beyond the nervous system like the heart, the liver etc,causes the functional impirement of these organs. But little is known on the question whether impairment to non-nervous organs was in parallel with or consequent to that of brain. Meanwhile, although the importance of stress in life appears to be significant, the cellular and molecular mechanisms involved in the pathophysiology of stress remains largely unknown especially for those non-neuronal organs. The case for liver is even worse than that for the cardiovascular system which received strong focus and developed in a relatively fast speed. Only recently has scientific evidence been obtained to demonstrate how stress exacerbates liver diseases. There still lack study on how stress affects the function of normal liver and what are the underlying mechanisms.
     Objective:
     This study aims to illuminate the relationship between the stress induced liver function impairment and that of brain and to detect the molecular change of liver under a most commonly used stress model, immobilization.
     Method:
     In the current study, the typical antidepressant paroxetine (20 mg/kg) or Chinese prescription Sinisan (100 mg/kg) which is proved to protect the liver were used during the 14 repeated daily RSs (RS, 6 h/d). The body weight was measured under different treatments. The enzyme activities of serum glutamic pyruvic transaminase (GPT) and alkaline phosphatase (ALP) as well as Morris Water Maze (MWM) were used to evaluate the liver function or spatial learning and memory, respectively. In the other study,we employed BDNF, KDR and Bax as the candidate molecules which are suggested to be involved in the liver response to immobilization stress. To test the different effect of acute and repeated immobilization, we evaluated the mRNA level for BDNF, KDR and Bax in liver tissue after the rats received one acute immobilization or 15 repeated daily immobilization stresses.
     Result:
     The 14 RSs caused significant decrease of growing speed as revealed with the body weight (P < 0.05, vs vehicle), while pretreatment with paroxetine or Sinisan kept the stressed rats grow at the normal speed (P > 0.05, vs vehicle). The 14 RSs caused significant increase of sera enzyme acitivities for GPT and ALP (P < 0.05, vs vehicle), as well as significant decrease of spatial learning and memory abilities (P < 0.05, vs vehicle). Fourteen daily paroxetine treatments increased the abilities for spatial learning and memory but had no effect on the elevated enzyme activities. On the other hand, fourteen daily Sinisan treatments did not affect RS impaired spatial learning and memory abilities while reversed the RS induced increase of enzyme activities. In the other study, acute immobilization stress significantly (P < 0.01, vs control) increased the mRNA level for KDR (114.8% of control) but not for BDNF mRNA. While, fifteen repeated immobilization stresses significantly (P < 0.01, vs control) decreased the mRNA level for BDNF (82.22% of control) but not for KDR. Surprisingly, neither acute nor repeated immobilization changed the expression level of Bax.
     Conclusion:
     Restraint stress induced impairment of liver function is in parallel with the impairment to brain. Repeated RSs can impair the brain or liver function via different mechanisms. KDR or BDNF is involved in the liver response to acute or repeated immobilization, respectively. Locally synthesized Bax is not strongly involved in the liver response to acute or repeated immobilization stress.
引文
[1] Hirose S, Hirayama C, Ikemi Y. The influence of emotional stress on the liver blood flow. Kyushu J. Med. Sci. 1961; 12: 319–23.
    [2] Fukudo S, Suzuki J, Tanaka Y, Iwahashi S, Nomura T. Impact of stress on alcoholic liver injury: a histopathological study. J. Psychosom. Res. 1989; 33: 515–21.
    [3] Kunkel EJS, Kim JS, Hann H-W et al. Depression in Korean immigrantswith hepatitis B and related liver diseases. Psychosomatics 2000; 41: 471–80.
    [4] Grossarth-Maticek R, Eysenck HJ, Vetter H. Personality type, smoking habit and their interaction as predictors of cancer and coronary heart disease. Pers. Individ. Dif. 1988; 9: 479–95.
    [5] Grossarth-Maticek R, Eysenck HJ. Self-regulation and mortality from cancer, coronary heart disease, and other causes: a prospective study. Pers. Individ. Dif. 1995; 19: 781–95.
    [6] Grossarth-Maticek R, Eysenck HJ, Boyle GJ, Heep J, Costa SD, Diel IJ. Interaction of psychosocial and physical risk factors in the causation of mammary cancer, and its prevention through psychological methods of treatment. J. Clin. Psychol. 2000; 56: 33–50; published erratum in J. Clin. Psychol. 2000; 56: 829.
    [7] Nagano J, Nagase S, Sudo N, Kubo C. Psychosocial stress, personality, and the severity of chronic hepatitis C. Psychosomatics 2004; 45: 100–6.
    [8] Walter M, Hildebrandt M, Rüter J et al. Evidence of psychosocial influences on acute rejection after liver transplantation. Transplant. Proc. 2002; 34: 3298–301.
    [9] Iwai M, Saheki S, Ohta Y, Shimazu T. Foot-shock stress acceleratescarbon tetrachloride-induced liver injury in rats: implication of the sympathetic nervous system. Biomed. Res. (Tokyo) 1986; 7: 145–54.
    [10] Chida Y, Sudo N, Sonoda J, Sogawa H, Kubo C. Electric foot-shock stress-induced exacerbation of α-galactosylceramide-triggered apoptosis in the mouse liver. Hepatology 2004; 39: 1131–40.
    [11] Ishigami M, Nishimura H, Naiki Y et al. The roles of intrahepatic Vα14+ NK1.1+ T cells for liver injury induced by Salmonella infection in mice. Hepatology 1999; 29: 1799–808.
    [12] Gonzalez AG, de Oliveira C, Tamaska M et al. α-Galactosylceramideactivated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl Acad. Sci. USA 2000; 97: 8461–6.
    [13] Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 2000; 192: 921–30.
    [14] Nuti S, Rosa D, Valianete NM et al. Dynamics of intra-hepatic lymphocytes in chronic hepatitis C: enrichment for Va24+ T cells and rapid elimination of effector cells by apoptosis. Eur. J. Immunol. 1998; 28: 3448–55.
    [15] Fernández G, Mena M-P, Arnau A, Sánchez O, Soley M, Ramírez I. Immobilization stress induced c-Fos accumulation in liver. Cell Stress Chaperones 2000; 5: 306–12.
    [16] Chida Y, Sudo N, Motomura Y, Kubo C. Electric foot-shock stress drives TNF-α production in the liver of IL-6-deficient mice. Neuroimmunomodulation 2004; 11: 419–24.
    [17] Hilakivi-Clarke L, Dickson RB. Stress influence on development of hepatocellular tumors in transgenic mice overexpressing TGF-α. Acta Oncol.1995; 34: 907–12.
    [18] Wu W, Yamaura T, Murakami K et al. Social isolation stress enhanced liver metastasis of murine colon 26-L5 carcinoma cells by suppressing immune responses in mice. Life Sci. 2000; 66: 1827–38.
    [19] Wu W, Yamaura T, Murakami K et al. Involvement of TNF-α in enhancement of invasion and metastasis of colon 26-L5 carcinoma cells in mice by social isolation stress. Oncol. Res. 1999; 11: 461–9.
    [20] Wu W, Murata J, Murakami K, Yamaura T, Hayashi K, Saiki I. Social isolation stress augments angiogenesis induced by colon 26-L5 carcinoma cells in mice. Clin. Exp. Metastasis 2000; 18: 1–10.
    [21] McEwen BS, Biron CA, Brunson KW et al. The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res. Rev. 1997; 23: 79–133.
    [22] Gonzalez JC, Johnson DC, Morrison DC, Freudenberg MA, Galanos C, Silverstein R. Endogenous and exogenous glucocorticoids have different roles in modulating endotoxin lethality in D-galactosaminesensitized mice. Infect. Immun. 1993; 61: 970–4.
    [23] Swain MG, Appleyard C, Wallace J, Wong H, Le T. Endogenous glucocorticoids released during acute toxic liver injury enhance hepatic IL-10 synthesis and release. Am. J. Physiol. 1999; 276: G199–205.
    [24] Liao J, Keiser JA, Scales WE, Kunkel SL, Kluger MJ. Role of corticosterone in TNF and IL-6 production in isolated perfused rat liver. Am. J. Physiol. 1995; 268: R699–706.
    [25] Beutler B, Krochin N, Milsark IW, Luedlke C, Cerami A. Control of mechanism (tumor necrosis factor) synthesis: mechanisms of endotoxinresistance. Sci. Wash. DC 1986; 232: 977–80.
    [26] Chensue SW, Terebuh PD, Remick DG, Scales WE, Kunkel SL. In vivo biologic and immunohistochemical analysis of interleukin- 1α-β and tumor necrosis factor during experimental endotoxemia. Am. J. Pathol. 1991; 138: 395–402.
    [27] Tamada K, Harada M, Abe K, Li T, Nomoto K. IL-4-producing NK1.1+ T cells are resistant to glucocorticoid-induced apoptosis: implications for the Th1/Th2 balance. J. Immunol. 1998; 161: 1239–47.
    [28] Shimizu T, Kawamura T, Miyaji C et al. Resistance of extrathymic T cells to stress and the role of endogenous glucocorticoids in stress associated immunosuppression. Scand. J. Immunol. 2000; 51: 285–92.
    [29] Kawakami K, Kinjo Y, Uezu K et al. Monocyte chemoattractant protein-1-dependent increase of V alpha 14 NKT cells in lungs and their roles in Th1 response and host defense in Cryptococcal infection. J. Immunol. 2001; 167: 6525–32.
    [30] Faunce DE, Sonoda KH, Streilein JS. MIP-2 recruits NKT cells to the spleen during tolerance induction. J. Immunol. 2001; 166: 313–21.
    [31] Taniguchi M, Nakayama T. Recognition and function of V alpha 14 NKT cells. Semin. Immunol. 2000; 12: 543–50.
    [32] Shi FD, Ljunggren HG, Sarvetnick N. Innate immunity and autoimmunity: from self-protection to self-destruction. Trend. Immunol. 2001; 22: 97–101.
    [33] Kawano T, Cui J, Koezuka Y et al. CD1d-restricted and TCR-mediated activation of Va14 NKT cells by glycosylceramides. Science 1997; 278: 1626.
    [34] Osman Y, Kawamura T, Naito T et al. Activation of hepatic NKT cellsand subsequent liver injury following administration of α-galcatosylceramide. Eur. J. Immunol. 2001; 163: 1919–28.
    [35] Nakagawa R, Nagafune I, Tazunoki Y et al. Mechanisms of the antimetastatic effect in the liver and of the hepatocyte injury induced by α-galactosylceramide in mice. J. Immunol. 2001; 166: 6578–84.
    [36] Adachi M, Suematsu S, Kondo T et al. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat. Genet. 1995; 11: 294–300.
    [37] Afford SC, Randhawa S, Eliopoulos AG, Hubscher SG, Young LS, Adams DH. CD40 activation induces apoptosis in cultured human hepatocytes via induction of cell surface Fas ligand expression and amplified Fas-mediated hepatocyte death during allograft refection. J. Exp. Med. 1999; 189: 441–6.
    [38] Kondo T, Suda T, Fukuyama H, Adachi M, Nagata T. Essential roles of the Fas ligand in the development of hepatitis. Nat. Med. 1997; 3: 409–13.
    [39] Ogasawara J, Watanabe-Fukunaga R, Adachi M et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364: 806–9.
    [40] Tokushige K, Yamaguchi N, Ikeda I et al. Predominant T helper 1 cells in patients with idiopathic portal hypertension. Am. J. Gastroenterol. 2000; 95: 2040–6.
    [41] Schmidt M, Lügering N, Lügering A et al. Role of the CD95/CD95 ligand system in glucocorticoid-induced monocytes apoptosis. J. Immunol. 2001; 166: 1344–51.
    [42] Gao HB, Tong MH, Hu YQ et al. Mechanisms of glucocorticoidinduced Leydig cell apoptosis. Mol. Cell. Endocrinol. 2003; 199: 153–63.
    [43] Webster JI, Tonelli L, Sternberg EM. Neuroendocrine regulation ofimmunity. Annu. Rev. Immunol. 2002; 20: 1612–35.
    [44] Evans-Storms RB, Cidlowski JA. Delineation of an antiapoptotic action of glucocorticoids in hepatoma cells: the role of nuclear factor-κB. Endocrinology 2000; 141: 1854–62.
    [45] Müschen M, Warskulat U, Douilard P, Gilbert E, H?ussinger D. Regulation of CD95 (APO-1/Fas) receptor and ligand expression by lipopolysaccharide and dexamethasone in parenchymal and nonparenchymal rat liver cells. Hepatology 1998; 27: 200–8.
    [46] Jones WG, Minei JP, Richardson RP et al. Pathophysiologic glucocorticoid elevations promote bacterical translocation after thermal injury. Infect. Immun. 1990; 58: 3257–61.
    [47] Meddings JB, Swain MG. Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology 2000; 119: 1019–28.
    [48] Anderlik P, Szeri I, Bános Z, Barna Z. Bacterial translocation after cold stress in young and old mice. Acta Microbiol. Hung. 1990; 37: 289–94.
    [49] Takaki A, Hori T, Yagi S et al. Plasma IL-6 and its pyrogenicity during noninflammatory stress. In: Yamashita H, ed. Control Mechanisms of Stress and Emotion. Amsterdam: Elsevier, 1999; 173–7.
    [50] Mar. Sánchez M, Aguado F, Sánches-Toscano F, Saphier D. Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo-pituitary-adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology 1998; 139: 579–87.
    [51] McKittrick CR, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR. Serotonin receptor binding in a colony model of chronic social stress. Biol.Psychiatry 1995; 37: 383–93.
    [52] Chida Y, Sudo N, Kubo C. Social isolation stress exacerbates autoimmune disease in MRL/lpr mice. J. Neuroimmunol. 2005; 158: 138–44.
    [53] Ur E, White PD, Grossman A. Hypothesis: cytokines may be activated to cause depressive illness and chronic fatigue syndrome. Eur. Arch. Psychiatry Clin. Neurosci. 1992; 241: 317–22.
    [54] Crofford LJ, Pillemer SR, Kalogeras KT et al. Hypothalamic-pituitaryadrenal axis perturbations in patients with fibromyalgia. Arthritis Rheum. 1994; 37: 1583–92.
    [55] Wanboldt MZ, Laudenslager M, Wamboldt FS, Kelsay K, Hewitt J. Adolescents with atopic disorders have an attenuated cortisol response to laboratory stress. J. Allergy Clin. Immunol. 2003; 111: 509–14.
    [56] Swain MG, Patchev V, Vergalla J, Chrousos G, Jones EA. Suppression of hypothalamic-pituitary-adrenal axis responsiveness to stress in a rat model of acute cholestasis. J. Clin. Invest. 1993; 91: 1903–8.
    [57] Merry J, Marks V. Hypothalamic-pituitary-adrenal function in chronic alcoholics. In: Gross MM, ed. Alcohol Intoxication and Withdrawal: Experimental Studies. Advances in Experimental Medicine and Biology. New York: Plenum Press, 1973; 167–79.
    [58] Uyama N, Geerts A, Reynaert H. Neural connections between the hypothalamus and the liver. Anat. Rec. 2004; 280 (Part A): 808–20.
    [59] Chida Y, Nobuyuki Sudo Chiharu Kubo. Psychological stress impairs hepatic blood flow via central CRF receptor in mice. Life Sci. 2005; 76: 1707–12.
    [60] Yoneda M, Watanobe H, Terano A. Central regulation of hepatic function by neuropeptides. J. Gastroenterol. 2001; 36: 361–7.
    [61] Nakade Y, Yoneda M, Nakamura K, Makino I, Terano A. Involvement of endogenous CRF in carbon tetrachloride-induced acute liver injury in rats. Am. J. Physiol. 2002; 282: R1782–8.
    [62] Zhou M, Yang S, Koo DJ, Ornan DA, Chaudry IH, Wang P. The role of Kupffer cell α2-adrenoceptors in norepinephrine-induced TNF-α production. Biochim. Biophys. Acta 2001; 1537: 49–57.
    [63] Liao J, Keiser JA, Scales WE, Kunkel SL, Kluger MJ. Role of epinephrine in TNF and IL-6 production from isolated perfused rat liver. Am. J. Physiol. 1995; 268: R896–901.
    [64] Takaki A, Huang QH, Somogyvári-Vigh A, Arimura A. Immobilization stress may increase plasma interleukin-6 via central and peripheral catecholamines. Neuroimmunomodulation 1994; 1: 335–42.
    [65] Takaki A, Huang QH, Arimura A. Is immobilization-induced plasma IL-6 elevation regulated by hepatic innervation? In: Shimizu T, ed. Liver Innervation. London: Libbey, 1996; 221–6.
    [66] Nukina H, Sudo N, Aiba Y, Oyama N, Koga Y, Kubo C. Restraint stress elevates the plasma interleukin-6 levels in germ-free mice. J. Neuroimmunol. 2001; 115: 46–52.
    [67] Kitamura H, Konno A, Morimatsu M, Jung BD, Kimura K, Saito M. Immobilization stress increases hepatic IL-6 expression in mice. Biochem. Biophys. Res. Commun. 1997; 238: 707–11.
    [68] Jung BD, Kimura K, Kitamura H et al. Norepinephrine stimulates interleukin-6 mRNA expression in primary cultured rat hepatocytes. J. Biochem. 2000; 127: 205–9.
    [69] Kajiyama Y, Ui M. Switching from α1- to β-subtypes in adrenergicresponse during primary culture of adult-rat hepatocytes as affected by the cell-to-cell interaction through plasma membranes. Biochem. J. 1994; 303: 313–21.
    [70] Jacob LS. Sympathomimetic agents. In: Jacob LS, ed. Pharmacology, 4th edn. Maryland: Williams & Wilkins, 1996; 22–30.
    [71] Hasko G, Szabo C. Regulation of cytokine and chemokine production by transmitters and co-transmitters of the autonomic nervous system. Biochem. Pharmacol. 1998; 56: 1079–87.
    [72] West MA, Clair L, Bellingham J. Role of calcium in lipopolysaccharide-stimulated tumor necrosis factor and interleukin-1 signal transduction in na?ve and endotoxin-tolerant murine macrophages. J. Trauma 1996; 41: 647–52.
    [73] Lo CJ, Garcia I, Cryer G, Maier RV. Calcium and calmodulin regulate lipopolysaccharide-induced alveolar macrophage production of tumor necrosis factor and procoagulant activity. Arch. Surg. 1996; 131: 44–50.
    [74] Nakamura A, Johns EJ, Imaizumi A, Yanagawa Y, Kohsaka T. Modulation of interleukin-6 by β2-adrenoceptor in endotoxin-stimulated renal macrophage cells. Kidney Int. 1999; 56: 839–49.
    [75] Burysek L, Houstek J. β-adrenergic stimulation of interleukin-1a and interleukin-6 expression in mouse brown adipocytes. FEBS Lett. 1997; 411: 83–6.
    [76] Colston JT, Chandrasekar B, Freeman GL. A novel peroxide-induced calcium transient regulates interleukin-6 expression in cardiac-derived fibroblasts. J. Biol. Chem. 2002; 277: 23477–83.
    [77] Suzuki S, Toyabe S, Moroda T et al. Circadian rhythm of leucocytesand lymphocyte subsets and its possible correlation with the function of the autonomic nervous system. Clin. Exp. Immunol. 1997; 110: 500–8.
    [78] Tsukahara A, Tada T, Suzuki S et al. Adrenergic stimulation simultaneously induces the expansion of granulocytes and extrathymic T cells in mice. Biomed. Res. 1997; 18: 237–46.
    [79] Minagawa M, Oya H, Yamamoto S et al. Intensive expansion of natural killer T cells in the early phase of hepatocyte regeneration after partial hepatectomy in mice and its association with sympathetic nerve activation. Hepatology 2000; 31: 907–15.
    [80] Tiegs G, Bang R, Neuhuber WL. Requirement of peptidergic sensory innervation for disease activity in murine models immune hepatitis and protection by β-adrenergic stimulation. J. Neuroimmunol. 1999; 96: 131–43.
    [81] André C, Couton D, Gaston J et al. β2-adrenergic receptor-selective agonist clenbuterol prevents Fas-induced liver apoptosis and death in mice. Am. J. Physiol. 1999; 276: G647–54.
    [82] Nukina H, Sudo N, Komaki G, Yu XN, Kubo C. The restraint stressinduced elevation in plasma interleukin-6 negatively regulates the plasma TNF-α level. Neuroimmunomodulation 1997; 5: 323–7.
    [83] Benarroch EE. Neuropeptides in the sympathetic system: presence, plasticity, modulation, and implication. Ann. Neurol. 1999; 36: 6–13.
    [84] Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. 2000; 85: 1–17.
    [85] Tracy KJ. The inflammatory reflex. Nature 2002; 420: 853–9.
    [86] Borovikova LV, Ivanva S, Zhang M et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000; 405:458–62.
    [87] Bernik TR, Friedman SG, Ochani M et al. Pharmacological stimulation of the cholinergic anti-inflammatory pathway. J. Exp. Med. 2002; 195: 781–8.
    [88] Wang H, Yu M, Ochani M et al. Nicotinic acetylcholine receptor a7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384–8.
    [89] Yoneda M, Hashimoto T, Nakamura K et al. Thyrotropin-releasing hormone in the dorsal vagal complex stimulates hepatic blood flow in rats. Hepatology 2003; 38: 1500–7.
    [90] Sato Y, Yoneda M, Nakamura K, Makino I, Terano A. Protective effect of central thyrotropin-releasing hormone on carbon tetrachlorideinduced acute hepatocellular necrosis in rats. J. Hepatol. 2003; 39: 47–54.
    [91] Black S. Inhibition of immediate-type hypersensitivity response by direct suggestion under hypnosis. Br. Med. J. 1963; 1: 925–9.
    [92] Zachariae R. Hypnosis and immunity. In: Ader R, Felten DL, Cohen N, eds. Psychoneuroimmunology, vol. 2. San Diego: Academi, 2001; 133–60.
    [93] Lux G, Hagel J, Backer P et al. Acupuncture inhibits vagal gastric acid secretion stimulated by sham feeding in healthy subjects. Gut 1994; 35: 1026–9.
    [94] Isackson PJ,et al. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures:temporal patterns of induction distinct from NGF[J]. Neuron,1991,6(6):937
    [95] Gotz R,Schartl M.The conservation of neurotrophic factors during vertebrate evolution[J].Comp Biochem Physiol Pharmacol Toxicol Endocrinol,1994,108(1):1
    [96] Hallbook F,Lundin LG,Kullander K.Lampetra fluviatilis neurotrophin homolog, descendant of a neurotrophin ancestor, discloses the early molecularevolution of neurotrophins in the vertebrate subphylum[J].J Neurosci,1998,18(21):8700
    [97] Hofer M,et al.Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain[J].EMBO J.1990,9(8):259
    [98] Rosenthal A,Goeddel DV,Nguyen T.et al.Primary structure and biological activity of human brain-derived neurotrophic factor[J].Endocrinology,1991,129(3):1289
    [99] Gotz R,Raulf F,Schartl M.brain-derived neurotrophic factor is more highly conserved in structure and function than nerve growth factor during vertebrate evolution[J].J Neurochem,1992,59(2):32
    [100] Gotz R,Koster R,Winkler C,et al.Neurtrophin-6 is a new member of the nerve growth factor family[J].Nature,199,372(6503):266
    [101] Van Kesteren RE,Fainzilber M,Hauser G,et al.Early evolutionary origin of the neurotrophin receptor family[J].EMBO J,1998,17(9):2534
    [102] Ernfors P,Ibanez CF,Tbendal T,et al.Molecular cloning and neurotrophic activities developmental and topographical expression in the brain[J].Proc Natl Acad Sci USA,1990,87(14)545
    [103] Ip NY,Ibanez CF,Nye SH,et al.Mammalian neurotrophin-4:structure,chromosomal localization, tissue distribution, and receptor specificity[J].Proc Natl Acad Sci USA,1992,89(7):3060
    [104] Maisonpierre PC,Belluscio L,Squinto S,et al.Neurotrophin-3:a neurotrophic factor related to NGF and BDNF[J].Science,1990,27:1446
    [105] Maisonpierre PC,Le Brau MM,Espinosa R 3rd,et al.Human and rat brain-derived neurotrophic factor and neurotrophin-3:gene strutures,distributions,and chromosomallocalizations[J].Grnomics,1991,10(3):558
    [106] Kaisho Y,et al.Cloning and expression of a cDNA encoding a novel human neurotrophin factor[J].FRBS Lett,1990,266(1-2):187
    [107] Sendah NG,Benjannet S,Pareek S,et al.Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases[J],Bionchem J,1996,314(Pt3):951
    [108] Sendah NG,Benjannet S,Pareek S,et al.Cellular processing of the neurotrophin percursors of NT3 and BDNF by the mammalian proprotein convertases[J],FEBS Lett,1996,379(3):247
    [109] McDonald NQ,Hendrickson WA.A structural superfamily of growth factors containing a cystine knot motif[J].Cell,1993,73(3):421
    [110] Sun PD,Davies DR.The cystine-knot growth-factor superfamily[J].Annu Rev Biophys Biomal Struct,1995,2:269
    [111] Ibanez CF.Emerging themes in structural biology of neurotrophic factor[J].Trends Neurosci,1998,21(10):438
    [112] McDonald NQ,Lapatto R,Murray-Rust J,et al.New protein fold revealed by a 2,3-A resolution crystal structure of nerve growth factor[J].Nature,1991,354(6352):411
    [113] Radziejewski C,Robinson PC,DiStefano PS,et al.Dimeric structure and conformational stability of brain-derived neurotrophic factor and neurotrophin-3[J].Biochemistry,1992,31(18)4431
    [114] Jungbluth S,Bailey K,Barde YA.Purification and characterisation of a brain-derived neurotrophic factor/neurotrophin-3 (BDNF/NT-3) heterodimer[J].Eur J Biochem,1994,221(2):677
    [115] Viesmann C,Ultsch MH,Bass SH,et al.Crystal structure of the nervegrowth factor in complex with the ligand-binding domain of the TrkA eceptor[J],Nature,1999,401(6749):184
    [116] Heymach JV Jr.The biosynthesis of neurotrophin heterodimers by transfected mammalian cells[J].J Biol Chem,1995,270(20):12297
    [117] Robinson RC,Radziejewski C,Stuart DI,Jones EY.Structure ofthe brain-derived neurotrophic factor/neurotrophin 3 heterodimer[J].Biochemistry,1995,3(13):4139
    [118] Hempstead BL,Martin-Zanca D,Kaplan DR,et al.High-affinity NGF binding requires coexpression of the trk proto-pncongene and the low-affinity NGF receptor [J].Nature,1991,350(6320):678
    [119] Klein R,Nanduri V,Jing SA,et al.The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3[J].Cell.1991.66(2):395
    [120] Lamballe F.TrkC,a new member of the trk family of tyrosine protein kinases,is a receptor for neurotrophin-3[J].Cell,1991,66(5):967
    [121] Dechant G,Rodriguez-Tebar A,Barde YA.Neurotrophin receptors[J].Prog Neurobiol,199,42(2):347
    [122] Haniu M,Montestruque S,Bures EJ,et al.Interactions between brain-derived neurotrophic factor and the TRKB receptor.Identification of two ligand binding domains in soluble TRKB affinity separation and chemical cross-linking[J].J Biol Chem,1997,272(1):149
    [123] Ultsch MH,et al.Crysal structure of the neurotropin-binding domain of TrkA,TrkB,TrkC[J].J Mol Biol,1999,290(1):149
    [124] Bibel M,et al.Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR[J].EMBO J,1999,18(3):616
    [125] Hu YQ.Inhibition of phosphorylaion of TrkB and TrkC and their signal transduction by alpha2-macroglobulin[J].J Neurochem,1998,71(1)213
    [126] Drake CT,et al.Ultrastuctureal localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity[J].J Neurosci,1999,19(18):8009
    [127] Watson FL,Heerssen HM,Moheban DB,et al.Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex[J].J Neurosci,1999,19(18)7889
    [128] Eide FF,Vining ER,Eide BL,et al.Naturally occurring truncated trkB receptors have dominant inhibitory effecs on brain-derived neurotrophic factor signaling[J].J Neurosci,1996,16(10):3123
    [129] Biffo S,Offenhauser N,Carter B,Barde YA.Selective bingding and internalisation by truncated receptors restrict the availability of BDNF during development[J].Development,1995,121(2):2461
    [130] Benero JL,Hefti F.Regionally specific induction of BDNF and truncated trkB.T1 receptors in the hippocampal formation after intraseptal injection of kainic acid[J].Brain Res,1998,790(1-2):270
    [131] Fryer RH,Kaplan DR,Kromer LF.Truncated trkB receptors on nonneuronal cells,inhibit BDNF-induced neurite outgrowth in vitro[J].Exp Neurol,1997,18(2):616
    [132] Baxter GT,et al.Signal transduction mediated by the truncated trkB receptor isoforms,trkB.T1 and trkB.T2[J].J Neurosci,1997,17(8):2683
    [133] Frank L,Venimiglia R,Anderson K,et al.BDNF down-regulates neurotrophin responsiveness,TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons[J].Eur J Neurosci,1996,8(6):1220
    [134] Ibanez CF.Emerging themes in structural biology of neurotrophic factors[J].Trends Neurosci,1998,21(10):438
    [135] Chao M,et al.Neurotrophin receptors:mediators of life and death[J].Brain Res Brain Res Rev,1998,26(2-3):295
    [136] Kuner P,et al.Beta-amyloid binds to p57NTR and activates NFkappaB in human neuroblastoma cells[J].J Neurosci Res,1998,54(6):798
    [137] Minichiello L, Calella A, Medina D, et al. Mechanism of TrkB-mediated hippocampal long-term potentiation [ J ] .Neuron ,2002 ,36 :121.
    [138] Yuan Q , Wu W , So K F , et al . Effects of neurotrophic factors on motoneuron Survival following axonal injury in newborn rats[J ] . Neuroreport ,2000 ,11 (10) :2237 - 2241.
    [139] EganM F, Kojima M, Callicott J H, et al. The BDNF Val66Met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function[J ] . Cell ,2003 ,112 :257 - 269.
    [140] Patterson S L, Pit tenger C, Morozov A, et al. Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase [J ] . Neuron ,2001 ,32 :123 - 140.
    [141] PooM M. Neurotrophins as synaptic modulators [J ] . Nat Rev Neurosci ,2001 , (2) :24 - 32.
    [142] 王晓芹 . 解放军药学学报 [J] 脑源性神经营养因子与糖尿病.2002,18(3)
    [143] 张治军,等. 脑源性神经营养因子对面神经损伤的修复作用中国临床康复[J].2002,6(6):16
    [144] 马仲才,等.脑源性神经营养因子与帕金森病[J].神经解剖学杂志,2002,18(1):87
    [145] 曲伸,高桂枝.神经营养因子与中枢神经系统疾病[J].第二军医大学学报,2002,21(5):256
    [146] 周晖,等.脑源性神经营养因子对缺氧胚鼠脑皮质神经元的保护作用[J].华西医大学报2002,33(4):573
    [147] 石向群,等.脑源性神经营养因子在大鼠脑缺血再灌注损伤过程中基因表达的变化[J].脑与神经疾病杂志,2002,10(5):25
    [148] 李玲,水泉祥.脑源性神经营养因子与脑缺血缺氧的研究进展[J],国外医学儿科学分册2001,28(3):68
    [149] D.P. Cain, D. Saucier, The neuroscience of spatial navigation: focus Neuroreport 3 (1992) 204–206.on behavior yields advances, Rev. Neurosci. 7 (1996) 215–231.
    [150] L.M. Savage, A.J. Sweet, R. Castillo, P.J. Langlais, The effects of lesions to thalamic lateral internal medullary lamina and posterior nuclei on learning, memory and habituation in the rat, Behav. Brain Res. 82 (1997) 133–147.
    [151] D.G. Mumby, L. Cameli, M.J. Glenn, Impaired allocentric spatial memory and intact retrograde memory after thalamic damage caused by thiamine deficiency in rats, Behav. Neurosci. 113(1999) 42–50.
    [152] R.G.M. Morris, M. Davis, The role of NMDA receptors in learning and memory, in: G.L. Collingridge, J.C. Watkins (Eds.), The NMDA Receptor, 2nd Edition, Oxford University Press, Oxford, 1994, pp. 340–375.
    [153] B. Roozendaal, J.L. McGaugh, Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats, Eur. J. Neurosci. 9 (1997) 76–83.
    [154] B. Roozendaal, J.L. McGaugh, Glucocorticoid receptor agonist and antagonist administration into the basolateral but not central of amygdala modulates memory storage, Neurobiol. Learn. Mem. 67 (1997) 176–179.
    [155] C.W. Spanis, M.M. Bianchin, I. Izquierdo, J.L. McGaugh, Excitotoxic basolateral amygdala lesions potentiate the memory impairment effect of muscimol injected into the medial septal area, Brain Res. 816 (1999) 329–336.
    [156] D.M. Compton, K.L. Dietrich, J.S. Smith, B.K. Davis, Spatial and non-spatial learning in the rat following lesions to the nucleus locus coeruleus, Neuroreport 7 (2001) 177–182.
    [157] S. Thifault, P. Kremarik, R. Lalonde, Effects of bilateral electrolytic lesions of the medial nucleus accumbens on exploration and spatial learning, Arch. Physiol. Biochem. 106 (1998) 297–307.
    [158] B. Setlow, J.L. McGaugh, Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training, Behav. Neurosci. 112 (1998) 603–610.
    [159] I.Q. Whishaw, L.E. Jarrard, Similarities vs. differences in place learning and circadian activity in rats after fimbria–fornix section or ibotenate removal of hippocampal cells, Hippocampus 5 (2005) 595–604.
    [160] O.G. Nilson, M.L. Shapiro, F.H. Gage, D.S. Olton, A. Bjo¨rklund, Spatial learning and memory following fimbria–fornix transection and grafting of fetal septal neurons to the hippocampus, Exp. Brain Res. 67 (1997) 195–215.
    [161] G. Wo¨rtwein, L.H. Saerup, D. Charlottenfeld-Starpov, J. Mogensen, Place learning by fimbria–fornix transected rats in a modified water maze, Int. J. Neurosci. 82 (1995) 71–81.
    [162] R. Morris, Developments of a water-maze procedure for studyingspatial learning in the rat, J. Neurosci. Methods 11 (1984) 47–60.
    [163] R.G.M. Morris, P. Garrud, J.N.P. Rawlins, J. O’Keefe, Place navigation impaired in rats with hippocampal lesions, Nature 297 (1982) 681–683.
    [164] C.A. Stewart, R.G.M. Morris, The watermaze, in: A. Sahgal (Ed.) Behavioural Neuroscience. A Practical Approach, Vol. 1, IRL Press, Oxford, 1993, pp. 107–122.
    [165] S. Benhamou, B. Poucet, A comparative analysis of spatial memory processes, Behav. Processes 35 (1996) 113–126.
    [166] J. Bures, A.A. Fenton, Y. Kaminsky, L. Zinyuk, Place cells and place navigation, Proc. Natl. Acad. Sci. USA 94 (1997) 343–350.
    [167] B.L. McNaughton, C.A. Barnes, J.L. Gerrard, K. Gothard, M.W. Jung, J.J. Knierim, H. Kudrimoti, Y. Qin, W.E. Skaggs, M. Suster, K.L. Weaver, Deciphering the hippocampal polyglot: the hippocampus as a path integration system, J. Exp. Biol. 199 (1996) 173–185.
    [168] B. Poucet, E. Save, P.-P. Lenck-Santini, Sensory and memory properties of hippocampal place cells, Rev. Neurosci. 11 (2000) 95–111
    [169] A.J. Silva, K.P. Giese, N.B. Fedorov, P.W. Frankland, J.H. Kogan, Molecular, cellular, and neuroanatomical substrates of place learning, Neurobiol. Learn. Mem. 70 (1998) 44–61.
    [170] I.Q. Whishaw, J.E. McKenna, H. Maaswinkel, Hippocampal lesions and path integration, Curr. Opin. Neurobiol. 7 (1997) 228–234.
    [171] J.M. Pearce, A.D. Robert, M. Good, Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors,Nature 396 (1998) 75–77.
    [172] E. Moser, M.B. Moser, P. Andersen, Spatial learning impairment rparallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions, J. Neurosci. 13 (1998) 3916–3925.
    [173] M.B. Moser, E.I. Moser, E. Forrest, P. Andersen, R.G. Morris, Spatial learning with a minislab in the dorsal hippocampus, Proc Natl. Acad. Sci. USA 92 (1995) 9697–9701.
    [174] M. Gallagher, P.C. Holland, Preserved configural learning and spatial learning impairment in rats with hippocampal damage, Hippocampus 2 (1992) 81–88.
    [175] D.M. Skinner, G.M. Martin, C. Harley, B. Kolb, A. Pridgar, A. Bechara, D. van der Kooy, Acquisition of conditional discriminations in hippocampal lesioned and decorticated rats: Evidence for learning that is separate from both simple classical conditioning and configural learning, Behav. Neurosci. 108 (1994) 911–926.
    [176] Y.H. Cho, E. Friedman, A.J. Silva, Ibotenate lesions of the hippocampus impair spatial learning but not contextual fear conditioning in mice, Behav. Brain Res. 98 (1999) 77–87.
    [177] S.F. Logue, R. Paylor, J.M. Wehner, Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task, Behav. Neurosci. 111 (1997) 104–113.
    [178] B.J. Knowlton, M.S. Fanselow, The hippocampus, consolidation and on-line memory, Curr. Opin. Neurobiol. 8 (1998) 293–296.
    [179] C. Smith, Sleep states and memory processes, Behav. Brain Res 69 (1995) 137–145.
    [180] C. Smith, G.M. Rose, Posttraining paradoxical sleep in rats is increasedafter spatial learning in the Morris water maze, Behav Neurosci. 111 (1997) 1197–1204.
    [181] I.Q. Whishaw, G. Mittleman, S.T. Bunch, S.B. Dunnett, Impairments in the acquisition, retention and selection of spatial navigation strategies after medial caudate-putamen lesions in rats, Behav. Brain Res. 24 (1987) 125–138.
    [182] J.C. Furtado, M.F. Mazurek, Behavioral characterization of quinolinate-induced lesions of the medial striatum: relevance for Huntington’s disease, Exp. Neurol. 138 (1996) 158–168.
    [183] B. Setlow, J.L. McGaugh, Involvement of the posteroventral caudate-putamen in memory consolidation in the Morris water maze, Neurobiol. Learn. Mem. 71 (1999) 240–247.
    [184] B.D. Devan, N.M. White, Parallel information processing in the dorsal striatum: relation to hippocampal function, J. Neurosci. 19 (1999) 2789–2798.
    [185] B.D. Devan, R.J. McDonald, N.M. White, Effects of medial and lateral caudate-putamen lesions on place- and cue-guided behaviors in the water maze: relation to thigmotaxis, Behav. Brain Res. 100 (1999) 5–14.
    [186] F. Thullier, R. Lalonde, P. Mahler, C.C. Joyal, F. Lestienne, Dorsal striatal lesions in rats. 2: Effects on spatial and non-spatial learning, Arch. Physiol. Biochem. 104 (1996) 307–312.
    [187] H. Fibiger, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Rev. 4 (1982) 327–388.
    [188] J.J. Waite, A.D. Chen, M.L. Wardlow, L.J. Thal, Behavioral and biochemical consequences of combined lesions of the medial septum/ diagonal band and nucleus basalis in the rat when ibotenic acid, quisqualic acid, and AMPA are used, Exp. Neurol. 130 (1994) 214–229.
    [189] R. Lalonde, Visuospatial abilities, Int. Rev. Neurobiol. 41 (1997)191–215.
    [190] M. Molinari, L. Petrosini, L.G. Grammaldo, Spatial event processing, Int. Rev. Neurobiol. 41 (1997) 217–230.
    [191] L. Petrosini, M.G. Leggio, M. Molinari, The cerebellum in the spatial problem solving: a co-star or a guest star?, Prog. Neurobiol. 56 (1998) 191–210.
    [192] P. Liu, D.K. Bilkey, Perirhinal cortex contributions to performance in the Morris water maze, Behav. Neurosci. 112 (1998) 304–315.
    [193] Zhou, QG, Hu, Y, Hua, Y, Hu, M, Luo, CX, Han. X, et al. Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. Journal of Neurochemistry, 2007,Sep 13; [Epub ahead of print]
    [194] Ware, W.R. High cholesterol and coronary heart disease in younger men: The potential role of stress induced exaggerated blood pressure response. Medical Hypotheses, 2007,Aug 20; [Epub ahead of print]
    [195] Ohta, Y., Chiba, S., Tada, M., Imai, Y., & Kitagawa, A.Development of oxidative stress and cell damage in the liver of rats with water-immersion restraint stress. Redox Report. 2004,12, 139-147.
    [196] Bangasser, D.A., & Shors, T.J. The hippocampus is necessary for enhancements and impairments of learning following stress. Nature Neuroscience. 2007,Sep 30; [Epub ahead of print]
    [197] Zhu, B.W., Sun, Y.M., Yun, X., Han, S., Piao, M.L., Murata, Y., et al. Resistance imparted by traditional Chinese medicines to the acute change of glutamic pyruvic transaminase, alkaline phosphatase and creatine kinase activities in rat blood caused by noise. Bioscience, Biotechnology,andBiochemistry.2004,68, 1160-1163.
    [198] Nguyen, M.M., Tamashiro, K.L., Melhorn, S.J., Ma, L.Y., Gardner, S.R., Sakai, R.R.. Androgenic influences on behavior, body weight, and body composition in a model of chronic social stress. Endocrinology. 2007,Sep 20
    [199] Dombrovski, A.Y., Lenze, E.J., Dew, M.A., Mulsant, B.H., Pollock, B.G., et al. Maintenance treatment for old-age depression preserves health-related quality of life: a randomized, controlled trial of paroxetine and interpersonal psychotherapy. Journal of the American Geriatrics Society. 2007,55,1325-1332.
    [200] Vermetten, E., Vythilingam, M., Southwick, S.M., Charney, D.S., Bremner, J.D. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biological Psychiatry. 2003,54, 693-702.
    [201] Olff, M., Guzelcan, Y., de Vries, G.J., Assies, J., & Gersons, B.P. HPA- and HPT-axis alterations in chronic posttraumatic stress disorder. Psychoneuroendocrinology. 2006,31, 1220-1230.
    [202] Mayer, J.L., Klumpers, L., Maslam, S., de Kloet, E.R., Joels, M., & Lucassen, P.J. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. Journal of Neuroendocrinology. 2006,18, 629-631.
    [203] Abraham, G., Gottschalk, J., & Ungemach, F.R.. Evidence for ototopical glucocorticoid-induced decrease in hypothalamic-pituitary-adrenal axis response and liver function. Endocrinology.2005,146, 3163-3171.
    [204] Qiu, G., Helmeste, D.M., Samaranayake, A.N., Lau, W.M., Lee, T.M., Tang, S.W., et al. Modulation of the suppressive effect of corticosterone on adult rat hippocampal cell proliferation by paroxetine. Neuroscience Bulletin. 2007,23,131-136.
    [205] Uyama N, A Geerts & H Reynaert: Neural connections between the hypothalamus and the liver. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2004, 280, 808-820
    [206] Hirose S, C Hirayama & Y Ikemi:. The influence of emotional stress on the liver blood flow. Kyushu J. Med. Sci. 1961, 12, 319-323
    [207] Chida Y, N Sudo & C Kubo: Psychological stress impairs hepatic blood flow via central CRF receptors in mice. Life Sci. 2005, 76, 1707-1712
    [208] Waltenberger J, U Mayr, S Pentz & V Hombach: Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation 1996, 94, 1647-1654
    [209] Sandner P, K Wolf, U Bergmaier, B Gess & A Kurtz, Induction of VEGF and VEGF receptor gene expression by hypoxia: divergent regulation in vivo and in vitro. Kidney Int. 1997, 51, 448-453
    [210] Gerber HP, F Condorelli, J Park & N Ferrara: Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 1997, 272, 23659-23667
    [211] Bland ST, MJ Schmid, A Der-Avakian, LR Watkins, RL Spencer & SF Maier: Expression of c-fos and BDNF mRNA in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. Brain Res. 2005, 1051, 90-99
    [212] Xu H, Z Chen, J He, S Haimanot, X Li, L Dyck & XM Li: Synergetic effects of quetiapine and venlafaxine in preventing the chronic restraint stress-induced decrease in cell proliferation and BDNF expression in rathippocampus. Hippocampus 2006, 16, 551-559
    [213] Pizarro JM, LA Lumley, W Medina, CL Robison, WE Chang & A Alagappan: Acute social defeat reduces neurotrophin expression in brain cortical and subcortical areas in mice. Brain Res. 2004, 1025, 10-20
    [214] Lee Y, RS Duman & GJ Marek: The mGlu2/3 receptor agonist LY354740 suppresses immobilization stress-induced increase in rat prefrontal cortical BDNF mRNA expression. Neurosci. Lett. 2006, 398, 328-332
    [215] Yang ZF, DW Ho, CT Lam, JM Luk, CT Lum, WC Yu, RT Poon & ST Fan: Identification of brain-derived neurotrophic factor as a novel functional protein in hepatocellular carcinoma. Cancer Res. 2005, 65, 219-225
    [216] Mitsukawa K, C Mombereau, E Lotscher, DP Uzunov, H van der Putten, PJ Flor, & JF Cryan: Metabotropic Glutamate Receptor Subtype 7 Ablation Causes Dysregulation of the HPA Axis and Increases Hippocampal BDNF Protein Levels: Implications for Stress-Related Psychiatric Disorders. Neuropsychopharmacology 2006, 31, 1112-1122
    [217] Micutkova L, K Krepsova, E Sabban, O Krizanova & R Kvetnansky: Modulation of catecholamine-synthesizing enzymes in the rat heart by repeated immobilization stress. Ann. N. Y. Acad. Sci. 2004, 1018, 424-429
    [218] Hansson AC, WH Sommer, M Metsis, I Stromberg, LF Agnati & K Fuxe: Corticosterone actions on the hippocampal brain-derived neurotrophic factor expression are mediated by exon IV promoter. J. Neuroendocrinol. 2006, 18, 104-114
    [219] Shibayama E & H Koizumi: Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues. Am. J. Pathol. 1996, 148, 1807-1818
    [220] Cao X, X Deng & WS May: Cleavage of Bax to p18 Bax accelerates stress-induced apoptosis, and a cathepsin-like protease may rapidly degrade p18 Bax. Blood 2003, 102, 2605-2614
    [221] Naderi J, M Hung & S Pandey: Oxidative stress-induced apoptosis in dividing fibroblasts involves activation of p38 MAP kinase and over-expression of Bax: resistance of quiescent cells to oxidative stress. Apoptosis 2003, 8, 91-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700