小分子化合物抗肺癌作用以及肺癌全基因组测序研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是最常见恶性肿瘤,并逐渐成为包括中国、美国等世界其他国家死亡率最高的癌症。目前对早期肺癌的预防和治疗虽然已经取得很大进展,但治疗效果与预后仍欠佳,为预防和攻克肺癌,需要进一步探索肿瘤发病机理和找寻更多新药物进行靶向治疗。
     正常的肺上皮细胞通过有序的细胞周期来调控细胞生长、分裂和DNA合成,一旦这种正常调控紊乱,细胞将向恶性程度演化,最终诱发肿瘤产生。Cyclin Dl (CCND1编码)为细胞周期G1期的关键调控蛋白,通过与CDK4/6激酶形成复合物使Rb的Ser/Thr残基磷酸化,使细胞周期从G1期向S期转换。Cyclin D1在肺癌样本中表达异常且其过表达与预后差相关联,因此Cyclin D1可以作为肺癌靶向治疗的一个靶点。在此基础上,我们寻找并发现中药来源的小分子化合物GEA能够抑制多种肺癌细胞系增殖而对正常肺成纤维细胞和上皮细胞敏感性较差,且GEA可以促进Cyclin D1降解,抑制CDK2激酶活性,最终导致周期阻滞于G1期。通过GSK3β抑制剂或者siRNA可以抑制GEA引起的Cyclin D1降解,运用蛋白酶体抑制剂进一步发现GEA是通过泛素-蛋白酶体途径降解CyclinDl。有趣的是,我们还发现GEA可以促进肺癌细胞自噬,并抑制PTEN/AKT/mTOR信号通路。这些都说明GEA能够下调Cyclin Dl和诱导自噬,具有潜在的肺癌治疗应用前景。
     除小分子化合物的肺癌靶向治疗外,我们还进一步研究了环境因素相关肺癌的发病机制。位于我国云南省东北部的宣威地区是当地主要产煤区(特别是烟煤),其肺癌发病率居全国最高并呈逐年增高趋势,室内燃煤空气污染是其主要致病因素,因此该地区肺癌病人样本可以作为研究环境诱发肺癌机制的良好对象。通过对14对非小细胞肺癌病人组织DNA以及匹配癌旁组织DNA进行高通量全基因组测序分析,发现大量与肺癌发生相关的突变、插入/缺失、染色体重排和拷贝数变化等。通过扩大样本验证,我们发现了一些该地区特有的突变基因,其中,通过siRNA干扰的方法沉默CACNA1E基因表达,能够显著抑制肺癌细胞系的增殖和克隆形成能力,并且抑制EGFR/AKT信号通路,说明这些基因可能参与了肺癌的形成过程。
     综上所述,GEA通过降解原癌蛋白Cyclin D1引起G1期阻滞和促进细胞自噬来抑制肺癌细胞增殖。通过全基因组测序,发现新的与肿瘤发生发展相关的致病基因,并通过外显子测序扩大样本验证,为治疗肺癌提供新的策略。
Lung cancer is the leading cause of cancer related morality in China, the United States and many other areas in worldwide. Though there are some improvements in early prevention and treatment, lung cancer often has a poor prognosis and five-year survival rate for all stages remains unsatisfactory. Therefore, to prevent and conquer this disease, we could further explore the pathogenesis and development of lung cancer and identify more novel molecular target and drugs.
     In non-transformed lung epithelial cells, cellular division is an ordered, regulated and highly conserved process that controls cell growth, cell mitosis and DNA integrity. Disruption of normal cell cycle regulation is a prominent abnormality in malignant tumors, including lung cancer. Cyclin Dl, an oncoprotein encoded by the CCND1gene is a key indicator in cell cycle. During G1phase, complexes of the cyclin-dependent kinase (CDK4/6) and cyclins (Cyclin D1) phosphorylate pRb, trigger Rb hyperphosphorylation and dissociation, leading to G1to S phase cell cycle transit. Abnormalities of Cyclin D1are detected in lung cancer cases and Cyclin D1over-expression is reported to be an indicator of poor prognosis. Therefore, Cyclin D1can serve as potential drug target for lung cancer. Basing on above, we tried to screen inhibitors of Cyclin D1and find a natural compound, gambogenic acid (GEA), which was extracted from gamboges, could markedly inhibit lung cancer cells, however, human embryonic lung fibroblasts and bronchial epithelial cell lines were less sensitive to this compound. Furthermore, GEA may trigger the degradation of Cyclin D1and inhibition of CDK2, leading to arrest of cell cycle at G1phase. We then explored the degradation mechanisms of Cyclin D1, and found that GSK3β inhibitor LiC1or GSK3β specific siRNA suppressed GEA-induced degradation of this protein. In addition, proteasome inhibitors abrogated GEA-induced Cyclin D1turnover. Intriguingly, GEA induced autophagy through inactivation of PTEN/AKT/mTOR signal pathway in lung cancer cells. All of these data had documented GEA's anti-cancer activity via degradation Cyclin D1and inducing autophagy in lung cancer cells, suggesting its potential in cancer control.
     In addition to identify small-molecular compound that target lung cancer, we further studied the pathogenesis of environmental exposure-associated lung cancer via next generation sequencing. Xuanwei County locates in the northeastern of Yunnan Province and is rich in coal, iron, copper and other mines, especially the smoky coal. Unfortunately, the lung cancer mortality rates in this region are among the China's highest, with a clear upward trend from the mid-1970s to today. The major factor associated with the rate of lung cancer incidence in Xuanwei was indicated to be indoor air pollution caused by the indoor burning of smoky coal. Taken together, lung cancer in this region is a unique model for environmental factor-related human cancer analysis. We screened14no small cell lung cancers (NSCLC) samples from Xuanwei and applied whole genome sequencing to discover the most comprehensive mutation profiles of cancer genomes, including somatic point mutations, small insertions and deletions, chromosomal rearrangements and copy number variations. We had validated some interest genes in150primary patients from Xuanwei and no-exposure smoky coal regions and found some mutations are frequently in Xuanwei areas. For example, silengcing the gene of CACNA1E by siRNA inhibited growth and clonogenic activity of lung cancer cells, and suppress EGFR/AKT signal pathway.
     In conclusion, GEA could induce G1arrest via GSK3β-dependent Cyclin D1degradation and trigger autophagy, leading to inhibition of proliferation and inactivation of PTEN/AKT/mTOR signal pathway. More importantly, though whole genome sequencing of cancers, we found and validated the recurrence of interest genes, providing novel strategies for preventive and therapeutic in lung cancer.
引文
[1]Sesen, M.B., et al., Survival prediction and treatment recommendation with Bayesian techniques in lung cancer. AMIA Annu Symp Proc,2012.2012:p.838-47.
    [2]Jemal, A., et al., Cancer statistics,2009. CA Cancer J Clin,2009.59(4):p.225-49.
    [3]Brambilla, E., et al., The new World Health Organization classification of lung tumours. Eur Respir J,2001.18(6):p.1059-68.
    [4]Tsurutani, J., et al., Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells. Carcinogenesis,2005.26(7):p.1182-95.
    [5]Xu, L. and X. Deng, Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induces phosphorylation of mu- and m-calpain in association with increased secretion, cell migration, and invasion. J Biol Chem, 2004.279(51):p.53683-90.
    [6]Marcy, T.W., M. Stefanek, and K.M. Thompson, Genetic testing for lung cancer risk:if physicians can do it, should they? J Gen Intern Med,2002.17(12):p.946-51.
    [7]Sozzi, G., et al., Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res,1998.58(22):p.5032-7.
    [8]Rockx, B., R. Winegar, and A.N. Freiberg, Recent progress in henipavirus research:molecular biology, genetic diversity, animal models. Antiviral Res,2012.95(2):p.135-49.
    [9]Dockery, D.W., et al., An association between air pollution and mortality in six U.S. cities. N Engl J Med,1993.329(24):p.1753-9.
    [10]Cohen, A.J. and C.A. Pope,3rd, Lung cancer and air pollution. Environ Health Perspect, 1995.103 Suppl 8:p.219-24.
    [11]Brownson, R.C., et al., Environmental tobacco smoke:health effects and policies to reduce exposure. Annu Rev Public Health,1997.18:p.163-85.
    [12]Zhong, L., et al., A case-control study of lung cancer and environmental tobacco smoke among nonsmoking women living in Shanghai, China. Cancer Causes Control,1999.10(6):p. 607-16.
    [13]Zhong, N., et al., Prevalence of chronic obstructive pulmonary disease in China:a large, population-based survey. Am J Respir Crit Care Med,2007.176(8):p.753-60.
    [14]Buist, A.S., et al., International variation in the prevalence of COPD (the BOLD Study):a population-based prevalence study. Lancet,2007.370(9589):p.741-50.
    [15]Lissoni, P., et al., A review on cancer--psychospiritual status interactions. Neuro Endocrinol Lett,2001.22(3):p.175-80.
    [16]Garssen, B. and K. Goodkin. On the role of immunological factors as mediators between psychosocial factors and cancer progression. Psychiatry Res,1999.85(1):p.51-61.
    [17]Sawyers, C., Targeted cancer therapy. Nature,2004.432(7015):p.294-7.
    [18]Sun, S., et al., New molecularly targeted therapies for lung cancer. J Clin Invest,2007. 117(10):p.2740-50.
    [19]Berg, M. and K. Soreide, EGFR and downstream genetic alterations in KRAS/BRAF and PI3K/AKT pathways in colorectal cancer:implications for targeted therapy. Discov Med, 2012.14(76):p.207-14.
    [20]Lynch, T.J., et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med,2004.350(21):p. 2129-39.
    [21]Shigematsu, H., et al., Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst,2005.97(5):p.339-46.
    [22]Paez, J.G., et al., EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy. Science,2004.304(5676):p.1497-500.
    [23]Burton, A., What went wrong with Iressa? Lancet Oncol,2002.3(12):p.708.
    [24]Raben, D., et al., Understanding the mechanisms of action of EGFR inhibitors in NSCLC: what we know and what we do not know. Lung Cancer,2003.41 Suppl 1:p. S15-22.
    [25]Franklin, W. A., et.al., Association between activation of ErbB pathway genes and survival following gefitinib treatment in advanced BAC (SWOG 0126). Journal of Clinical Oncology,2004 ASCO Annual Meeting Proceedings (Post-Meeting Edition). Vol 22, No 14S (July 15 Supplement),2004:7015
    [26]Astsaturov, I., R.B. Cohen, and P.M. Harari, EGFR-targeting monoclonal antibodies in head and neck cancer. Curr Cancer Drug Targets,2006.6(8):p.691-710.
    [27]Folkman, J., What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst,1990.82(1):p.4-6.
    [28]Ferrara, N., Molecular and biological properties of vascular endothelial growth factor. J Mol Med (Berl),1999.77(7):p.527-43.
    [29]Jones, D. and W. Min, An overview of lymphatic vessels and their emerging role in cardiovascular disease. J Cardiovasc Dis Res,2011.2(3):p.141-52.
    [30]Fontanini, G., et al., Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas. Br J Cancer,1999.79(2):p.363-9.
    [31]Sandler, A., et al., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med,2006.355(24):p.2542-50.
    [32]Herbst, R.S., et al., Phase Ⅰ/Ⅱ trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol,2005.23(11):p.2544-55.
    [33]Natale, R.B., et al., Phase Ⅲ trial of vandetanib compared with erlotinib in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol,2011.29(8):p.1059-66.
    [34]Downward, J., Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer,2003. 3(1):p.11-22.
    [35]Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene,2007.26(22):p.3291-310.
    [36]Sekido, Y, K.M. Fong, and J.D. Minna, Molecular genetics of lung cancer. Annual Review of Medicine,2003.54:p.73-87.
    [37]Mascaux, C., et al., The role of RAS oncogene in survival of patients with lung cancer:a systematic review of the literature with meta-analysis. Br J Cancer,2005.92(1):p.131-9.
    [38]Shigematsu, H. and A.F. Gazdar, Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer,2006.118(2):p.257-62.
    [39]Isobe, T, R.S. Herbst, and A. Onn, Current management of advanced non-small cell lung cancer:targeted therapy. Semin Oncol,2005.32(3):p.315-28.
    [40]Sebolt-Leopold, J.S., et al., Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat Med,1999.5(7):p.810-6.
    [41]Lorusso, P.M., et al., Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol,2005.23(23):p.5281-93.
    [42]Haura, E.B., et al., A phase Ⅱ study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res,2010.16(8):p. 2450-7.
    [43]Blumenschein, G.R., Jr., et al., Phase Ⅱ, multicenter, uncontrolled trial of single-agent sorafenib in patients with relapsed or refractory, advanced non-small-cell lung cancer. J Clin Oncol,2009.27(26):p.4274-80.
    [44]Scagliotti, G., et al., Phase Ⅲ study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol,2010.28(11):p.1835-42.
    [45]Katso, R., et al., Cellular function of phosphoinositide 3-kinases:implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol,2001.17:p.615-75.
    [46]Neshat, M.S., et al., Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A,2001.98(18):p.10314-9.
    [47]Shi, Y., et al.. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res,2002.62(17):p.5027-34.
    [48]Yoshimi, A. and M. Kurokawa, Evil forms a bridge between the epigenetic machinery and signaling pathways. Oncotarget,2011.2(7):p.575-86.
    [49]Brognard, J., et al., Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res, 2001.61(10):p.3986-97.
    [50]Bendell, J.C., et al., Phase Ⅰ, dose-escalation study of BKM120, an oral pan-Class Ⅰ P13K inhibitor, in patients with advanced solid tumors. J Clin Oncol,2012.30(3):p.282-90.
    [51]Marinov, M., B. Fischer, and A. Arcaro, Targeting mTOR signaling in lung cancer. Crit Rev Oncol Hematol,2007.63(2):p.172-82.
    [52]Altorki, N.K., et al., Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol,2003.21(14):p.2645-50.
    [53]Van Ummersen, L, et al., A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res,2004. 10(22):p.7450-6.
    [54]Hirai, H., et al., MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther,2010.9(7):p.1956-67.
    [55]Balsara, B.R., et al., Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis,2004.25(11):p.2053-9.
    [56]Granville, C.A., et al., Identification of a highly effective rapamycin schedule that markedly reduces the size, multiplicity, and phenotypic progression of tobacco carcinogen-induced murine lung tumors. Clin Cancer Res,2007.13(7):p.2281-9.
    [57]Sun, S.Y., H. Fu, and F.R. Khuri, Targeting mTOR signaling for lung cancer therapy. J Thorac Oncol,2006.1(2):p.109-11.
    [58]Sa, G. and T. Das, Anti cancer effects of curcumin:cycle of life and death. Cell Div,2008.3: p.14.
    [59]Hoeijmakers, J.H., Genome maintenance mechanisms for preventing cancer. Nature,2001. 411(6835):p.366-74.
    [60]Gouyer, V, et al., Loss of heterozygosity at the RB locus correlates with loss of RB protein in primary malignant neuro-endocrine lung carcinomas. Int J Cancer,1994.58(6):p.818-24.
    [61]Reissmann, P.T., et al., Inactivation of the retinoblastoma susceptibility gene in non-small-cell lung cancer. The Lung Cancer Study Group. Oncogene,1993.8(7):p.1913-9.
    [62]Sawa, H., et al., Alternatively spliced forms of cyclin D1 modulate entry into the cell cycle in an inverse manner. Oncogene,1998.16(13):p.1701-12.
    [63]Jin, M., et al., Cyclin D1, p16 and retinoblastoma gene product expression as a predictor for prognosis in non-small cell lung cancer at stages I and II. Lung Cancer,2001.34(2):p.207-18.
    [64]Shoji, T., et al., Clinical significance of p21 expression in non-small-cell lung cancer. J Clin Oncol,2002.20(18):p.3865-71.
    [65]Tsukamoto, S., et al., Reduced expression of cell-cycle regulator p27(Kipl) correlates with a shortened survival in non-small cell lung cancer. Lung Cancer,2001.34(1):p.83-90.
    [66]Tong, J., et al., Expression of p16 in non-small cell lung cancer and its prognostic significance:a meta-analysis of published literatures. Lung Cancer,2011.74(2):p.155-63.
    [67]Shapiro, G.I., et al., A phase Ⅱ trial of the cyclin-dependent kinase inhibitor flavopiridol in patients with previously untreated stage Ⅳ non-small cell lung cancer. Clin Cancer Res,2001. 7(6):p.1590-9.
    [68]Miller, A.A., et al., A phase Ⅱ study of dasatinib in patients with chemosensitive relapsed small cell lung cancer (Cancer and Leukemia Group B 30602). J Thorac Oncol,2010.5(3):p. 380-4.
    [69]Glickman, M.H. and A. Ciechanover, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev,2002.82(2):p.373-428.
    [70]Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem,2001.70:p. 503-33.
    [71]Mani, A. and E.P. Gelmann, The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol,2005.23(21):p.4776-89.
    [72]Sorokin, A.V., E.R. Kim, and L.P. Ovchinnikov, Proteasome system of protein degradation and processing. Biochemistry (Mosc),2009.74(13):p.1411-42.
    [73]Adams, J., The development of proteasome inhibitors as anticancer drugs. Cancer Cell,2004. 5(5):p.417-21.
    [74]Adams, J., V.J. Palombella, and P.J. Elliott, Proteasome inhibition:a new strategy in cancer treatment. Invest New Drugs,2000.18(2):p.109-21.
    [75]Teicher, B.A., et al., The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res, 1999.5(9):p.2638-45.
    [76]Altun, M., et al., Effects of PS-341 on the activity and composition of proteasomes in multiple myeloma cells. Cancer Res,2005.65(17):p.7896-901.
    [77]Papandreou, C.N. and C.J. Logothetis. Bortezomib as a potential treatment for prostate cancer. Cancer Res,2004.64(15):p.5036-43.
    [78]Ling, Y.H.. et al., Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem,2003.278(36):p.33714-23.
    [79]Denlinger, C.E., et al., Proteasome inhibition sensitizes non-small-cell lung cancer to gemcitabine-induced apoptosis. Ann Thorac Surg,2004.78(4):p.1207-14; discussion 1207-14.
    [80]Fanucchi, M.P., et al., Randomized phase Ⅱ study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer. J Clin Oncol,2006.24(31):p.5025-33.
    [81]Vivier, M., et al., Synthesis, radiosynthesis, and biological evaluation of new proteasome inhibitors in a tumor targeting approach. J Med Chem,2008.51(4):p.1043-7.
    [82]Groll, M., et al., A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature,2008.452(7188):p.755-8.
    [83]Piva, R., et al., CEP-18770:A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood,2008.111(5):p.2765-75.
    [84]Cuervo, A.M.. Autophagy:in sickness and in health. Trends Cell Biol,2004.14(2):p.70-7.
    [85]http://www.jcnzz.com/list.asp?sid=9
    [86]Maiuri, M.C., et al., Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol,2007.8(9):p.741-52.
    [87]Chinnaiyan, A.M., et al., FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell,1995.81(4):p.505-12.
    [88]Green, D.R. and J.C. Reed, Mitochondria and apoptosis. Science,1998.281(5381):p. 1309-12.
    [89]Fujiwara, T., et al., A retroviral wild-type p53 expression vector penetrates human lung cancer spheroids and inhibits growth by inducing apoptosis. Cancer Res,1993.53(18):p.4129-33.
    [90]Hainaut, P., et al., IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Research, 1998.26(1):p.205-13.
    [91]Takahashi, T., et al., p53:a frequent target for genetic abnormalities in lung cancer. Science, 1989.246(4929):p.491-4.
    [92]Roth, J.A., et al., Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med,1996.2(9):p.985-91.
    [93]Gabrilovich, D.I., INGN 201 (Advexin):adenoviral p53 gene therapy for cancer. Expert Opin Biol Ther,2006.6(8):p.823-32.
    [94]Katsuda, K., et al., Activation of caspase-3 and cleavage of Rb are associated with p16 mediated apoptosis in human non-small cell lung cancer cells. Oncogene,2002.21(13):p. 2108-13.
    [95]Ji, L., et al., Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res,2002.62(9):p.2715-20.
    [96]Kondo, M., et al., Overexpression of candidate tumor suppressor gene FUS1 isolated from the 3p21.3 homozygous deletion region leads to G1 arrest and growth inhibition of lung cancer cells. Oncogene,2001.20(43):p.6258-62.
    [97]Sekido, Y, KM. Fong, and J.D. Minna, Molecular genetics of lung cancer. Annual Review of Medicine,2003.54:p.73-87.
    [98]Oltersdorf, T., et al., An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature,2005.435(7042):p.677-81.
    [99]Ambrosini, G., C. Adida, and D.C. Altieri, A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med,1997.3(8):p.917-21.
    [100]Falleni, M., et al., Survivin gene expression in early-stage non-small cell lung cancer. J Pathol,2003.200(5):p.620-6.
    [101]Mizushima, N., et al., Autophagy fights disease through cellular self-digestion. Nature,2008. 451(7182):p.1069-75.
    [102]Gozuacik, D. and A. Kimchi, Autophagy as a cell death and tumor suppressor mechanism. Oncogene,2004.23(16):p.2891-906.
    [103]White, E., Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer,2012.12(6):p.401-10.
    [104]Pal, S.K., R.A. Figlin, and K.L. Reckamp, The role of targeting mammalian target of rapamycin in lung cancer. Clin Lung Cancer,2008.9(6):p.340-5.
    [105]Atkins, M.B., et al., Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J Clin Oncol,2004.22(5):p.909-18.
    [106]Hudes, G., et al., Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med,2007.356(22):p.2271-81.
    [107]Molina JR, Mandrekar SJ, Rowland KR et al. A phase Ⅱ NCCTG "Window of Opportunity Front-line" study of the mTOR inhibitor, CCI-779 (temsirolimus) given as a single agent in patients with advanced NSCLC. J Thorac Oncol 2007;2(suppl 4):S413.
    [108]White, D.A., et al., Characterization of pneumonitis in patients with advanced non-small cell lung cancer treated with everolimus (RAD001). J Thorac Oncol,2009.4(11):p.1357-63.
    [109]Soria, J.C., et al.. Efficacy of everolimus (RAD001) in patients with advanced NSCLC previously treated with chemotherapy alone or with chemotherapy and EGFR inhibitors. Ann Oncol,2009.20(10):p.1674-81.
    [110]Kopper, L. and M. Hajdu, Tumor stem cells. Pathology & Oncology Research,2004.10(2): p.69-73.
    [111]Jordan, C.T., M.L. Guzman, and M. Noble, Cancer stem cells. N Engl J Med,2006.355(12): p.1253-61.
    [112]Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med,1997.3(7):p.730-7.
    [113]Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature,1994.367(6464):p.645-8.
    [114]Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A,2003.100(7):p.3983-8.
    [115]Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature,2004. 432(7015):p.396-401.
    [116]Patrawala, L., et al.. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene,2006.25(12): p.1696-708.
    [117]Ricci-Vitiani, L., et al., Identification and expansion of human colon-cancer-initiating cells. Nature,2007.445(7123):p.111-5.
    [118]Kim, C.F., et al., Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell,2005.121(6):p.823-35.
    [119]Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ,2008.15(3):p.504-14.
    [120]Sun, S., et al., New molecularly targeted therapies for lung cancer. J Clin Invest,2007. 117(10):p.2740-50.
    [121]Liu, S., G. Dontu, and M.S. Wicha, Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res,2005.7(3):p.86-95.
    [122]Peacock, C.D., et al., Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci U S A,2007.104(10):p.4048-53.
    [123]Watkins, D.N., et al., Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature,2003.422(6929):p.313-7.
    [124]Sato, N., et al., Wnt inhibitor Dickkopf-1 as a target for passive cancer immunotherapy. Cancer Res,2010.70(13):p.5326-36.
    [125]Weijzen, S., et al., Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med,2002.8(9):p.979-86.
    [126]Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics,2013. CA Cancer J Clin,2013. 63(1):p.11-30.
    [127]IARC Monographs programme on the evaluation of the carcinogenic risk of chemicals to humans. Preamble. IARC Monogr Eval Carcinog Risk Chem Hum,1986.39:p.13-32.
    [128]Tsai, W.T., et al., Polycyclic aromatic hydrocarbons (PAHs) in bio-crudes from induction-heating pyrolysis of biomass wastes. Bioresour Technol,2007.98(5):p.1133-7.
    [129]Ng, D.P., et al., CYP1A1 polymorphisms and risk of lung cancer in non-smoking Chinese women:influence of environmental tobacco smoke exposure and GSTM1/T1 genetic variation. Cancer Causes Control,2005.16(4):p.399-405.genetic variation[J]. Cancer Causes and Control,2005,16:399-405
    [130]Franklin, M., P. Koutrakis, and P. Schwartz, The role of particle composition on the association between PM2.5 and mortality. Epidemiology,2008.19(5):p.680-9.
    [131]Okona-Mensah, K.B., et al., An approach to investigating the importance of high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer by air pollution. Food and Chemical Toxicology,2005.43(7):p.1103-16.
    [132]Boffetta, P., N. Jourenkova, and P. Gustavsson, Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control,1997. 8(3):p.444-72.
    [133]Eder, E., Intraindividual variations of DNA adduct levels in humans. Mutat Res,1999. 424(1-2):p.249-61.
    [134]Devi, K.D., et al., Genotoxic effect of lead nitrate on mice using SCGE (comet assay). Toxicology,2000.145(2-3):p.195-201.
    [135]Marczynski, B., et al., Genotoxic risk assessment in white blood cells of occupationally exposed workers before and after alteration of the polycyclic aromatic hydrocarbon (PAH) profile in the production material:comparison with PAH air and urinary metabolite levels. Int Arch Occup Environ Health,2005.78(2):p.97-108.
    [136]Bagchi, M., et al., Protective effects of antioxidants against smokeless tobacco-induced oxidative stress and modulation of Bcl-2 and p53 genes in human oral keratinocytes. Free Radic Res,2001.35(2):p.181-94.
    [137]Mumford, J.L., et al., Lung cancer and indoor air pollution in Xuan Wei, China. Science. 1987.235(4785):p.217-20.
    [138]Cao, Y. and H. Gao, Prevalence and causes of air pollution and lung cancer in Xuanwei City and Fuyuan County, Yunnan Province, China. Front Med,2012.6(2):p.217-20.
    [139]Xiao, Y., et al., The epidemic status and risk factors of lung cancer in Xuanwei City, Yunnan Province, China. Front Med,2012.6(4):p.388-94.
    [140]Mumford, J.L., et al., Mouse skin tumorigenicity studies of indoor coal and wood combustion emissions from homes of residents in Xuan Wei, China with high lung cancer mortality. Carcinogenesis,1990.11(3):p.397-403.
    [141]Xu, K., X. Li, and F. Hu, [A study on polycyclic aromatic hydrocarbon-DNA adduct in lung cancer patients exposed to indoor coal-burning smoke]. Zhonghua Yu Fang Yi Xue Za Zhi, 1997.31(2):p.95-8.
    [142]He XZ. Correlation of indoor air pollution caused by indoor burning of smoky coal to genetic susceptibility of lung cancer-Advance in etiology of lung cancer for 22 years in Xuanwei. Journal of Practical Oncology.2001.16:369-370.
    [143]Lan Q, Tian LW, He XZ, et al. Primary Prevention Strategy and Reduction of Lang Cancer Risk:Intervention Effect Assessment of the Stove Improvement in Xuanwei County. Chinese Journal of Public Health.1999 15:116-119.
    [144]Wood, L.D., et al., The genomic landscapes of human breast and colorectal cancers. Science. 2007.318(5853):p.1108-13.
    [145]Stratton, M.R., P.J. Campbell, and P.A. Futreal, The cancer genome. Nature,2009. 458(7239):p.719-24.
    [146]Ley, T.J., et al., DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature,2008.456(7218):p.66-72.
    [147]Dong, H. and S. Wang, Exploring the cancer genome in the era of next-generation sequencing. Front Med,2012.6(1):p.48-55.
    [148]Ley, T.J., et al., DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature,2008.456(7218):p.66-72.
    [149]Shah, S.P., et al., Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature,2009.461(7265):p.809-13.
    [150]Pleasance, E.D., et al., A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature,2010.463(7278):p.184-90.
    [151]Berger, M.F., et al., Melanoma genome sequencing reveals frequent PREX2 mutations. Nature,2012.485(7399):p.502-6.
    [152]Nik-Zainal, S., et al., Mutational processes molding the genomes of 21 breast cancers. Cell, 2012.149(5):p.979-93.
    [153]Stephens, P.J., et al., The landscape of cancer genes and mutational processes in breast cancer. Nature,2012.486(7403):p.400-4.
    [154]Comprehensive molecular characterization of human colon and rectal cancer. Nature,2012. 487(7407):p.330-7.
    [155]Dulak, A.M., et al., Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nature Genetics,2013.45(5): p.478-86.
    [156]Parsons, D.W., et al., An integrated genomic analysis of human glioblastoma multiforme. Science,2008.321(5897):p.1807-12.
    [157]Stransky, N., et al., The mutational landscape of head and neck squamous cell carcinoma. Science,2011.333(6046):p.1157-60.
    [158]Comprehensive molecular characterization of human colon and rectal cancer. Nature,2012. 487(7407):p.330-7.
    [159]Kan, Z., et al., Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res,2013.23(9):p.1422-33.
    [160]Fujimoto, A., et al., Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nature Genetics,2012.44(7):p.760-4.
    [161]Imielinski, M., et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell,2012.150(6):p.1107-20.
    [162]Chapman, M.A., et al., Initial genome sequencing and analysis of multiple myeloma. Nature, 2011.471(7339):p.467-72.
    [163]Jones, S., et al., Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science,2010.330(6001):p.228-31.
    [164]Berger, M.F., et al., The genomic complexity of primary human prostate cancer. Nature, 2011.470(7333):p.214-20.
    [165]Jiao, Y, et al., DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science,2011.331(6021):p.1199-203.
    [166]Nagarajan, N., et al., Whole-genome reconstruction and mutational signatures in gastric cancer. Genome Biol,2012.13(12):p. R115.
    [167]Govindan, R., et al., Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell,2012.150(6):p.1121-34.
    [168]Rodin, S.N. and A.S. Rodin. Origins and selection of p53 mutations in lung carcinogenesis. Semin Cancer Biol.2005.15(2):p.103-12.
    [169]Hodis, E., et al., A landscape of driver mutations in melanoma. Cell.2012.150(2):p. 251-63.
    [170]Puente, X.S., et al., Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature,2011.475(7354):p.101-5.
    [171]Shendure, J., Next-generation human genetics. Genome Biol,2011.12(9):p.408.
    [172]Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature,2002.417(6892):p. 949-54.
    [173]Lynch, T.J., et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med,2004.350(21):p. 2129-39.
    [174]Baxter, E.J., et al., Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet,2005.365(9464):p.1054-61.
    [175]Chen, Y., et al., Oncogenic mutations of ALK kinase in neuroblastoma. Nature,2008. 455(7215):p.971-4.
    [176]Samuels, Y., et al., High frequency of mutations of the PIK3CA gene in human cancers. Science,2004.304(5670):p.554.
    [177]Wei, X., et al., Exome sequencing identifies GR1N2A as frequently mutated in melanoma. Nature Genetics,2011.43(5):p.442-6.
    [178]Varela, I., et al., Exome sequencing identifies frequent mutation of the SW1/SNF complex gene PBRM1 in renal carcinoma. Nature,2011.469(7331):p.539-42.
    [179]Rudin, C.M., et al., Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nature Genetics,2012.44(10):p.1111-6.
    [180]Peifer, M., et al., Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genetics,2012.44(10):p.1104-10.
    [181]Zang, Z.J., et al., Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nature Genetics,2012.44(5):p. 570-4.
    [182]Huang, J., et al., Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nature Genetics,2012.44(10):p.1117-21.
    [183]Yan, X.J., et al., Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nature Genetics,2011.43(4):p.309-15.
    [184]Jiao, Y., et al., DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science,2011.331(6021):p.1199-203.
    [185]Lee, Y.M. and P. Sicinski, Targeting cyclins and cyclin-dependent kinases in cancer:lessons from mice, hopes for therapeutic applications in human. Cell Cycle,2006.5(18):p.2110-4.
    [186]Donnellan, R. and R. Chetty, Cyclin D1 and human neoplasia. Mol Pathol,1998.51(1):p. 1-7.
    [187]Hunter, T. and J. Pines, Cyclins and cancer. II:Cyclin D and CDK inhibitors come of age. Cell,1994.79(4):p.573-82.
    [188]Fracchiolla, N.S., et al., Molecular and immunohistochemical analysis of the bcl-1/cyclin D1 gene in laryngeal squamous cell carcinomas:correlation of protein expression with lymph node metastases and advanced clinical stage. Cancer,1997.79(6):p.1114-21.
    [189]Zwijsen, R.M., et al., CDK-independent activation of estrogen receptor by cyclin D1. Cell, 1997.88(3):p.405-15.
    [190]Helyer, L.K., et al., The use of complementary and alternative medicines among patients with locally advanced breast cancer--a descriptive study. Bmc Cancer,2006.6:p.39.
    [191]Yance, D.R., Jr. and S.M. Sagar, Targeting angiogenesis with integrative cancer therapies. Integr Cancer Ther,2006.5(1):p.9-29.
    [192]Zhou, G.B., et al., Oridonin, a diterpenoid extracted from medicinal herbs, targets AML1-ETO fusion protein and shows potent antitumor activity with low adverse effects on t(8;21) leukemia in vitro and in vivo. Blood,2007.109(8):p.3441-50.
    [193]Perng, R.P., et al., A phase I feasibility and pharmacokinetic study of intrapleural paclitaxel in patients with malignant pleural effusions. Anticancer Drugs,1997.8(6):p.565-73.
    [194]Fujisawa, S., et al., Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res,2004.24(2B):p.563-9.
    [195]Lei QM LJ, Gong DE. Experimental study on anticancer activity of gamboge. Chin J Tumor 1985.7:282.
    [196]Pandey, M.K., et al., Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway. Blood,2007.110(10):p.3517-25.
    [197]Zhao, L., et al., Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. Biol Pharm Bull,2004.27(7):p. 998-1003.
    [198]Liu, W., et al., Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J Gastroenterol,2005.11(24):p.3655-9.
    [199]Guo, Q.L., et al., Inhibition of human telomerase reverse transcriptase gene expression by gambogic acid in human hepatoma SMMC-7721 cells. Life Sci,2006.78(11):p.1238-45
    [200]Wang. X.. et al., Proteomic identification of molecular targets of gambogic acid:role of stathmin in hepatocellular carcinoma. Proteomics,2009.9(2):p.242-53.
    [201]Li, Q., et al., Gambogenic acid inhibits proliferation of A549 cells through apoptosis-inducing and cell cycle arresting. Biol Pharm Bull,2010.33(3):p.415-20.
    [202]Yan, F., et al., Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE-1 cells. Eur J Pharmacol,2011.652(1-3):p.23-32.
    [203]Diehl, J.A., et al., Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev,1998.12(22):p.3499-511
    [204]Hotchkiss, R.S., et al., Cell death. N Engl J Med,2009.361(16):p.1570-83.
    [205]Maiuri, M.C., et al.. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ,2009.16(1):p.87-93.
    [206]Arber, N., et al., Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res,1997.57(8):p.1569-74.
    [207]Zhou, P., et al., Antisense to cyclin D1 inhibits growth and reverses the transformed phenotype of human esophageal cancer cells. Oncogene,1995.11(3):p.571-80.
    [208]Freemantle, S.J., et al., Cyclin degradation for cancer therapy and chemoprevention. J Cell Biochem,2007.102(4):p.869-77.
    [209]Fukami-Kobayashi, J. and Y. Mitsui, Cyclin D1 inhibits cell proliferation through binding to PCNA and cdk2. Experimental Cell Research,1999.246(2):p.338-47.
    [210]Joe, A.K., et al., Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res,2002. 8(3):p.893-903.
    [211]Mukhopadhyay, A., et al., Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation. Oncogene,2002.21(57):p.8852-61.
    [212]Zou, Y., et al., Mirk/dyrklB kinase destabilizes cyclin Dl by phosphorylation at threonine 288. J Biol Chem,2004.279(26):p.27790-8.
    [213]Jung, C.J., et al., Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Mol Microbiol,2009.74(4):p.888-902.
    [214]Holz, M.K., et al., mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell, 2005.123(4):p.569-80.
    [215]Holz, M.K. and J. Blenis, Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J Biol Chem,2005.280(28):p.26089-93.
    [216]Denissenko, M.F., et al., Cytosine methylation determines hot spots of DNA damage in the human P53 gene. Proc Natl Acad Sci U S A,1997.94(8):p.3893-8.
    [217]Feng, Z., et al., Acrolein is a major cigarette-related lung cancer agent:Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci U S A,2006. 103(42):p.15404-9.
    [218]Smit, V.T., et al., KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Research,1988.16(16):p.7773-82.
    [219]Haber, D.A. and J. Settleman, Cancer:drivers and passengers. Nature,2007.446(7132):p. 145-6.
    [220]Wang, X.S., et al., An integrative approach to reveal driver gene fusions from paired-end sequencing data in cancer. Nat Biotechnol,2009.27(11):p.1005-11.
    [221]Nik-Zainal, S., et al., The life history of 21 breast cancers. Cell,2012.149(5):p.994-1007.
    [222]Vajna, R., et al., New isoform of the neuronal Ca2+channel alphalE subunit in islets of Langerhans and kidney--distribution of voltage-gated Ca2+ channel alpha1 subunits in cell lines and tissues. Eur J Biochem,1998.257(1):p.274-85.
    [223]Larsen, J.K., J.W. Mitchell, and P.M. Best, Quantitative analysis of the expression and distribution of calcium channel alpha 1 subunit mRNA in the atria and ventricles of the rat heart. J Mol Cell Cardiol,2002.34(5):p.519-32.
    [224]Pereverzev, A., et al., Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage-gated Ca(2+) channels. Mol Endocrinol,2002.16(4):p.884-95.
    [225]Berridge, M.J., P. Lipp, and M.D. Bootman, The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol,2000.1(1):p.11-21.
    [226]Wang, X.T., et al., The mRNA of L-type calcium channel elevated in colon cancer:protein distribution in normal and cancerous colon. Am J Pathol,2000.157(5):p.1549-62.
    [227]Wissenbach, U., et al., TRPV6 and prostate cancer:cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression. Biochem Biophys Res Commun, 2004.322(4):p.1359-63.
    [228]Lehen'kyi, V, et al., TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways. Oncogene,2007.26(52):p.7380-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700