1型糖尿病锌转运体8自身抗体与HLA-DR-DQ及lFlH1基因多态性的关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分湖南汉族经典1型糖尿病HLA-DR-DQ基因多态性分析
     目的:系统探讨湖南汉族经典1型糖尿病(T1DM)易感性与保护性HLA-DR-DQ基因型与单体型。
     方法:采用聚合酶链反应直接测序法(PCR-SBT)对558例经典T1DM和930例正常对照的HLA-DRB1.DQA1与DQB1位点进行基因分型,通过PHASE软件进行单体型构建。病例组与对照组的基因频率比较采用卡方检验。
     结果:
     ①9种DR与DQ等位基因在T1DM中的频率显著增高,相对风险最高的前3种为:DRB1*0301(21.37%vs.5.78%,OR=4.43,注:患者组vs.对照组,Pc<0.001,以下同)、DRB1*0401(2.25%vs.0.60%,OR=3.84).DQB1*0201(23.46%vs.7.4%,OR=3.84);16种等位基因在T1DM中的频率显著减低,保护性最强的前3种分别为:DRB1*1301(0.41%vs.2.45%,OR=0.16).DRB1*0406(0.51%vs.2.92%,OR=0.17).DQB1*0602(1.03%vs.4.79%,OR=0.21).
     ②13种DR与DQ基因型在T1DM中的频率显著增加,相对风险最高的前3种基因型为:DQA1*03/03(39.76%vs.1.81%,OR=35.83).DQA1*03/05(21.67%vs.1.03%,OR=26.49).DRB1*0405/0701(1.84%va.0.12%,OR=15.71);7种基因型在T1DM中的频率显著减低,保护性最强的前3种为:DRB1*0803/0803(0.61%vs.5.13%,OR=0.11).DQA1*0102/0102(0.60%vs.3.88%,OR=0.15)与DQA1*010X/0102(010X=0101或0104;0.80%vs.4.91%,OR=0.16)。
     ③19种DR-DQ单体型在T1DM中的频率显著增加,相对风险最高的前3种为:DRB1*0901-DQA1*03(30.73%vs.0.22%,OR=203.07).DRB1*0301-DQA1*03(6.19%vs.0.07%,OR=90.77). DQA1*03-DQB1*0201(3.52%vs.0.07%,OR=51.82);22种DR-DQ单体型在T1DM中的频率显著减低,保护性最强的前3种为:DRB1*0803-DQA1*03-DQB1*0601(0.12%vs.3.95%,OR=0.03). DRB1*0901一DQA1*0102(0.11%vs.1.96%,OR=0.06).DQA1*03-DQB1*0601(0.325vs.4.57%,OR=0.07).
     ④本研究人群(中国人)与高加索人、日本人及韩国人比,四个种族共有的等位基因为易感性的DQB1*0303与DRB1*0405,保护性的DQB1*0301,DQB1*0601与DQB1*0602.1种保护性等位基因(DQB1*0502).4种易感单体型(DRB1*0301-DQB1*0303. DRB1*0301-DQA1*03-DQB1*020.DRB1*0301-DQA1*03一DQB1*0303与DRB1*0901-DQA1*05-DQB1*0201)与3种保护性单体型(DRB1*0406-DQB1*0302.DRB1*0803-DQA1*03-DQB1*0601. DRB1*1202-DQA1*060Y-DQB1*0301)为中国汉族人群特有性的风险等位基因或单体型。
     结论:本研究发现中国汉族8种特有性的DR-DQ风险等位基因与单体型,HLA-DR-DQ易感基因型与单体型对TIDM的遗传效应有显著的异质性。
     第二部分锌转运体8自身抗体与HLA-DR-DQ基因多态性关联
     目的:探讨锌转运体8自身抗体(ZnT8A)与HLA-DR-DQ基因多态性的关联,以阐明ZnT8A产生的HLA遗传学基础。
     方法:选取422例由放射配体法检测的ZnT8A.谷氨酸脱羧酶抗体(GADA)或蛋白酪氨酸磷酸酶抗体(IA-2A)阳性的1型糖尿病(T1DM)患者,同时采用PCR-直接测序法进行患者HLA-DR-DQ基因分型。采用二元关联检验与卡方检验分析ZnT8A与HLA-DR-DQ易感基因型及单体型的关系。
     结果:
     ①湖南汉族经典T1DM患者ZnT8A阳性率为36.3%(153/422),其中单一ZnT8A阳性率为6.8%(28/412),ZnT8A与GADA双阳性率为25.1%(104/415);ZnT8A与IA-2A双阳率者为18.2%(75/412);ZnT8A.GADA与IA-2A三阳性率为15%(62/412)。
     ②ZnT8A滴度与易感基因DQA1*05(Υ2,2=0.126,P=0.012)及DQA1*03/05(Υ2=0.138,P=0.006)呈正相关,与易感基因型DQB1*0303/0303(Υ2=-0.142,P=0.006)及DRB1*0901/0901(Υ2=-0.114,P=0.029)呈负相关。
     ③携带基因型DQA1*03/05(45.8%vs.32.7%)的T1DM患者ZnT8A阳性率分别显著高于非携带者(P<0.05);而携带基因型DQB1*0303/0303(25.0%vs.38.5%).DRB1*0901/0901(26.6%vs.39.2%)、单体型DQA1*0102-DQB1*0601(12.5%vs.37.2%)与DRB1*0901-DQA1*03(29.6%vs.41.6%)T1DM患者ZnT8A阳性率分别低于这些基因非携带者(P均<0.05)。
     ④携带易感基因DQA1*03/060Y(75.00%vs.16.67%).DQB1*0301/0301(44.44%vs.17.14%),DRB1*1401-DQA1*010X(80.00%vs.17.12%)者单一ZnT8A阳性率显著高于非携带者(P<0.05);携带易感基因DQA1*03/05(6.98%vs.16.67%).DRB1*0901-DQA1*03-DQB1*0303(4.88%vs.25.35%)者单一ZnT8A阳性率显著低于非携带者。
     结论:ZnT8的自身免疫反应与DRB1*1401-DQA1*0l0X与DRB1*0901-DQA1*03-DQB1*0303单体型有关,结果也进一步表明特异性胰岛自身抗体的产生与HLA-Ⅱ类基因相关。
     第三部分湖南汉族1型糖尿病IFIH1基因rs1990760多态性分析
     目的:分析患者IFIH1基因rs1990760多态性与湖南汉族急性起病1型糖尿病(T1DM)及成人隐匿性自身免疫性糖尿病(LADA)的关系。
     方法:设计病例对照研究,应用TaqMan探针实时荧光PCR技术对930例湖南汉族T1DM患者、434例LADA患者与1010例正常对照的IFIH1基因rs1990760多态性进行基因分型。比较T1DM患者、LADA患者与正常对照等位基因与基因型的频率,并分析rs1990760多态性与临床表型、胰岛自身免疫及HLA-DR-DQ基因型的关系。
     结果:①IFIH1基因rs1990760多态性等位基因C(79.8%vs.80.7%)与T(20.2%vs.19.3%)在T1DM组与对照中频率差异无显著性。CC(63.1%vs.65.0%),CT(33.5%vs.31.3%)与TT(3.5%vs.3.7%)基因型频率分布在两组间亦无统计学意义(P均>0.05)。②等位基因C与T在LADA组与对照组频率(80.6%vs.80.7%;19.4%vs.19.3%)差异无显著性(P>0.05),CC, CT, TT基因型频率分布在两组间亦无统计学意义(P均>0.05)。③T1DM与LADA患者IFIH1基因rs1990760多态性与起病年龄、体重指数、糖化血红蛋白、胰岛功能及代谢指标等临床特征均无相关性(P均>0.05)。④T1DM患者ZnT8A、GADA与IA-2A的阳性率与滴度在rs1990760多态性CC、CT、TT基因型之间均无显著性差异(P>0.05)。⑤携带易感DQB1*0303等位基因者C等位基因的频率低于非携带者,具有边界性统计学意义(76.76%vs.81.42%,P=0.048)。IFIH1基因rs1990760多态性与HLA-DRB1、DQA1、DQB1高危或低危风险基因型无交互作用(P均>0.05)。
     结论:IFIH1基因SNP rs1990760多态性对湖南汉族T1DM与LADA患者无遗传易感作用,与临床特征、胰岛自身免疫及HLA-DR-DQ风险基因均无显著性关联。
     第四部分IFIH1基因rs1990760多态性与1型糖尿病发病风险的Meta分析
     目的:综合定量评价IFIH1基因rs1990760多态性与1型糖尿病(T1DM)发病风险的关系。
     方法:计算机检索PubMed和Web of Knowledge等数据库,检索时间截至2013年1月1日,提取IFIH1基因rs1990760多态性与T1DM易感性关系的病例-对照研究。以T1DM组与对照组人群等位基因与基因型分布的OR值及其95%CI为效应指标。在加性模型、纯合子模型、显性模型和隐性模型中采用固定或随机效应模型进行Meta分析,并进行发表偏倚评估与敏感性分析。统计分析采用Stata11.0软件。
     结果:
     ①共纳入13个病例对照研究,总计19932例T1DM患者和28606例对照,其中10项研究对象为欧洲血统人群,3项研究对象为亚洲人群。
     ②加性模型情况下, IFIH1基因rs1990760多态性等位基因A与T1DM有显著相关性[A vs.G:OR(95%CI)=1.14(1.08~1.22),P=0.000];在显性遗传模型中,AA+AG基因型与T1DM风险有显著相关性[AA+AG vs. GG:OR(95%CI)=1.25(1.16-1.34), P=0.000];在纯合子比较与隐性遗传模型中,AA基因型与T1DM风险有显著相关性[AA vs. GG:OR(95%CI)=1.36(1.26~1.47), P=0.000; AA vs. AG+GG:OR(95%CI)=1.159(1.06~1.27), P=0.001];在杂合子比较中,AG基因型与T1DM风险有显著相关性[AG vs.GG:OR(95%CI)=1.15(1.07~1.24),P=0.000].
     ③基于人种的亚组分析显示欧洲血统人群中IFIH1基因rs1990760变异位点的等位基因与基因型在所有遗传模型中均与T1DM有显著相关性[A vs.G:OR(95%CI)=1.18(1.11~1.26),P-0.000];而在亚洲人群中rs1990760变异位点在所有遗传模型中与T1DM发病均无相关性[A vs.G:OR(95%CI)=0.97(0.86~1.08),P=0.921].
     ④发表偏倚评估未见发表偏倚,敏感性分析提示结果比较稳定可靠。
     结论:IFIH1基因rs1990760多态性是欧洲血统人群T1DM患者的遗传风险变异,A等位基因携带者增加T1DM易感性,但rs1990760多态性不是亚洲人群T1DM的遗传危险因素。
Part I Polymorphisms of HLA-DR-DQ genes in classical type1diabetes from Hunan Han population
     Objective:To investigate the susceptible and protective HLA-DR-DQ genotypes and haplotypes in classical type1diabetes (T1DM) from Hunan Han population.
     Methods:All subjects including558classical T1DM patients and930healthy controls were genotyped at HLA-DRB1, DQA1and DQB1locus by PCR-direct sequencing. The HLA-DR-DQ haplotypes were constructed by the PHASE programme. Frequencies of genotypes and haplotypes between patients and controls were compared by chi square test.
     Results:
     ①The frequencies of nine DR and DQ alleles in T1DM patients were were significantly higher than those in control subjects.The top three alleles with the highest odds ratio (OR) were DRB1*0301(21.37%vs.5.78%, OR=4.43, Note:cases vs. controls, Pc<0.001, the same as below), DRB1*0401(2.25%vs.0.60%, OR=3.84), DQBl*0201(23.46%vs.7.4%, OR=3.84). The frequencies of sixteen alleles were significantly reduced in TlDM patients. The top three alleles with the strongest protection were DRB1*1301(0.41%vs.2.45%, OR=0.16), DRB1*0406(0.51%vs.2.92%, OR=0.17), DQBl*0602(1.03%vs.4.79%, OR=0.21).
     ②The frequencies of thirteen DR and DQ genotypes in TlDM patients were were significantly higher than those in control subjects. The top three genotypes with the highest OR were DQA1*03/03(39.76%vs.1.81%, OR=35.83), DQA1*03/05(21.67%vs.1.03%, OR=26.49), DRB1*0405/0701(1.84%vs.0.12%, OR=15.71). The frequencies of seven genotypes were significantly reduced in TlDM patients. The top three genotypes with the strongest protection were DRB1*0803/0803(0.61%vs.5.13%, OR=0.11), DQA1*0102/0102(0.60%vs.3.88%, OR=0.15) and DQA1*010X/0102(010X=0101or0104;0.80%vs.4.91%, OR=0.16).
     ③The frequencies of nineteen DR-DQ haplotypes in TlDM patients were were significantly higher than those in control subjects.The top three haplotypes with the highest OR were DRB1*0901-DQA1*03(30.73%vs.0.22%, OR=203.07), DRB1*0301-DQA1*03(6.19%vs.0.07%, OR=90.77), DQA1*03-DQB1*0201(3.52%vs.0.07%, OR=51.82). The frequencies of twenty-two haplotypes were significantly reduced in TlDM patients. The top three haplotypes with the strongest protection were DRB1*0803-DQA1*03-DQB1*0601(O.12%vs.3.95%,OR=0.03),DRB1*0901-DQA1*0102(0.11%vs.1.96%,OR=0.06),DQA1*03-DQB1*0601(O.32%vs.4.57%,OR=0.07).
     ④There are similarties and differences about HLA-DR-DQ risk markers among Chinese Han,Caucasian,Japanese and Korean.The common genes in these populations are susceptible DQB1*0303,DRB1*0405and protective DQB1*0301, DQB1*0601, DQB1*0602.One protective allele(DQB1*0502),four susceptible haplotypes(DRB1*0301-DQB1*0303, DRB1*0301-DQA1*03-DQB1*0201, DRB1*0301-DQA1*03-DQB1*0303,DRB1*0901-DQA1*05-DQB1*0201) and three protective haplotypes(DRB1*0406-DQB1*0302,DRB1*0803-DQA1*03-DQB1*0601,DRB1*1202-DQA1*060Y-DQB1*0301) have been identified for Chinese Han specific DR-DQ alleles or haplotypes that confer risk of TlDM.
     Conclusions:Eight Chinese-specific DR-DQ risk markers are identified and these results reveal significant genetic heterogeneity of the contribution of HLA-DR-DQ genes to susceptibility to TlDM.
     Part II Association of zinc transporter8autoantibodies with HLA-DR-DQ gene polymorphisms
     Objective:To explore the relationship between zinc transporter8autoantibodies (ZnT8A) and susceptible HLA-DR-DQ genes in the patients with classical type1diabetes (TlDM).
     Methods:Four hundred twenty two TlDM patients with ZnT8A, glutamic acid carboxylase antibody(GADA) or protein tyrosine phosphatase antibody (IA-2A) positive were selected. All autoantibodies were detected by radioligand assay. These patients were also genotyped at HLA-DRBl, DQAl and DQBl locus by PCR-direct sequencing. Association of ZnT8A with HLA-DR-DQ susceptible genes was analyzed by bivariate correlation test or chi square test.
     Results:
     ①The prevalence of ZnT8A+was36.3%(153/422) in TIDM patients and the prevalence of the ZnT8A+alone was6.8%(28/412). The overlapping prevalence were25.1%(104/415),18.2%(75/412) for ZnT8A+and GADA+, ZnT8A+and IA-2A+, respectively.15%(62/412) of them were positive for three autoantibodies combined.
     ②The levels of ZnT8A were positively correlated with suscepitable allele DQA1*05(Υ2=0.126, P=0.012) and genotype DQA1*03/05(Υ2=0.138, P=0.006). And ZnT8A levels were negatively associated with suscepitable genotypes DQB1*0303/0303(Υ2=-0.142, P=0.006) and DRB1*0901/0901(Υ2=-0.114,p=0.029).
     ③The prevalence of ZnT8A+in the patients with DQA1*03/05(45.8%vs.32.7%)were significantly higher than those of non-carriers(P<0.05).The prevalence of ZnT8A+in the patients with DQB1*0303/0303(25.0%vs.38.5%),DRB1*0901/0901(26.6%vs.39.2%), DQA1*0102-DQB1*0601(12.5%vs.37.2%)and DRB1*0901-DQA1*03(29.6%vs.41.6%) were significantly lower than those of non-carrers,respectively(all P<0.05).
     ④The prevalence of ZnT8A+alone in patients with susceptible DQA1*03/060Y(75.00%vs.16.67%).DQB1*0301/0301(44.44%vs.17.14%),DRB1*1401-DQA1*010X(80.00%vs.17.12%) were significantly higher than those of non-carriers,respectively(all P<0.05).The prevalence of ZnT8A+alone in patients with protective DQA1*03/05(6.98%vs.16.67%). DRB1*0901-DQA1*03-DQB1*0303(4.88%vs.25.35%)were significantly lower than those of non-carriers(Both P<0.05).
     Conclusions:ZnT8-specific humoral autoimmunity is linked to DRB1*1401-DQA1*010X and DRB1*0901-DQA1*03-DQB1*0303haplotypes.These data provide further evidence that production of major autoantibody specificities are associated with HLA class II genes.
     Part III Analysis of IFIH1gene rs1990760polymorphism in type1diabetes from Hunan Han population
     Objective:To investigate whether IFIH1gene rs1990760polymorphism has a role in genetic predisposition of type1diabetes (T1DM) and latent autoimmune diabetes in adults (LADA) in Hunan Han population.
     Methods:All subjects including930T1DM patients,434LADA patients and1010healthy controls were genotyped for IFIH1rs1990760polymorphism using the Custom TaqMan SNP genotyping assay. The frequencies of alleles and genotypes of rs1990760were compared between cases and controls and genotype-phenotype correlation were carried out.
     Results:
     ①Allele C (79.8%vs.80.7%) and T (20.2%vs.19.3%) of IFIH1gene rs1990760polymorphism were similar in T1DM and control subjects, respectively (P>0.05). At the genotypic level, the frequencies of the CC (63.1%vs.65.0%), CT(33.5%vs.31.3%) and TT (3.5%vs.3.7%) genotypes were similar in cases and control subjects, respectively (all P>0.05).
     ②There was no significant difference of allele C/T frequencies of the rs1990760polymorphism between LADA and control groups (80.6%vs.80.7%;19.4%vs.19.3%, respectively, both P>0.05). Similarly, no significant differences in the genotypic (CC, CT, TT) frequencies were found (all P>0.05).
     ③The results did not show significant difference among genotypes in each subset including age of onset, body mass index, waist to hip, HbAlc, islet beta cell function and metablism components from TlDM and LADA patients (all P>0.05).
     ④The prevalence and titer of ZnT8A, GADA and IA-2A among the CC, CT and TT genotypes of IFIHl gene rs1990760polymorphism in TlDM patients were not statistically significant (all P>0.05).
     ⑤The frequency of allele C of rs1990760polymorphism in patients with susceptible allele DQB1*0303were lower than those of non-carrier. However, it was boundary statistical differences (76.76%vs.81.42%, P=0.048). The alleles and genotypes of IFIH1gene rs1990760polymorphism had no interaction with high risk or low risk HLA-DRBl,DQAl,DQBl genotypes (all P>0.05).
     Conclusions:These results suggest no contribution from IFIHl gene rs1990760polymorphism to the genetic predisposition of TIDM and LADA in Hunan Han population. There is no association of rs1990760polymorphism with clinical features, islet-associated autoimmunity as well as HLA-DR-DQ risk markers in TlDM.
     Part IV Association between IFIH1gene rs1990760polymorphism and type1diabetes:a Meta-analysis
     Objective:To explore comprehensively the relationship between IFIH1gene rs1990760polymorphism and susceptibility to type1diabetes (TlDM).
     Methods:References were retrieved through the computerized PubMed and Web of Knowledge.The number of allele or genotype of rs1990760polymorphism were taken in case-control studies.The unpublished data of our study was also included. The pools ORs with95%CI were calculated to assess the association strength. Either the fixed or random effect model was applied to conducted Meta-analysis in additive model, homozygote comparison, heterozygote comparison, dominant and recessive genetic models. Publication bias and sensitivity were evaluated at the same time. All analyses were conducted with Stata11.0software.
     Results:
     ①A total of thirteen case-control studies were enrolled, including19932cases of TlDM and28606controls.The subjects enrolled in ten studied were European descent, others were Asian population.
     ②The results of Meta-analyses showed the A allele was associated with the risk of TlDM in a additive model [A vs G:OR(95%CI)=1.14(1.08~1.22), P=0.000]; the AA+AG genotype was associated with the risk of TlDM in a dominant genetic model [AA+AG vs. GG: OR(95%CI)=1.25(1.16~1.34), P=0.000]; the AA genotype was associated with the risk of T1DM in homozygote comparison and recessive genetic models[AA vs. GG:OR(95%CI)=1.36(1.26~1.47), P=0.000; AA vs. AG+GG:OR(95%CI)=1.159(1.06~1.27), P=0.001]; the AG genotype was associated with the risk of T1DM in heterozygote comparison[AG vs. GG:OR(95%CI)=1.15(1.07~1.24), P=0.000].
     ③After stratification according to European descent and Asian ethnicity, the variant allele and genotype of rs1990760was associated with the risk of T1DM from European descent in all genetic models [A vs. G: OR(95%CI)=1.18(1.11-1.26), P=0.000]. Conversely, there was no difference of those in Asian population [A vs. G:OR(95%CI)=0.97(0.86-1.08),P=0.921].
     ④Sensitivity analysis showed that the aboved combined results could not be effected by individual study, no publication bias was found, the conclusions were reliable.
     Conclusions:The meta-analysis suggests that the IFIH1gene rs1990760polymorphism is a genetic risk factor for T1DM of European descent, and the A allele elevates the risk of T1DM. But it is not a definite risk of T1DM in Asian population.
引文
1. Yang WY, Lu JM, Weng JP, et al. Prevalence of Diabetes among Men and Women in China. New Engl J Med,2010,362:1090-1101.
    2. Borchers AT, Uibo R, Gershwin ME. The geoepidemiology of type 1 diabetes. Autoimmun Rev,2010,9:A355-365.
    3. Group DP. Incidence and trends of childhood Type 1 diabetes worldwide 1990-1999. Diabet Med,2006,23:857-866.
    4. Patterson CC, Dahlquist GG, Gyurus E, et al. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20:a multicentre prospective registration study. Lancet,2009,373:2027-2033.
    5. Liese AD, D'Agostino RB, Hamman RF, et al. The burden of diabetes mellitus among US youth:prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics,2006,118:1510-1518.
    6. Huber A, Menconi F, Corathers S, et al. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis:from epidemiology to mechanisms. Endocr Rev, 2008,29:697-725.
    7. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet,2009,41: 703-707.
    8. She JX. Susceptibility to type I diabetes:HLA-DQ and DR revisited. Immunol Today,1996,17:323-329.
    9. Ilonen J, Sjoroos M, Knip M, et al. Estimation of genetic risk for type 1 diabetes. Am J Med Genet,2002,115:30-36.
    10. Thomson G, Valdes AM, Noble JA, et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes:a meta-analysis. Tissue Antigens,2007,70:110-127.
    11.林健.自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析[博士学位论文].长沙:中南大学,2005.
    12.王建平.1型糖尿病胰岛自身抗体与HLA-DQ基因型的关系[博士学位论文].长沙:中南大学,2006.
    13.黄炳昆.自身免疫1型糖尿病与HLA-DRB1基因的关联性研究[硕士学位论文].长沙:中南大学,2012.
    14. Santamaria P, Boyce-Jacino MT, Lindstrom AL, et al. HLA class II "typing": direct sequencing of DRB, DQB, and DQA genes. Hum Immunol,1992,33:69-81.
    15. Smith LK. HLA typing by direct DNA sequencing. Methods Mol Biol,2012,882: 67-86.
    16. Pihoker C, Gilliam LK, Hampe CS, et al. Autoantibodies in diabetes. Diabetes, 2005,54 Suppl 2:S52-61.
    17. Wenzlau JM, Juhl K, Yu L, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A,2007,104: 17040-17045.
    18. Kawasaki E, Uga M, Nakamura K, et al. Association between anti-ZnT8 autoantibody specificities and SLC30A8 Arg325Trp variant in Japanese patients with type 1 diabetes. Diabetologia,2008,51:2299-2302.
    19. Krause S, Mollenhauer U, Jage rA, al. e. Zinc transporter 8 autoantibody profiles in patients with recently diagnosed type 1 diabetes. Diabetologia,2009,52:S84
    20. Yang L, Luo S, Huang G, et al. The diagnostic value of zinc transporter 8 autoantibody (ZnT8A) for type 1 diabetes in Chinese. Diabetes Metab Res Rev,2010, 26:579-584.
    21. Andersson C, Larsson K, Vaziri-Sani F, et al. The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes. Autoimmunity,2011,44:394-405.
    22. Vermeulen I, Weets I, Asanghanwa M, et al. Contribution of Antibodies Against IA-2{beta} and Zinc Transporter 8 to Classification of Diabetes Diagnosed Under 40 Years of Age. Diabetes Care,2011,34:1760-1765.
    23. Knip M, Kukko M, Kulmala P, et al. Humoral beta-cell auto immunity in relation to HLA-defined disease susceptibility in preclinical and clinical type 1 diabetes. Am J Med Genet,2002,115:48-54.
    24. Graham J, Hagopian WA, Kockum I, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes,2002,51: 1346-1355.
    25. Hagopian WA, Sanjeevi CB, Kockum I, et al. Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest,1995,95:1505-1511.
    26. Brorsson C, Vaziri-Sani F, Bergholdt R, et al. Correlations between islet autoantibody specificity and the SLC30A8 genotype with HLA-DQB1 and metabolic control in new onset type 1 diabetes. Autoimmunity,2011,44:107-114.
    27. Kawasaki E, Nakamura K, Kuriya G, et al. Differences in the humoral autoreactivity to zinc transporter 8 between childhood- and adult-onset type 1 diabetes in Japanese patients. Clin Immunol,2010,138:146-153.
    28.张贻宇.急性起病自身免疫1型糖尿病患者锌转运体8抗体与HLA-DQ基因相关性[硕士学位论文].长沙:中南大学,2010.
    29. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes,1984,33:176-183.
    30. Barratt BJ, Payne F, Lowe CE, et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes,2004,53:1884-1889.
    31. Nistico L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet,1996,5:1075-1080.
    32. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature,2003,423:506-511.
    33. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet,2004,36:337-338.
    34. Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes,2004,53:3020-3023.
    35. Vella A, Cooper JD, Lowe CE, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet,2005,76:773-779.
    36. Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet,2006,38:617-619.
    37. Andrejeva J, Childs KS, Young DF, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A,2004,101:17264-17269.
    38. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature,2006,441:101-105.
    39. Nejentsev S, Walker N, Riches D, et al. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science,2009,324:387-389.
    40. Jermendy A, Szatmari I, Laine AP, et al. The interferon-induced helicase IFIH1 Ala946Thr polymorphism is associated with type 1 diabetes in both the high-incidence Finnish and the medium-incidence Hungarian populations. Diabetologia,2010,53:98-102.
    41. Yang H, Xu K, Gu R, et al. IFIH1 gene polymorphisms in type 1 diabetes:genetic association analysis and genotype-phenotype correlation in Chinese Han population. Autoimmunity,2012,45:226-232.
    42. Redondo MJ, Yu L, Hawa M, et al. Heterogeneity of type I diabetes:analysis of monozygotic twins in Great Britain and the United States. Diabetologia,2001,44: 354-362.
    43. Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res,2001,56:69-89.
    44. Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet,1987,40:1-14.
    45. Boyce-Jacino MT, Santamaria P, Lindstrom AL, etal. HLA typing by direct sequencing analysis. In HLA 1991 (Volume 1) Oxford,UK,Oxford University Press,Tsuji K,AiZawa M, Sasazuki T, Eds,1991:504-507.
    46. Wirtz C, Sayer D. Data analysis of HLA sequencing using Assign-SBT v3.6+ from Conexio. Methods Mol Biol,2012,882:87-121.
    47. Sayer D, Whidborne R, Brestovac B, et al. HLA-DRB1 DNA sequencing based typing:an approach suitable for high throughput typing including unrelated bone marrow registry donors. Tissue Antigens,2001,57:46-54.
    48.王建民,周智广,文建新,等.谷氨酸脱羧酶(GAD65)自身抗体的放射配体法.中国糖尿病杂志,1997,5:85-88.
    49.黄干,周智广,王建平,等.蛋白酪氨酸磷酸酶自身抗体放射配体检测法的建立与临床应用.中华糖尿病杂志,2004,12:18-13.
    50.黄干,罗说明,杨琳,等锌转运体8自身抗体的放射配体检测法.中国糖尿病杂志,2009,17:325-327.
    51.黄干,周智广,彭健,等.35S标记重组人GAD65抗原检测糖尿病患者GAD-Ab指数.中华核医学杂志,2003,23:82-86.
    52.王建平,周智广,黄干,等.IA-2A与GADA检测对1型糖尿病的诊断价值.中华内分泌代谢杂志,2004,20:494-498.
    53. Awata T, Kuzuya T, Matsuda A, et al. Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects. Diabetologia,1992,35:419-424.
    54. Yasunaga S, Kimura A, Hamaguchi K, et al. Different contribution of HLA-DR and -DQ genes in susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM). Tissue Antigens,1996,47:37-48.
    55. Sugihara S, Sakamaki T, Konda S, et al. Association of HLA-DR, DQ genotype with different beta-cell functions at IDDM diagnosis in Japanese children. Diabetes, 1997,46:1893-1897.
    56. Nishimaki K, Kawamura T, Inada H, et al. HLA DPB1*0201 gene confers disease susceptibility in Japanese with childhood onset type I diabetes, independent of HLA-DR and DQ genotypes. Diabetes Res Clin Pract,2000,47:49-55.
    57. Kawabata Y, Ikegami H, Kawaguchi Y, et al. Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes,2002,51:545-551.
    58. Murao S, Makino H, Kaino Y, et al. Differences in the contribution of HLA-DR and -DQ haplotypes to susceptibility to adult- and childhood-onset type 1 diabetes in Japanese patients. Diabetes,2004,53:2684-2690.
    59. Katahira M, Ishiguro T, Segawa S, et al. Reevaluation of human leukocyte antigen DR-DQ haplotype and genotype in type 1 diabetes in the Japanese population. Horm Res,2008,69:284-289.
    60. Katahira M, Maeda H, Tosaki T, et al. The human leukocyte antigen class II gene has different contributions to autoimmune type 1 diabetes with or without autoimmune thyroid disease in the Japanese population. Diabetes Res Clin Pract, 2009,85:293-297.
    61. Yamashita H, Awata T, Kawasaki E, et al. Analysis of the HLA and non-HLA susceptibility loci in Japanese type 1 diabetes. Diabetes Metab Res Rev,2011,27: 844-848.
    62. Sugihara S, Ogata T, Kawamura T, et al. HLA-class II and class I genotypes among Japanese children with Type 1A diabetes and their families. Pediatr Diabetes, 2012,13:33-44.
    63. Park YS, Wang CY, Ko KW, et al. Combinations of HLA DR and DQ molecules determine the susceptibility to insulin-dependent diabetes mellitus in Koreans. Hum Immunol,1998,59:794-801.
    64. Park Y, She JX, Wang CY, et al. Common susceptibility and transmission pattern of human leukocyte antigen DRB1-DQB1 haplotypes to Korean and Caucasian patients with type 1 diabetes. J Clin Endocrinol Metab,2000,85:4538-4542.
    65. Yu J, Shin CH, Yang SW, et al. Analysis of children with type 1 diabetes in Korea: high prevalence of specific anti-islet autoantibodies, immunogenetic similarities to Western populations with "unique" haplotypes, and lack of discrimination by aspartic acid at position 57 of DQB. Clin Immunol,2004,113:318-325.
    66. Kockum I, Sanjeevi CB, Eastman S, et al. Population analysis of protection by HLA-DR and DQ genes from insulin-dependent diabetes mellitus in Swedish children with insulin-dependent diabetes and controls. Eur J Immunogenet,1995,22:443-465.
    67. Noble JA, Valdes AM, Cook M, et al. The role of HLA class II genes in insulin-dependent diabetes mellitus:molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet,1996,59:1134-1148.
    68. Petrone A, Bugawan TL, Mesturino CA, et al. The distribution of HLA class II susceptible/protective haplotypes could partially explain the low incidence of type 1 diabetes in continental Italy (Lazio region). Tissue Antigens,2001,58:385-394.
    69. Cucca F, Lampis R, Congia M, et al. A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Hum Mol Genet,2001,10:2025-2037.
    70. Hermann R, Mijovic CH, Rayner M, et al. HLA alleles and IDDM in children in Hungary:a comparison with Finland. Hum Immunol,2001,62:391-398.
    71. Van der Auwera BJ, Schuit FC, Weets I, et al. Relative and absolute HLA-DQA1-DQB1 linked risk for developing type I diabetes before 40 years of age in the Belgian population:implications for future prevention studies. Hum Immunol, 2002,63:40-50.
    72. Lambert AP, Gillespie KM, Thomson G, et al. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. J Clin Endocrinol Metab,2004,89: 4037-4043.
    73. Altobelli E, Blasetti A, Petrocelli R, et al. HLA DR/DQ alleles and risk of type I diabetes in childhood:a population-based case-control study. Clin Exp Med,2005,5: 72-79.
    74. Erlich H, Valdes AM, Noble J, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes,2008,57:1084-1092.
    75.谭建明,周永昌,唐孝达.组织配型技术与临床应用[专著].北京:人民卫生出版社,2006.
    76. Zhang XM, Wang HY, Luo YY, et al. HLA-DQ, DR allele polymorphism of type 1 diabetes in the Chinese population:a meta-analysis. Chin Med J (Engl),2009,122: 980-986.
    77. Sang Y, Yan C, Zhu C, et al. Relationship between HLA-DRB1 and DQ alleles and the genetic susceptibility to type 1 diabetes. Chin Med J (Engl),2001,114: 407-409.
    78. Huang HS, Peng JT, She JY, et al. HLA-encoded susceptibility to insulin-dependent diabetes mellitus is determined by DR and DQ genes as well as their linkage disequilibria in a Chinese population. Hum Immunol,1995,44:210-219.
    79. Penny MA, Jenkins D, Mijovic CH, et al. Susceptibility to IDDM in a Chinese population. Role of HLA class II alleles. Diabetes,1992,41:914-919.
    80.许馨予,于晓竹,顾愹,等.1型糖尿病与HLA-DRB1、DQB1基因相关性研究.南京医科大学学报(自然科学版),2010,30:1575-1579.
    81.刘昌丽,余叶蓉,刘洪,等.人白细胞抗原DQB1基因与1型糖尿病相关性研究.中华医学遗传学杂志,2004,21:368-371.
    82.孙逸平,杨泽,沈晶晶,等.我国北方地区1型糖尿病患者与HLA-DR,DQ的关联研究.中华微生物学和免疫学杂志,2000,20:61-65
    83. Katahira M, Segawa S, Maeda H, et al. Effect of human leukocyte antigen class II genes on acute-onset and slow-onset type 1 diabetes in the Japanese population. Hum Immunol,2010,71:789-794.
    84. Kawabata Y, Ikegami H, Awata T, et al. Differential association of HLA with three subtypes of type 1 diabetes:fulminant, slowly progressive and acute-onset. Diabetologia,2009,52:2513-2521.
    85. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature,1987,329:599-604.
    86. Khalil I, d'Auriol L, Gobet M, et al. A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus. J Clin Invest,1990,85:1315-1319.
    87. Awata T, Kuzuya T, Matsuda A, et al. High frequency of aspartic acid at position 57 of HLA-DQ beta-chain in Japanese IDDM patients and nondiabetic subjects. Diabetes,1990,39:266-269.
    88. Sanjeevi CB, Seshiah V, Moller E, et al. Different genetic backgrounds for malnutrition-related diabetes and type 1 (insulin-dependent) diabetes mellitus in south Indians. Diabetologia,1992,35:283-286.
    89. Mijovic CH, Jenkins D, Jacobs KH, et al. HLA-DQA1 and -DQB1 alleles associated with genetic susceptibility to IDDM in a black population. Diabetes,1991, 40:748-753.
    90. Ilonen J, Reijonen H, Herva E, et al. Rapid HLA-DQB1 genotyping for four alleles in the assessment of risk for IDDM in the Finnish population. The Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care,1996,19:795-800.
    91. Hermann R, Bartsocas CS, Soltesz G, et al. Genetic screening for individuals at high risk for type 1 diabetes in the general population using HLA Class II alleles as disease markers. A comparison between three European populations with variable rates of disease incidence. Diabetes Metab Res Rev,2004,20:322-329.
    92. Nejentsev S, Sjoroos M, Soukka T, et al. Population-based genetic screening for the estimation of Type 1 diabetes mellitus risk in Finland:selective genotyping of markers in the HLA-DQB1, HLA-DQA1 and HLA-DRB1 loci. Diabet Med,1999,16: 985-992.
    93. Manan H, Angham AM, Sitelbanat A. Genetic and diabetic auto-antibody markers in Saudi children with type 1 diabetes. Hum Immunol,2010,71:1238-1242.
    94. Morris RW, Kaplan NL. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet Epidemiol,2002,23:221-233.
    95. LI J, PAN Y-C, LI Y-X, et al. Analysis and Application of SNP and Haplotype in the Human Genome. Acta Genetica Sinica,2005,32:879-889.
    96. Clark AG. Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol,1990,7:111-122.
    97. Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol,1995,12:921-927.
    98. Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet,2001,68:978-989.
    99. Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet,2005,76: 449-462.
    100. 黄萌,蔡琳.Haploview与PHASE在单体型研究中的应用.福建医科大学学报,2009,43:310-313.
    101. Maier LM, Wicker LS. Genetic susceptibility to type 1 diabetes. Curr Opin Immunol,2005,17:601-608.
    102. 薛付忠,王洁贞,胡平.中国人群1型糖尿病HLA-DQ基因多态性的Meta分析.中华内分泌代谢杂志,2005,21:39-42.
    103. van Autreve JE, Weets I, Gulbis B, et al. The rare HLA-DQA1*03-DQB1*02 haplotype confers susceptibility to type 1 diabetes in whites and is preferentially associated with early clinical disease onset in male subjects. Hum Immunol,2004,65: 729-736.
    104. Haider MZ, Shaltout A, Alsaeid K, et al. Prevalence of human leukocyte antigen DQA1 and DQB1 alleles in Kuwaiti Arab children with type 1 diabetes mellitus. Clin Genet,1999,56:450-456.
    105. Hu CY, Allen M, Chuang LM, et al. Association of insulin-dependent diabetes mellitus in Taiwan with HLA class II DQB1 and DRB1 alleles. Hum Immunol,1993,38:105-114.
    106. Skrodeniene E, Marciulionyte D, Padaiga Z, et al. HLA class II alleles and haplotypes in Lithuanian children with type 1 diabetes and healthy children (HLA and type 1 diabetes). Medicina (Kaunas),2010,46:505-510.
    107. Ilonen J, Kocova M, Lipponen K, et al. HLA-DR-DQ haplotypes and type 1 diabetes in Macedonia. Hum Immunol,2009,70:461-463.
    108. Decochez K, De Leeuw IH, Keymeulen B, et al. IA-2 autoantibodies predict impending type I diabetes in siblings of patients. Diabetologia,2002,45:1658-1666.
    109. Khalil I, Deschamps I, Lepage V, et al. Dose effect of cis-and trans-encoded HLA-DQ alpha beta heterodimers in IDDM susceptibility. Diabetes,1992,41: 378-384.
    110.Kwok WW, Schwarz D, Nepom BS, et al. HLA-DQ molecules form alpha-beta heterodimers of mixed allotype. J Immunol,1988,141:3123-3127.
    111.Lie BA, Ronningen KS, Akselsen HE, et al. Application and interpretation of transmission/disequilibrium tests:transmission of HLA-DQ haplotypes to unaffected siblings in 526 families with type 1 diabetes. Am J Hum Genet,2000,66:740-743.
    112.Nakamura T, Nagasaka S, Kusaka I, et al. HLA-DR-DQ haplotype in rapid-onset type 1 diabetes in Japanese. Diabetes Care,2003,26:1640-1641.
    113.Cifuentes RA, Rojas-Villarraga A, Anaya JM. Human leukocyte antigen class II and type 1 diabetes in Latin America:A combined meta-analysis of association and family-based studies. Hum Immunol,2011,72:581-586.
    114.Rojas-Villarraga A, Botello-Corzo D, Anaya JM. HLA-Class II in Latin American patients with type 1 diabetes. Autoimmun Rev,2010,9:666-673.
    115.Izaabel H, Garchon HJ, Beaurain G, et al. Distribution of HLA class II alleles and haplotypes in insulin-dependent Moroccan diabetics. Hum Immunol,1996,49: 137-143.
    116.Gaber SA, Mazzola G, Berrino M, et al. Human leukocyte antigen class II polymorphisms and genetic susceptibility of IDDM in Egyptian children. Diabetes Care,1994,17:1341-1344.
    117.Baisch JM, Weeks T, Giles R, et al. Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med,1990,322: 1836-1841.
    118.Escribano-de-Diego J, Sanchez-Velasco P, Luzuriaga C, et al. HLA class II immunogenetics and incidence of insulin-dependent diabetes mellitus in the population of Cantabria (Northern Spain). Hum Immunol,1999,60:990-1000.
    119.Sanjeevi CB, Landin-Olsson M, Kockum I, et al. Effects of the second HLA-DQ haplotype on the association with childhood insulin-dependent diabetes mellitus. Tissue Antigens,1995,45:148-152.
    120. Ikegami H, Fujisawa T, Kawabata Y, et al. Genetics of type 1 diabetes: similarities and differences between Asian and Caucasian populations. Ann N Y Acad Sci,2006,1079:51-59.
    121. Ikegami H, Kawabata Y, Noso S, et al. Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract,2007,77 Suppl 1:S116-121.
    122. Ikegami H, Noso S, Babaya N, et al. Genetic Basis of Type 1 Diabetes: Similarities and Differences between East and West. Rev Diabet Stud,2008,5:64-72.
    123. Steck AK, Rewers MJ. Genetics of type 1 diabetes. Clin Chem,2011,57: 176-185.
    124. Wasserfall CH, Atkinson MA. Autoantibody markers for the diagnosis and prediction of type 1 diabetes. Autoimmun Rev,2006,5:424-428.
    125. Vandewalle CL, Falorni A, Lernmark A, et al. Associations of GAD65- and IA-2-autoantibodies with genetic risk markers in new-onset IDDM patients and their siblings. The Belgian Diabetes Registry. Diabetes Care,1997,20:1547-1552.
    126. Genovese S, Bonfanti R, Bazzigaluppi E, et al. Association of IA-2 autoantibodies with HLA DR4 phenotypes in IDDM. Diabetologia,1996,39: 1223-1226.
    127. Sabbah E, Savola K, Kulmala P, et al. Disease-associated autoantibodies and HLA-DQB1 genotypes in children with newly diagnosed insulin-dependent diabetes mellitus (IDDM). The Childhood Diabetes in Finland Study Group. Clin Exp Immunol,1999,116:78-83.
    128. Gu Y, Zhang M, Chen H, et al. Discordant association of islet autoantibodies with high-risk HLA genes in Chinese type 1 diabetes. Diabetes Metab Res Rev,2011, 27:899-905.
    129. Andersen MK, Harkonen T, Forsblom C, et al. Zinc transporter type 8 autoantibodies (ZnT8A):prevalence and phenotypic associations in latent autoimmune diabetes in adults and type 1 diabetes diagnosed>35 years. Autoimmunity,2013, Jan 10. [Epub ahead of print].
    130. Huang G, Xiang Y, Pan L, et al. Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus. Diabetes Metab Res Rev,2013,2013 Feb 6. doi: 10.1002/dmrr.2396. [Epub ahead of print].
    131. Serjeantson SW, Kohonen-Corish MR, Rowley MJ, et al. Antibodies to glutamic acid decarboxylase are associated with HLA-DR genotypes in both Australians and Asians with type 1 (insulin-dependent) diabetes mellitus. Diabetologia,1992,35:996-1001.
    132. Serjeantson SW, Court J, Mackay IR, et al. HLA-DQ genotypes are associated with autoimmunity to glutamic acid decarboxylase in insulin-dependent diabetes mellitus patients. Hum Immunol,1993,38:97-104.
    133. Sanjeevi CB, Hagopian WA, Landin-Olsson M, et al. Association between autoantibody markers and subtypes of DR4 and DR4-DQ in Swedish children with insulin-dependent diabetes reveals closer association of tyrosine pyrophosphatase autoimmunity with DR4 than DQ8. Tissue Antigens,1998,51:281-286.
    134. Novota P, Cerna M, Kolostova K, et al. Diabetes mellitus in adults: association of HLA DRB1 and DQB1 diabetes risk alleles with GADab presence and C-peptide secretion. Immunol Lett,2004,95:229-232.
    135. Stayoussef M, Benmansour J, Al-Jenaidi FA, et al. Glutamic Acid Decarboxylase 65 and Islet Cell Antigen 512/IA-2 Autoantibodies in Relation to Human Leukocyte Antigen Class II DR and DQ Alleles and Haplotypes in Type 1 Diabetes Mellitus. Clin Vaccine Immunol,2011,18:990-993.
    136. Park Y, Tait BD, Kawasaki E, et al. Closer association of IA-2 humoral autoreactivity with HLA DR3/4 than DQB1*0201/*0302 in Korean T1D patients. Ann N Y Acad Sci,2004,1037:104-109.
    137. Chen BH, Chung SB, Chiang W, et al. GAD65 antibody prevalence and association with thyroid antibodies, HLA-DR in Chinese children with type 1 diabetes mellitus. Diabetes Res Clin Pract,2001,54:27-32.
    138. Wang JP, Zhou ZG, Lin J, et al. Islet autoantibodies are associated with HLA-DQ genotypes in Han Chinese patients with type 1 diabetes and their relatives. Tissue Antigens,2007,70:369-375.
    139. Qu HQ, Polychronakos C. The effect of the MHC locus on autoantibodies in type 1 diabetes. J Med Genet,2009,46:469-471.
    140. Howson JM, Stevens H, Smyth DJ, et al. Evidence That HLA Class I and II Associations With Type 1 Diabetes, Autoantibodies to GAD and Autoantibodies to IA-2, Are Distinct. Diabetes,2011,60:2635-2644.
    141. Kelly MA, Alvi NS, Croft NJ, et al. Genetic and immunological characteristics of Type I diabetes mellitus in an Indo-Aryan population. Diabetologia, 2000,43:450-456.
    142. Williams AJ, Aitken RJ, Chandler MA, et al. Autoantibodies to islet antigen-2 are associated with HLA-DRB1*07 and DRB1*09 haplotypes as well as DRB1*04 at onset of type 1 diabetes:the possible role of HLA-DQ A in autoimmunity to IA-2. Diabetologia,2008,51:1444-1448.
    143. Ziegler AG, Standl E, Albert E, et al. HLA-associated insulin autoantibody formation in newly diagnosed type I diabetic patients. Diabetes,1991,40:1146-1149.
    144. Kulmala P, Savola K, Reijonen H, et al. Genetic markers, humoral autoimmunity, and prediction of type 1 diabetes in siblings of affected children. Childhood Diabetes in Finland Study Group. Diabetes,2000,49:48-58.
    145. Battelino T, Ursic-Bratina N, Dolzan V, et al. The HLA-DRB,-DQB polymorphism and anti-insulin antibody response in Slovenian patients with type 1 diabetes. Eur J Immunogenet,2003,30:223-227.
    146. Redondo MJ, Babu S, Zeidler A, et al. Specific human leukocyte antigen DQ influence on expression of antiislet autoantibodies and progression to type 1 diabetes. J Clin Endocrinol Metab,2006,91:1705-1713.
    147. Schlosser M, Strebelow M, Wassmuth R, et al. The Karlsburg type 1 diabetes risk study of a normal schoolchild population:association of beta-cell autoantibodies and human leukocyte antigen-DQB1 alleles in antibody-positive individuals. J Clin Endocrinol Metab,2002,87:2254-2261.
    148. Hermann R, Soltesz G Prevalence and HLA association of GAD65 antibodies in Hungarian schoolchildren. Hum Immunol,2003,64:152-155.
    149. Lipponen K, Gombos Z, Kiviniemi M, et al. Effect of HLA Class I and Class II Alleles on Progression from Autoantibody Positivity to Overt Type 1 Diabetes in Children with Risk-Associated Class II Genotypes. Diabetes,2010,59:3253-3256.
    150. Gupta M, Graham J, McNeeny B, et al. MHC class I chain-related gene-A is associated with IA2 and IAA but not GAD in Swedish type 1 diabetes mellitus. Ann N Y Acad Sci,2006,1079:229-239.
    151. Tait BD, Colman PG, Morahan G, et al. HLA genes associated with autoimmunity and progression to disease in type 1 diabetes. Tissue Antigens,2003,61: 146-153.
    152. Plagnol V, Howson JM, Smyth DJ, et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet,2011,7:e1002216.
    153. Chimienti F, Devergnas S, Favier A, et al. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes,2004,53:2330-2337.
    154. Chimienti F, Devergnas S, Pattou F, et al. In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci,2006,119:4199-4206.
    155. Wijesekara N, Dai FF, Hardy AB, et al. Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia,2010,53:1656-1668.
    156. Petersen AB, Smidt K, Magnusson NE, et al. siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-IE cells. APMIS,2011,119:93-102.
    157. Lampasona V, Petrone A, Tiberti C, et al. Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes:Non Insulin Requiring Autoimmune Diabetes (NIRAD) 4. Diabetes Care,2010,33:104-108.
    158. Trabucchi A, Faccinetti NI, Guerra LL, et al. Detection and characterization of ZnT8 autoantibodies could help to screen latent autoimmune diabetes in adult-onset patients with type 2 phenotype. Autoimmunity,2012,45:137-142.
    159. Kawasaki E, Nakamura K, Kuriya G, et al. Zinc transporter 8 autoantibodies in fulminant, acute-onset, and slow-onset patients with type 1 diabetes. Diabetes Metab Res Rev,2011,27:895-898.
    160. Nielsen LB, Vaziri-Sani F, Porksen S, et al. Relationship between ZnT8Ab, the SLC30A8 gene and disease progression in children with newly diagnosed type 1 diabetes. Autoimmunity,2011,44:616-623.
    161. Douroudis K, Prans E, Uibo R. CTLA-4 promoter polymorphisms are associated with latent autoimmune diabetes in adults. Hum Immunol,2009,70: 921-924.
    162. Lukacs K, Hosszufalusi N, Dinya E, et al. The type 2 diabetes-associated variant in TCF7L2 is associated with latent autoimmune diabetes in adult Europeans and the gene effect is modified by obesity:a meta-analysis and an individual study. Diabetologia,2011,55:689-693.
    163. Liu F, Liu J, Zheng TS, et al. The-1123G>C Variant of PTPN22 Gene Promoter is Associated with Latent Autoimmune Diabetes in Adult Chinese Hans. Cell Biochem Biophys,2012,62:273-279.
    164. Howson JM, Rosinger S, Smyth DJ, et al. Genetic Analysis of Adult-Onset Autoimmune Diabetes. Diabetes,2011,60:2645-2653.
    165. Liu S, Wang H, Jin Y, et al. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet,2009,18:358-365.
    166. Reddy MV, Wang H, Liu S, et al. Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population. Genes Immun,2011,12: 208-212.
    167. Klinker MW, Schiller JJ, Magnuson VL, et al. Single-nucleotide polymorphisms in the IL2RA gene are associated with age at diagnosis in late-onset Finnish type 1 diabetes subjects. Immunogenetics,2010,62:101-107.
    168. Concannon P, Onengut-Gumuscu S, Todd JA, et al. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes,2008,57:2858-2861.
    169. Howson JM, Walker NM, Smyth DJ, et al. Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun,2009,10 Suppl 1:S74-84.
    170. Yamashita H, Awata T, Kawasaki E, et al. Analysis of the HLA and non-HLA susceptibility loci in Japanese type 1 diabetes. Diabetes Metab Res Rev,2011,27: 844-848.
    171. Qu HQ, Marchand L, Grabs R, et al. The association between the IFIH1 locus and type 1 diabetes. Diabetologia,2008,51:473-475.
    172. Winkler C, Lauber C, Adler K, et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes,2011,60:685-690.
    173. Aminkeng F, Van Autreve JE, Weets I, et al. IFIH1 gene polymorphisms in type 1 diabetes:genetic association analysis and genotype-phenotype correlation in the Belgian population. Hum Immunol,2009,70:706-710.
    174. Nayak RR, Kearns M, Spielman RS, et al. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions. Genome Res,2009,19:1953-1962.
    175. Witso E, Tapia G, Cinek O, et al. Polymorphisms in the Innate Immune IFIH1 Gene, Frequency of Enterovirus in Monthly Fecal Samples during Infancy, and Islet Autoimmunity. PLoS One,2011,6:e27781.
    176. Fumagalli M, Cagliani R, Riva S, et al. Population genetics of IFIH1:ancient population structure, local selection, and implications for susceptibility to type 1 diabetes. Mol Biol Evol,2010,27:2555-2566.
    177. Desai M, Zeggini E, Horton VA, et al. An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia,2007,50:68-73.
    178. Hosszufalusi N, Vatay A, Rajczy K, et al. Similar Genetic Features and Different Islet Cell Autoantibody Pattern of Latent Autoimmune Diabetes in Adults (LADA) Compared With Adult-Onset Type 1 Diabetes With Rapid Progression. Diabetes Care,2003,26:452-457.
    179. Tom C, Gupta M, Zake LN, et al. Heterozygosity for MICA5.0/MICA5.1 and HLA-DR3-DQ2/DR4-DQ8 are independent genetic risk factors for latent autoimmune diabetes in adults. Hum Immunol,2003,64:902-909.
    180. Horton V, Stratton I, Bottazzo GF, et al. Genetic heterogeneity of autoimmune diabetes:age of presentation in adults is influenced by HLA DRB1 and DQB1 genotypes (UKPDS 43). UK Prospective Diabetes Study (UKPDS) Group. Diabetologia,1999,42:608-616.
    181. Andersen MK, Lundgren V, Turunen JA, et al. Latent autoimmune diabetes in adults differs genetically from classical type 1 diabetes diagnosed after the age of 35 years. Diabetes Care,2010,33:2062-2064.
    182. Lin J, Zhou ZG, Wang JP, et al. From Type 1, through LADA, to Type 2 Diabetes:A Continuous Spectrum? The Evidence of the HLA-DQ Gene. Ann NY Acad Sci,2008,1150:99-102.
    183. Maioli M, Pes GM, Delitala G, et al. Number of autoantibodies and HLA genotype, more than high titers of glutamic acid decarboxylase autoantibodies, predict insulin dependence in latent autoimmune diabetes of adults. Eur J Endocrinol,2010, 163:541-549.
    184. Gambelunghe G, Ghaderi M, Tortoioli C, et al. Two distinct MICA gene markers discriminate major autoimmune diabetes types. J Clin Endocrinol Metab, 2001,86:3754-3760.
    185. Torn C, Gupta M, Nikitina Zake L, et al. Heterozygosity for MICA5.0/MICA5.1 and HLA-DR3-DQ2/DR4-DQ8 are independent genetic risk factors for latent autoimmune diabetes in adults. Hum Immunol,2003,64:902-909.
    186. Raache R, Belanteur K, Amroun H, et al. Association of MICA-129 dimorphism gene with type 1 Diabetes and Latent Autoimmune Diabetes in Adults in Algerian population. Clin Vaccine Immunol,2012,19:557-561.
    187. Cosentino A, Gambelunghe G, Tortoioli C, et al. CTLA-4 gene polymorphism contributes to the genetic risk for latent autoimmune diabetes in adults. Ann N Y Acad Sci,2002,958:337-340.
    188. Grant SF, Hakonarson H, Schwartz S. Can the genetics of type 1 and type 2 diabetes shed light on the genetics of latent autoimmune diabetes in adults? Endocr Rev,2009,31:183-193.
    189. Cervin C, Lyssenko V, Bakhtadze E, et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes,2008, 57:1433-1437.
    190. Zampetti S, Spoletini M, Petrone A, et al. Association of TCF7L2 gene variants with low GAD autoantibody titre in LADA subjects (NIRAD Study 5). Diabet Med,2010,27:701-704.
    191. Bakhtadze E, Cervin C, Lindholm E, et al. Common variants in the TCF7L2 gene help to differentiate autoimmune from non-autoimmune diabetes in young (15-34 years) but not in middle-aged (40-59 years) diabetic patients. Diabetologia, 2008,51:2224-2232.
    192. Szepietowska B, Moczulski D, Wawrusiewicz-Kurylonek N, et al. Transcription factor 7-like 2-gene polymorphism is related to fasting C peptide in latent autoimmune diabetes in adults (LADA). Acta Diabetol,2009,47:83-86.
    193. Howson JM, Rosinger S, Smyth DJ, et al. Genetic Analysis of Adult-Onset Autoimmune Diabetes. Diabetes,2011,60:2645-2653.
    194. Cerrone GE, Caputo M, Lopez AP, et al. Variable number of tandem repeats of the insulin gene determines susceptibility to latent autoimmune diabetes in adults. Mol Diagn,2004,8:43-49.
    195. Cejkova P, Novota P, Cerna M, et al. HLA DRB1, DQB1 and insulin promoter VNTR polymorphisms:interactions and the association with adult-onset diabetes mellitus in Czech patients. Int J Immunogenet,2008,35:133-140.
    196. Caputo M, Cerrone GE, Lopez AP, et al. Cytotoxic T lymphocyte antigen 4 heterozygous codon 49 A/G dimorphism is associated to latent autoimmune diabetes in adults (LADA). Autoimmunity,2005,38:277-281.
    197. Sanjeevi CB. Genes influencing innate and acquired immunity in type 1 diabetes and latent autoimmune diabetes in adults. Ann N Y Acad Sci,2006,1079: 67-80.
    198. Julier C, Akolkar B, Concannon P, et al. The Type I Diabetes Genetics Consortium 'Rapid Response1 family-based candidate gene study: strategy, genes selection, and main outcome. Genes Immun,2009,10 Suppl 1:S121-127.
    199. International Multiple Sclerosis Genetics Consortium. The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun,2009,10: 11-14.
    200. Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet,2007, 39:857-864.
    201. Martinez A, Santiago JL, Cenit MC, et al. IFIH1-GCA-KCNH7 locus: influence on multiple sclerosis risk. Eur J Hum Genet,2008,16:861-864.
    202. 刘关键,吴泰相,康德英.Meta-分析中的统计学过程.中国临床康复,2003,7:538-541.
    1. Adams DD, Knight JG. Principles of autoimmune disease:pathogenesis, genetics and specific immunotherapy. J Clin Lab Immunol,2003,52:1-22.
    2. Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases--a general susceptibility gene to autoimmunity? Genes Immun,2000,1:170-184.
    3. Burkhardt H, Huffmeier U, Spriewald B, et al. Association between protein tyrosine phosphatase 22 variant R620W in conjunction with the HLA-DRB1 shared epitope and humoral autoimmunity to an immunodominant epitope of cartilage-specific type II collagen in early rheumatoid arthritis. Arthritis Rheum,2006, 54:82-89.
    4. Achenbach P, Hummel M, Thumer L, et al. Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children. Diabetologia,2013,2013 Mar 29. [Epub ahead of print].
    5. Andrejeva J, Childs KS, Young DF, et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A,2004,101:17264-17269.
    6. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature,2006,441:101-105.
    7. Kang DC, Gopalkrishnan RV, Wu Q, et al. mda-5:An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A,2002,99: 637-642.
    8. Barral PM, Sarkar D, Su ZZ, et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5:key regulators of innate immunity. Pharmacol Ther,2009,124: 219-234.
    9. Berghall H, Siren J, Sarkar D, et al. The interferon-inducible RNA helicase, mda-5, is involved in measles virus-induced expression of antiviral cytokines. Microbes Infect,2006,8:2138-2144.
    10. Siren J, Imaizumi T, Sarkar D, et al. Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect,2006,8:2013-2020.
    11. Aida K, Nishida Y, Tanaka S, et al. RIG-I- and MDA5-initiated innate immunity linked with adaptive immunity accelerates beta-cell death in fulminant type 1 diabetes. Diabetes,2011,60:884-889.
    12. Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol,2005,175:2851-2858.
    13. Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature,2006,442:39-44.
    14. Fassnacht M, Lee J, Milazzo C, et al. Induction of CD4(+) and CD8(+) T-cell responses to the human stromal antigen, fibroblast activation protein:implication for cancer immunotherapy. Clin Cancer Res,2005,11:5566-5571.
    15. Boyhan A, Casimir CM, French JK, et al. Molecular cloning and characterization of grancalcin, a novel EF-hand calcium-binding protein abundant in neutrophils and monocytes. J Biol Chem,1992,267:2928-2933.
    16. Muhlbauer E, Bazwinsky I, Wolgast S, et al. Circadian changes of ether-a-go-go-related-gene (Erg) potassium channel transcripts in the rat pancreas and beta-cell. Cell Mol Life Sci,2007,64:768-780.
    17. Qu HQ, Marchand L, Grabs R, et al. The association between the IFIH1 locus and type 1 diabetes. Diabetologia,2008,51:473-475.
    18. Cucca F, Lampis R, Congia M, et al. A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Hum Mol Genet,2001,10:2025-2037.
    19. Bell GI, Horita S, Karam JH. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes,1984,33:176-183.
    20. Barratt BJ, Payne F, Lowe CE, et al. Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes,2004,53:1884-1889.
    21. Nistico L, Buzzetti R, Pritchard LE, et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet,1996,5:1075-1080.
    22. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature,2003,423:506-511.
    23. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet,2004,36:337-338.
    24. Smyth D, Cooper JD, Collins JE, et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes,2004,53:3020-3023.
    25. Vella A, Cooper JD, Lowe CE, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet,2005,76:773-779.
    26. Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet,2006,38:617-619.
    27. Liu S, Wang H, Jin Y, et al. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet,2009,18:358-365.
    28. Concannon P, Onengut-Gumuscu S, Todd JA, et al. A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes,2008,57:2858-2861.
    29. Howson JM, Walker NM, Smyth DJ, et al. Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun,2009,10 Suppl 1:S74-84.
    30. Julier C, Akolkar B, Concannon P, et al. The Type I Diabetes Genetics Consortium 'Rapid Response' family-based candidate gene study:strategy, genes selection, and main outcome. Genes Immun,2009,10 Suppl 1:S121-127.
    31. Klinker MW, Schiller JJ, Magnuson VL, et al. Single-nucleotide polymorphisms in the IL2RA gene are associated with age at diagnosis in late-onset Finnish type 1 diabetes subjects. Immunogenetics,2010,62:101-107.
    32. Reddy MV, Wang H, Liu S, et al. Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population. Genes Immun,2011,12:208-212.
    33. Jermendy A, Szatmari I, Laine AP, et al. The interferon-induced helicase IFIH1 Ala946Thr polymorphism is associated with type 1 diabetes in both the high-incidence Finnish and the medium-incidence Hungarian populations. Diabetologia,2010,53:98-102.
    34. Aminkeng F, Van Autreve JE, Weets I, et al. IFIH1 gene polymorphisms in type 1 diabetes:genetic association analysis and genotype-phenotype correlation in the Belgian population. Hum Immunol,2009,70:706-710.
    35. Yang H, Xu K, Gu R, et al. IFIH1 gene polymorphisms in type 1 diabetes:genetic association analysis and genotype-phenotype correlation in Chinese Han population. Autoimmunity,2012,45:226-232.
    36. Yamashita H, Awata T, Kawasaki E, et al. Analysis of the HLA and non-HLA susceptibility loci in Japanese type 1 diabetes. Diabetes Metab Res Rev,2011,27: 844-848.
    37. Moura R, Araujo J, Guimaraes R, et al. Interferon induced with helicase C domain 1 (IFIH1):Trends on helicase domain and type 1 diabetes onset. Gene,2012.
    38. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet,2009,41: 703-707.
    39. Bonifacio E, Warncke K, Winkler C, et al. Cesarean section and interferon-induced helicase gene polymorphisms combine to increase childhood type 1 diabetes risk. Diabetes,2011,60:3300-3306.
    40. Plagnol V, Howson JM, Smyth DJ, et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet,2011,7:e1002216.
    41. Winkler C, Lauber C, Adler K, et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes,2011,60:685-690.
    42. Winkler C, Krumsiek J, Lempainen J, et al. A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes. Genes Immun,2012,13:549-555.
    43. Nayak RR, Kearns M, Spielman RS, et al. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions. Genome Res,2009,19:1953-1962.
    44. Witso E, Tapia G, Cinek O,et al. Polymorphisms in the Innate Immune IFIH1 Gene, Frequency of Enterovirus in Monthly Fecal Samples during Infancy, and Islet Autoimmunity. PLoS One,2011,6:e27781.
    45. Cinek O, Tapia G, Witso E, et al. Enterovirus RNA in Peripheral Blood May Be Associated with the Variants of rs 1990760, a Common Type 1 Diabetes Associated Polymorphism in IFIH1. PLoS One,2012,7:e48409.
    46. Fumagalli M, Cagliani R, Riva S, et al. Population genetics of IFIH1:ancient population structure, local selection, and implications for susceptibility to type 1 diabetes. Mol Biol Evol,2010,27:2555-2566.
    47. Nejentsev S, Walker N, Riches D, et al. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science,2009,324:387-389.
    48. Chistiakov DA, Voronova NV, Savost'Anov KV,et al. Loss-of-function mutations E627X and I923V of IFIH1 are associated with lower poly(I:C)-induced interferon-beta production in peripheral blood mononuclear cells of type 1 diabetes patients. Hum Immunol,2010,71:1128-1134.
    49. Shigemoto T, Kageyama M, Hirai R, et al. Identification of loss of function mutations in human genes encoding RIG-I and MDA5:implications for resistance to type I diabetes. J Biol Chem,2009,284:13348-13354.
    50. Marinou I, Montgomery DS, Dickson MC, et al. The interferon induced with helicase domain 1 A946T polymorphism is not associated with rheumatoid arthritis. Arthritis Res Ther,2007,9:R40.
    51. Zhernakova A, van Diemen CC, et al. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet,2009,10:43-55.
    52. Sutherland A, Davies J, Owen CJ, et al. Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves'disease susceptibility. J Clin Endocrinol Metab,2007,92:3338-3341.
    53. Penna-Martinez M, Ramos-Lopez E, Robbers I, et al. The rs 1990760 polymorphism within the IFIH1 locus is not associated with Graves' disease, Hashimoto's thyroiditis and Addison's disease. BMC Med Genet,2009,10:126.
    54. Zhao ZF, Cui B, Chen HY, et al. The A946T polymorphism in the interferon induced helicase gene does not confer susceptibility to Graves' disease in Chinese population. Endocrine,2007,32:143-147.
    55. Ban Y, Tozaki T, Taniyama M, et al. Genomic polymorphism in the interferon-induced helicase (IFIH1) gene does not confer susceptibility to autoimmune thyroid disease in the Japanese population. Horm Metab Res,2010,42:70-72.
    56. Zurawek M, Fichna M, Januszkiewicz D, et al. Polymorphisms in the Interferon-Induced Helicase (IFIH1) locus and susceptibility to Addison's disease. Clin Endocrinol (Oxf),2013,78:191-196.
    57. Martinez A, Varade J, Lamas JR, et al. Association of the IFIH1-GCA-KCNH7 chromosomal region with rheumatoid arthritis. Ann Rheum Dis,2008,67:137-138.
    58. Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet,2009,41:1228-1233.
    59. Cunninghame Graham DS, Morris DL, Bhangale TR, et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with Systemic Lupus Erythematosus. PLoS Genet, 2011,7:e1002341.
    60. Robinson T, Kariuki SN, Franek BS, et al. Autoimmune disease risk variant of IFIHl is associated with increased sensitivity to IFN-alpha and serologic autoimmunity in lupus patients. J Immunol,2011,187:1298-1303.
    61. Robinson T, Kariuki SN, Franek BS, et al. Ifihl Rs1990760 Snp Is Associated with Differential Interferon Alpha Response and Dsdna Autoantibodies in Lupus Patients. J Invest Med,2011,59:704-704.
    62. Wang C, Ahlford A, Laxman N, et al. Contribution of IKBKE and IFIH1 gene variants to SLE susceptibility. Genes Immun,2013,2013 Mar 28. doi: 10.1038/gene.2013.9. [Epub ahead of print].
    63. Gono T, Kawaguchi Y, Sugiura T, et al. Interferon-induced helicase (IFIH1) polymorphism with systemic lupus erythematosus and dermatomyositis/polymyositis. Mod Rheumatol,2010,20:466-470.
    64. Cen H, Leng RX, Wang W, et al. Association Study of IFIH1 rs1990760 Polymorphism with Systemic Lupus Erythematosus in a Chinese Population. Inflammation,2013,36:444-448.
    65. Molineros JE, Maiti AK, Sun C, et al. Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production. PLoS Genet,2013,9:e1003222.
    66. Enevold C, Oturai AB, Sorensen PS, et al. Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD 1-2, DDX58, and IFIH1. J Neuroimmunol,2009,212:125-131.
    67. Bergamaschi L, Ban M, Leone MA, et al. No evidence of association of the rare nsSNP rs35667974 in IFIH1 with multiple sclerosis. J Neuroimmunol,2010,221: 112-114.
    68. Martinez A, Santiago JL, Cenit MC, et al. IFIH1-GCA-KCNH7 locus:influence on multiple sclerosis risk. Eur J Hum Genet,2008,16:861-864.
    69. Couturier N, Gourraud PA, Cournu-Rebeix I, et al. IFIH1-GCA-KCNH7 locus is not associated with genetic susceptibility to multiple sclerosis in French patients. Eur J Hum Genet,2009,17:844-847.
    70. International Multiple Sclerosis Genetics Consortium. The expanding genetic overlap between multiple sclerosis and type I diabetes. Genes Immun,2009,10: 11-14.
    71. Carr EJ, Niederer HA, Williams J, et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med Genet,2009,10: 121.
    72. Ferreira RC, Pan-Hammarstrom Q, Graham RR, et al. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat Genet,2010,42: 777-780.
    73. Strange A, Capon F, Spencer CC, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet,2010,42:985-990.
    74. Julia A, Tortosa R, Hemanz JM, et al. Risk Variants for Psoriasis Vulgaris in a Large Case-Control Collection and Association with Clinical Subphenotypes. Hum Mol Genet,2012,21:4549-4557.
    75. Chen G, Zhou D, Zhang Z, et al. Genetic variants in IFIH1 play opposite roles in the pathogenesis of psoriasis and chronic periodontitis. Int J Immunogenet,2012,39: 137-143.
    76. Jin Y, Birlea SA, Fain PR, et al. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet,2012,44:676-680.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700