Ⅲ-Ⅴ族非晶态探测器材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅲ-Ⅴ族晶体半导体材料由于其稳定性好,高吸收系数、高迁移率,可望在室温工作等特点已引起人们广泛注意。与晶体Ⅲ-Ⅴ族半导体相比,非晶态半导体材料具有成本低、制备工艺简单的优点。Ⅲ-Ⅴ族非晶半导体仍具有半导体特性,有望应用于探测器(适用波段1~3μm)以及其它光电器件。但是目前国内外还缺乏Ⅲ-Ⅴ族非晶态材料全面和详尽的研究。本文围绕非晶(a-)In_xGa_(1-x)As(0≤x≤1)薄膜和a-InSb薄膜的制备、表征、退火和氢钝化四个方面开展工作。
     (一)Ⅲ-Ⅴ族非晶薄膜的制备工艺
     在玻璃和单晶硅衬底上,我们利用磁控溅射方法制备了Ⅲ-Ⅴ族非晶薄膜。通过材料的生长机理和动力学研究,分析了工艺参数对结构的影响。减小功率、降低衬底温度或增加工作气压可以减小溅射粒子的能量,制备出非晶薄膜。通过大量的实验,我们确定了a-In_xGa(1-x)As薄膜和a-InSb薄膜的生长窗口。
     1、a-GaAs薄膜制备工艺条件:在室温条件下,溅射功率(P_(rf))为40-100W,工作气压(P_w)为0.5-8 Pa。
     2、对于制备a-InAs薄膜,在P_(rf)一定时,不同的衬底温度T_S存在不同的门槛气压使制备样品结构从多晶态向非晶态转变,并且随T_S增加,门槛气压也随之增加。
     3、通过调整InAs靶和GaAs靶的功率,可以制备出a-InGaAs薄膜。
     4、在室温条件下,P_(rf)为50W,P_w为3Pa以上时,制备InSb薄膜为非晶结构。
     (二)Ⅲ-Ⅴ族非晶薄膜的结构、组分、形貌和光电性质表征
     采用X射线衍射仪、透射电镜、X射线能谱仪、原子力显微镜、扫描电镜等手段对Ⅲ-Ⅴ族非晶薄膜的结构、组分和表面特性进行了表征,分析了工艺参数对结构、组分和形貌的影响,我们已获得了表面形貌很好、符合化学计量比的a-In_xGa(1-x)s和a-InSb薄膜。并且由X射线衍射结果计算出径向分布函数和双体相关函数,获得了a-In_xGa_(1-x)As薄膜的微观结构数据。a-GaAs和a-InAs薄膜的最近邻原子的配位数小于4,说明含有一定的错键。a-InGaAs薄膜的径向分布函数第一近邻峰分裂成位于2.58(?)和2.7(?)的两个峰,分别对应Ga-As键和In-As键的键长,并且随In成分的增加,位于2.58(?)处的峰的相对峰高变小,而2.7(?)处的峰的相对峰高变大。
     我们利用分光光度计和椭圆偏振光谱仪分析了a-In_xGa(1-x)As和a-InSb薄膜的光学性质。工艺参数直接影响光学带隙的变化,随P_w的增加或P_(rf)减小,导带带尾和价带带尾的缺陷态减小,光学带隙相应增加。实现a-In_xGa(1-x)As薄膜的光学带隙变化范围为0.72eV-1.77 eV;a-InSb的光学带隙在0.462-0.61eV之间。实验中发现,在一定条件下制备InGaAs薄膜的光学带隙与In含量的关系不确定。通过椭圆偏振光谱获得了薄膜光学常数,发现非晶、多晶和单晶薄膜的椭圆偏振光谱表现出巨大的差异。
     采用Hall系统进行了非晶薄膜的电学特性分析,薄膜的无序化程度越高,电阻率越大、载流子浓度越小。
     对a-In_xGa(1-x)As薄膜和a-InSb薄膜的光敏特性进行了分析。实验制备的a-InGaAs、a-InSb薄膜在光照下具有明显的光敏特性。在a-GaAs和a-InSb薄膜中,光敏随气压的增加而增加。然而对于a-In.As薄膜,符合化学计量比时光敏最大,但是要比a-GaAs、a-InGaAs和a-InSb薄膜光敏小。
     (三)Ⅲ-Ⅴ族非晶薄膜的退火研究
     对a-In_xGa_(1-x)As薄膜进行了退火实验,晶化温度约为300℃。在晶化温度以下退火,可以减少带尾中的缺陷以及增加应变键的驰豫,由此导致光学带隙增加。随退火温度增加而出现结晶相,光学带隙减小。并且由于多晶相和非晶相的交界面上,形变键和悬挂键数目增加,带尾宽度增加。对a-GaAs:H薄膜进行了退火实验,发生氢的释放,光敏下降。
     (四)a-In_xGa_(1-x)As薄膜的掺氢研究
     实现发现,溅射过程中加H_2对a-In_xGa_(1-x)As薄膜有钝化作用,减少了带尾和带隙中的态密度,导致吸收边蓝移、光电导增强。同时发现,加H_2易于造成a-InAs薄膜的晶化。
     总之,我们采用磁控溅射技术制备Ⅲ-Ⅴ族非晶薄膜,并且研究了工艺参数对结构、组分、表面形貌和光电性能的影响。通过优化工艺参数,我们可以制备出具有光电响应,能应用于光导探测器的Ⅲ-Ⅴ族非晶薄膜,这为Ⅲ-Ⅴ族非晶薄膜的将来应用提供了实验依据。
Ⅲ-Ⅴcrystalline materials have attracted widespread attention because of its better thermal stability,higher absorption coefficient,higher carrier mobility and possibility of application at room temperature.Compared withⅢ-Ⅴcrystalline semiconductors, amorphous semiconductors have some attractive characters such as low cost and easy preparation process.MoreoverⅢ-Ⅴamorphous materials keep semiconductor properties, led to their potential applications in future detectors(application band:1~3μm) and other optoelectronic devices.But amorphousⅢ-Ⅴsemiconductors are still lack of systematic and detailed study.In this paper,our study on amorphous(a-) In_xGa_(1-x)As and a-InSb films includes the preparation,characterization,annealing and hydrogen passivation.Main contents are as follows:
     1.The preparation process of amorphousⅢ-Ⅴfilms
     AmorphousⅢ-Ⅴfilms are deposited on substrates of glass and silicon by RF magnetron sputtering technique.Based on the studies of material growth mechanism and kinetics analysis,we analyze the effects of sputtering parameters on the structure of film.In order to prepare amorphous films,we must reduce the energy of sputtering particle by means of decreasing sputtering power P_(rf),lowering substrate temperature T_S or increasing working pressure P_w.Through many experiments,we have obtained“growth window”used for a-In_xGa_(1-x)As and a-InSb films.The conclusions are summarized as follows:
     (1)When P_w is in the range of 0.5-8 Pa,we obtain a-GaAs film with T_S of 20℃and P_(rf) of 40-100 W.
     (2)For each value of T_S,the results of InAs films show the existence of a threshold value of P_w.The films are amorphous above threshold value and the films are polycrystal below threshold value.This threshold value of P_w also increases with increasing P_(rf).
     (3)We have deposited a-In_xGa_(1-x)As films by changing RF power of GaAs target and RF power of InAs target.
     (4) At T_S=20℃,we obtain a-InSb films when P_(rf) is 50W and P_w is higher than 3 Pa.
     2.The characterization of amorphousⅢ-Ⅴfilms
     We have characterized structure,surface morphology and composition of amorphous films by means of X-ray diffractometer(XRD),transmission electron microscopy(TEM), scanning electron microscopy(SEM) and electron diffraction spectroscopy(EDS).Through the systematical study the effect of sputtering parameter on the structure、surface morphology and composition,we have prepare stoichiometric amorphous films with better surface morphology.And we calculate the radical distribution function and pair correlation function from XRD in order to obtain microstructure data of a-In_xGa_(1-x)As thin films.For a-GaAs and a-InAs films,coordination numbers of the first neighbouring atoms is smaller than 4 due to the presence of wrong bonds in films.The radical distribution function of a-InGaAs separates two peaks at 2.58(?) and 2.7(?),respectively.We assign them to Ga-As band and In-As band.With the content of In increasing,the intensity of the peak at 2.5 8(?) decrases and the peak at 2.7(?) changes reversely.
     We characterize the optical properties of a-In_xGa_(1-x)As and a-InSb thin films by spectrophotometer and the ellipsometry.We have investigated how process parameters influence the optical band gap of amorphous semiconductors.Experimentally,it is found that optical band gap broadens with increasing P_w or decreasing P_(rf) because the breadth of band tail reduces.The optical band gap of a-In_xGa_(1-x)As films shifts from 0.72eV to 1.77 eV.And optical gap of a-InSb is in the range of 0.462-0.61eV.But we don't find the definite relation between optical band gap and In content for a-In_xGa_(1-x)As films.We obtain optical constants of thin films from ellipsometry.The optical constants of amorphous films show enormous differences from polycrystal films and monocrystal films.
     We study the electrical properties of thin films using Hall system.The results suggest greater levels of disorder leads to smaller carrier concentration and larger resistivity. a-In_xGa_(1-x)As and a-InSb thin films have obvious photosensitive properties at light.The photo sensitivity increases with increasing working pressure for the case of a-GaAs.We have found the similar trend in a-InSb.But the photo sensitivity is only obvious in the stoichiometric a-InAs film.Compared with photo sensitivity in a-GaAs and A-InSb,the value in a-InAs is smaller.
     3.The study on annealing of amorphous a-In_xGa_(1-x)As films
     We have carried out annealing experiments.The experiment results show crystallization temperature of a-In_xGa_(1-x)As films is about 300℃.We have observed the optical gap shifts to higher energies as annealing temperature is below crystallization temperature.We propose that these changes are due to a diminution of the tail state defects and/or the relaxation of strained bonds.When annealing temperature is higher than crystallization temperature,the optical gap decreases.And the the breadth of band tail increases due to an increase of the number of distorted and broken bonds in the interface between the crystalline clusters and the amorphous matrix.Moreover we have found H releases from a-In_xGa_(1-x)As films and photo sensitivity decreases while annealing.
     4.The study on amorphousⅢ-Ⅴfilms doping hydrogen
     We investigate the passivation of hydrogen on the amorphousⅢ-Ⅴfilms.Hydrogen induces blue shifts in absorption edge and increasing of photoconductivity.We also have found doped hydrogen results in crystallization for a-InAs films.
     In summary,we have depositedⅢ-Ⅴamorphous films by RF magnetron sputtering. Moreover we have investigated the effects of sputtering parameters on the structure,surface morphology,composition and properties.We can obtainⅢ-Ⅴamorphous films for detector through optimizing deposited conditions.Our study provides practical experience for their potential applications in future detectors.
引文
[1] P.W.Anderson. Absence of Diffusion in Certain Random Lattices[J].Phys.Rev., 1958,109(5): 1492 -1505.
    [2] B.S.Naidu,A.K.Sharma,D.V.K.Sastry,et al.Physical investigations on amorphous films of some semiconducting compounds[J]. Journal of Non-Crystalline Solids, 1980,42:637-652.
    [3] Stanford R. Ovshinsky. Reversible Electrical Switching Phenomena in Disordered Structures [J].Physical Review Letters,1968,21(20):1450-1453.
    [4] 孔光临.高技术新材料要览[M].中国科学技术出版社, 1993:630.
    [5] N.F.Mott.Electrons in disordered structures[J]. Advan. Phys. ,1967,16:49-144.
    [6] M.H.Cohen,H.Fritzsche,S.R.Ovshinsky.Simple Band Model for Amorphous Semiconducting Alloys [J]. Physical Review Letters, 1969,22(20): 1065-1068.
    [7] W.E.Spear,P.G.LeComber. Substitutional doping of amorphous silicon[J].Solid State Commun.,1975, 17(9): 1193-1196.
    [8] C.R.Wronski,D.E.Carlson. Schottky-barrier characteristics of metal-amorphous-silicon diodes[J].Appl.Phys.Lett., 1976,29(9):602-605.
    [9] P.W.Anderson. Model for the Electronic Structure of Amorphous Semiconductors[J].Phys.Rev.Lett.,1975,34(14):953-955.
    [10] M.Kastner,D.Adler, H.Fritzsche. Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors[J]. Phys.Rev.Lett., 1976,37(20): 1504-1507.
    [11] D.L.Staebler,C.R.Wronski. Reversible conductivity changes in discharge-produced amorphous Si[J].Appl.Phys.Lett., 1977,31(4):292-295.
    [12] E.Abrahams, P.W.Anderson,D.C.Licciardello et al. Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions .Physical Review Letters, 1979,42(10):673-676.
    [13] T.Tiedje,A.Rose. A physical interpretation of dispersive transport in disordered semiconductors [J].Solid State Commun., 1980,37(1):49-52.
    [14] Y.Hamakama. Recent advances in amorphous silicon solar cells [J]Solar Energy Materials, 1982,8(1-3):101-121.
    [15] B.Abeles, T.Tiedje. Amorphous Semiconductor Superlattices[J] .Phys.Rev.Lett., 1983,51(21):2003-2006.
    [16] D. E. Polk. Structural model for amorphous silicon and germanium [J].J. Non-Cryst. Solids, 1971,5(5):365-376.
    [17] G. A. N. Connell ,R. J. Temkin.Modeling the structure of amorphous tetrahedrally coordinated semiconductors. I [J].Phys. Rev. B,1974,9 (12):5323-5326.
    [18] J.TaucAmorphous and liquid Semiconductors[M]. London and New York :Plenum Press, 1974:172.
    [19] J.Tauc,R.Grigorovici,A.Vancu. Optical Properties and Electronic Structure of Amorphous Germanium[J].Phys.Status Solid, 1966,15:627-670.
    [20] N.F.Mott,E.A.Davis.Electronic Processes in Non-Cryst.Materials[M]. Oxford:Clarendon Press, 1979:269-290.
    [21] F.Urbach. The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids [J].Phys. Rev.,1953,92(5):1324.
    [22] T.D. Moustakas, P.A. Anderson,W. Paul. Preparation of highly photoconductive amorphous silicon by rf sputtering[J].Solid State Commun., 1977,23 (3):155-158.
    [23] A.Gheorghiu. Comparative study of amorphous Ⅲ-Ⅴ compound [J]. J.Non-Cryst. Solids, 1980,35&36:397-402.
    [24] J.H. Dias da Silva, R.R. Campomanes.Urbach energy parameter of flash evaporated amorphous gallium arsenide films[J]. Journal of Non-Crystalline Solids,2002,299-302:328-332.
    [25] R.R. Campomanes, J.H. Dias da Silva, J. Vilcarromero, L.P. Cardoso.Crystallization of amorphous GaAs films prepared onto different substrates. Journal of Non-Crystalline Solids 299-302 (2002)788-792.
    [26] M.F. Kotkata, K.M. Kandil, M.H. El-Fouly,et al. Preparation and characterization of co-evaporated α-GaAs films[J]. Journal of Non-Crystalline Solids, 1996,205-207:176-179.
    [27] R. Mueller,C. Wood. The preparation of amorphous thin films [J]. J. Non-Cryst. Solids, 1972,7 (4):301-308.
    [28] S.Yokoyama,D.Yui,H.Tanigawa,et al. Solid-phase crystal growth of molecular -beam-deposited amorphous GaAs[J].J.Appl.Phys., 1987,62(5): 1808-1814.
    [29] J.C.Knights,R.A.Lujan. Plasma deposition of GaP and GaN[J].J.Appl.Phys., 1978,49(3):1291-1294.
    [30] B.Despax,K. Agiur.Y. Segui.New plasma deposition process of amorphous Ga_xAs_(1-x) in an r.f.capacitively coupled diode system[J]. Thin solid.films, 1986,145(2): 233-240.
    [31] Chen Kunji,Yang Zuoya,Wu Ruling. The preparation of amorphous thin films [J].J. Non-Cryst.Solids,1985,7(4): 301-308.
    [32] S.Adachi, T.Miyazaki, S.Hamadate. Optical properties of amorphous InSb[J]. J. Appl. Phys. 1992,71(1):395-397
    [33] C. J. Glover, M. C. Ridgway, K. M. Yu, G. J. Foran,et al.Structural characterization of amorphized InP: Evidence for chemical disorder[J]. APPLIED PHYSICS LETTERS.1999,74:1713-1715.
    [34] M. C. Ridgway, C. J. Glover, G. J. Foran, et al.Characterization of the local structure of amorphous GaAs produced by ion implantation [J] J. Appl. Phys. 1998,83(9):, 4610-4612.
    [35] J.-L. Seguin, B. El Hadadi, H. Carchano,et al.Composition study of high temperature sputtered amorphous Ga_xAs_(1-x) films [J].J. Non-Crystalline Solids, 1998,238(3):253 -258
    [36] M. Imaizumi, M. Adachi, Y. Fujii, Y. Hayashi, et al. Low-temperature growth of GaAs poly-crystalline films on glass substrates for space solar cell application [J]. J. Cryst. Growth, 2000, 221:688-692
    [37] J.-L. Seguin, B. El Hadadi, H. Carchano, et al. High-temperature sputtered amorphous GaAs[J]. J.Non-Crystalline Solids, 1995,183(1-2): 175-181
    [38] Normand Mousseau, Laurent J. Lewis. Structural, electronic, and dynamical properties of amorphous gallium arsenide:A comparison between two topological models[J]. Phys. Rev. B,1997,56:9461-9468.
    [39] H. Seong,L. J. Lewis. Tight-binding molecular-dynamics study of density-optimized amorphous GaAs[J].Phys. Rev. B,1996,53(8): 4408-4414.
    [40] C. Molteni, L. Colombo, L. Miglio. Structure and properties of amorphous gallium arsenide by tight-binding molecular dynamics[J].Physical review. B,1994,50:4371-4377.
    [41] E. Fois, A. Selloni, G. Pastore, Q.-M. Zhang, R. Car. Structure, electronic properties, and defects of amorphous gallium arsenide[J]. Phys.Rev. B,1992,45(23):13378-13382.
    [42] A. M. Flank, P. Lagarde, D. Udron, et al. EXAFS study of the local atomic structure in amorphous InP[J].J. Non-Cryst. Solids, 1987,97-98:435-438.
    [43] C. Senemaud, E. Belin, A. Gheorghiu,et al.Photoelectron spectroscopy study of amorphous GaAs and Ge [J].J. Non-Cryst. Solids,1985,77-78:1289-1282.
    [44] N.Mousseau,L.J.Lewis. Topology of Amorphous Tetrahedral Semiconductors on Intermediate Length Scales[J] .Phys.Rev.Lett.,1997,78(8):1484-1487.
    [45] L.J.Lewis,A.De Vita,R.Car. Structure and electronic properties of amorphous indium phosphide from first principles[J].Phys.Rev.B,l 998,57(3): 1594-1606.
    [46] L.J.Lewis, N.Mousseau. Tight-binding molecular-dynamics studies of defects and disorder in covalently bonded materials [J].Comp.Mat.Sci.,l998,12(3):210-241.
    [47] G. de M. Azevedo, M.C. Ridgway, K.M. Yu, C.J. Glover, G.J. Foran. Structural characterization of amorphised InAs with synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research B, 2002,190:851-855.
    [48] E.P. O' Reilly, J. Robertson.Electronic structure of amorphous Ⅲ-Ⅴ and Ⅱ-Ⅵ compound semiconductors and their defects[J]. Phys. Rev. B,1986,34 (12) 8684-8695.
    [49] C.M.H. Driscoll, J.R. Barthe, M. Oberhofer, G. Busuoli and C. Hickman.Annealing Procedures for Commonly Used Radiothermoluminescent Materials[J].Radiation Protection Dosimetry,1986,14:17-32.
    [50] N.J.Shevchik.Similarities in the structures of amorphous InAs and Ge[J]. Phys.Rev.Lett.,1973, 31(20):1245-1247
    [51] ]M. Calvo-Dahlborg, U. Dahlborg, O.I. Barkalov,et al. Neutron scattering study of bulk amorphous GaSb[J]. Journal of Non-Crystalline Solids, 1999,244: 250-259.
    [52] N.J. Shevchik, W. Paul. The structure of tetrahedrally coordinated amorphous semiconductors [J].J.Non-Cryst. Solids, 1973/74,13(1): 1-12.
    [53] Jos(?) Pedro Rino, Denilson S. Borges, Sandra C. Costa. Molecular dynamics study of amorphous Z[J].Journal of Non-Crystalline Solids,2004,348:17-21.
    [54] J. D. Joannopoulos,M. L. Cohen. Effects of disorder on the electronic density of states of Ⅲ-Ⅴ compounds[J].Phys. Rev. B,1974,10(4):1545-1559.
    [55] MX. Theye, A. Gheorghiu, K. Driss-Khodja, C. Boccara. Absorption edge in amorphous Ge and GaAs: Comparative study of the role of disorder and defects [J].J. Non-Cryst. Solids, 1985,77-78:1293-1296.
    [56] MX. Theye, A. Gheorghiu. Defects in amorphous III-V compounds[J].Sol. Energy Mater. 1982, 8(1-3): 331-340.
    [57] H. J. Von Bardeleben, P. Germain, S. Squelard, et.al. A study of defects in amorphous GaAs by electron paramagnetic resonance [J]. Journal of Non-Crystalline Solids, 1985,77-78:1297-1300.
    [58] M.C. Ridgway, C.J. Glover ,et.al. Structure in amorphous semiconductors: Extrinsic and intrinsic [J].Nuclear Instruments and Methods in Physics Research B ,2005,238:294-301
    [59] Adriana Gheorghiu, Mohamed Ouchene, Therese Rappeneau et al. Electronic properties and structure of amorphous InP [J]. Journal of Non-Crystalline Solids, 1983,59-60:621-624.
    [60] S H Baker, S C Bayliss, S J Gurman et al. The effect of varying substrate temperature on the structural and optical properties of sputtered GaAs films[J]. J. Phys.Condens. Matter, 1993,5: 519 -534.
    [61] R.Murri, L.Schiavulli , N.Pinto,et al. Urbach tail in amorphous gallium arsenide films [J].J.Non-Cyst. Solids, 992,139:60-66.
    [62] R.Murri,F.Gozzo,N.Pinto,et al. Structural characterization of unhydrogenated amorphous GaAs [J].J.Non-Cyst. Solids,1992,127:12-18.
    [63] Driss-Khodja,C. Boccara. Absorption edge in amorphous Ge and GaAs: Comparative study of the role of disorder and defects [J].J. Non-Cryst. Solids,1985,77&78:1293-1296.
    [64] B. S. Naidu, A. K. Sharma, D. V. K. Sastry, et al. Absorption edge in amorphous Ge and GaAs:Comparative study of the role of disorder and defects [J].Journal of Non-Crystalline Solids,1980,42(1-3): 637-651.
    [65] S.Guha,K.L.Narasimhan. Effective-medium theory and the frequency dependence of conductivity of evaporated films of amorphous germanium, indium antimonide, and gallium arsenide [J].Phys. Rev.B,1978,18(6):2761-2765
    [66] Benachir El Hadadi, Herve' Carchanob, Jean-Luc Seguinb, Hassan Tijani. Structural and electrical properties of amorphous GaAs sputtered at high substrate temperature (220 and 400 °C)[J].Vacuum,2005, 80:272-283.
    [67] Y. Zaka, S.A.Abo-Namous, R.W.Fane. Control of electrical and optical properties of unhydrogenated neon-sputtered amorphous silicon by preparation conditions[J].Thin Solid Films,1985,125(1-2):47-52.
    [68] Pawlewicz WT. Influence of deposition conditions on sputter-deposited amorphous silicon[J].J Appl Phys.,1978,49(11):5595-5561.
    [69] A.H.Clarck. Electrical and Optical Properties of Amorphous Germanium[J].Phys Rev., 1967, 154(3):750-757.
    [70] J.H. Dias da Silva, J.I. Cisneros, M.M. Guraya, et al. Effect of deviation from stoichiometry and thermal annealing on amorphous gallium antimonide films. Phys. Rev. B, 1995,51 (10): 6272-6279.
    [71] A. Gheorghiu, T. Rappeneau, S. Fisson, et al. Characterization of flash-evaporated amorphous GaAs,GaP and GaSb films as a function of deposition conditions [J].Thin Solid Films, 1984,120(3): 191 -204.
    [72] H.J. Von Bardeleben, P. Germain, S. Squelard,et al. A study of defects in amorphous GaAs by electron paramagnetic resonance [J]. J. Non-Cryst. Solids,1985,77&78:1297-1300.
    [73] R.R. Campomanes, J. Ugucione, J.H. Dias da Silva. Low temperature annealing of amorphous gallium arsenide films[J]. Journal of Non-Crystalline Solids,2002,304:259-264.
    [74] S.H. Baker, M.I. Manssor, S.J. Gurman,et al. Structural investigation of the α-Ga_(1-x)As_x system [J]. J.Non-Cryst. Solids,1992,144:63-69.
    [75] S. Roorda, W.C. Sinke, et al. Structural relaxation and defect annihilation in pure amorphous silicon[J]. Phys. Rev. B, 1991,44 (8) 3702-3725.
    [76] R.A. Street.Hydrogenated Amorphous Silicon[M].Cambridge University, 1991.
    [77] V. Grasso, G. Mondio, G. Saitta, et al. Optical reflectivity of ion-implanted amorphous GaAs[J].Appl. Phys. Lett.,1978,33(7):632-635.
    [78] H. Reuter, H. Schmitt, M. Biiffgen. Properties of sputtered amorphous and microcrystalline GaAs films[J]. Thin Solid Films, 1995,254:96-102.
    [79] Z.P. Wang, L. Ley, M. Cardona. Infrared spectroscopy of amorphous hydrogenated GaAs: Evidence for H bridges[J].Phys. Rev. B, 1982,26(6):3249-3258.
    [80] D. K. Paul, J. Blake, S. Oguz et al. Vibrational properties of hydrogenated amorphous GaAs [J]. J.Non-Cryst. Solids,1980,35:501-506.
    [81] U. Coscia, R. Murri, N. Pinto et al. Photoconductivity of amorphous GaAs[J].J. Non-Cryst. Solids,1996,194(1-2):103-108.
    [82] F.Jansen, M.Machonkin, S.Kaplanet al.The effects of hydrogenation on the properties of ion beam sputter deposited amorphous carbon[J].J.Vac.Sci.Technol., 1985, A3(3):605-609
    [83] Alimoussa L, Carchano H, Thomas JP. Proceedings of the ninth international conference on amorphous and liquid semiconductors, Grenoble, France. J Phys 1981,42:C4683-6.
    [84] N. Elgun, E.A. Davis. Structure and electronic properties of hydrogenated amorphous GaP[J].Journal of Non-Crystalline Solids,2003,330:226-233.
    [85] R. K(?)rcher, Z.P. Wang, L. Ley. Electronic structure of amorphous and microscrystalline α-GaAs(:H)[J]. J. Non-Cryst. Solids, 1983:59&60:629-632.
    [86]Grove W.R.On the electro-chemical polarity of gases[J].Trans.Roy.Soc.Lon.,1852,142:87-101.
    [87]W.Crookes.On electrical evaporation[J].Proc.Roy.Soc.Lond.,1891,50:88-105.
    [88]G.E.Smith.J.J.Thomson.Substrate effects on GaN photoconductive detector performance.Appl.Phys.Lett.,1999,75:25-28.
    [89]J.J.Thomson.A theory of the connexion between cathode and Rontgen rays[J].Philosophical Magazine,1898,46:528.
    [90]R.F.Bunshah.Handbook of deposition technologies for films and coatings:science,technology,and applications[M].New York:Noyes,1994.
    [91]M.Ohring.The Materials Science of Thin Films[M].London:Academic Press,1992.
    [92]K.L.Chopra.Thin Film Phenomena[M].New York:McGraw-Hill,1969.
    [93]G.K.Wehner,G.S.Anderson.Handbook of Thin Film Technology[M].New York:McGraw-Hill,1970.
    [94]J.L.Vossen.Control of film properties by rf-sputtering techniques[J].J.Vac.Sci.Technol.,1971,8(5):S12-S30.
    [95]顾培夫.薄膜技术[M].浙江大学出版社,1990.
    [96]王力衡,黄运添,郑海涛.薄膜技术[M].清华大学出版社,1991.
    [97]严一心,林鸿海.薄膜技术[M].兵器工业出版社,1994.
    [98]曹茂盛,徐群,杨郦等.材料合成与制备方法[M].哈尔滨工业大学出版社,2002.
    [99]J.A.Thornton.Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings[J].J.Vac.Sci.Technol.,1974,11(4):666-670.
    [100]陈邦朝,王文生.薄膜物理与技术[M].电子科技大学出版社,1994.
    [101]陈国平.薄膜物理与技术[M].东南大学出版社,1993.
    [102]M.Marko,C.Hsieh,W.Moberlychan.Focused ion beam milling of vitreous water:prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples[J].Journal of Microscopy,April 2006,222(1):42-47.
    [103]J.Y.Dai,S.F.Tee,C.L.Tay.Development of a rapid and automated TEM sample preparation method in semiconductor failure analysis and the study of the relevant TEM artifact[J].Microelectronics Journal,2001,32(3):221-226.
    [104]Yu Jinshan,Liu Junliang,Zhang Jinxu.TEM investigation of FIB induced damages in preparation of metal material TEM specimens by FIB[J].Materials Letters,2006,60(2):206-209.
    [105]Kawamura Kazuo,Ikeda Kazuto,Terauchi Masami.A new method to characterize dopant profiles in NMOSFETs using conventional transmission electron microscopy[J].Applied Surface Science,2004,237(1-4):617-622.
    [106]Mitchell D.R.G.,Attard D.J.,Finnie K.S.TEM and ellipsometry studies of anolaminate oxide films prepared using atomic layer deposition[J].Applied Surface Science,2005,243(1-4):267-279.
    [107]McCaffrey J.P.,Phaneuf M.W.,Madsen L.D.Surface damage formation during ion-beam thinning of samples for transmission electron microscopy[J].Ultramicroscopy,2001,87(3):97-104.
    [108]Ge Jun,Wang Xiumei,Cui Fuzhai.Microstructural characteristics and nano-echanieal roperties across the thickness of the wild-type zebrafish skeletal bone[J].Materials Science and Engineering C,2006,26(4):710-715.
    [109]Hayashi Takuya,Muramatsu Hiroyuki,Kim Yoong Ahm.TEM image simulation study of small carbon nanotubes and carbon nanowire[J].Carbon,2006,44(7):1130-1136.
    [110]黄胜涛等.非晶态材料的结构和结构分析[M].北京:科学出版社,1987:175-176.
    [111]何宇亮,陈光华,张仿清.非晶态半导体物理学[M].北京:高等教育出版社,1989:54-55.
    [112]V.H.Smith,A.Thakkar,Douglas C.A new analytic approximation to atomic incoherent X-ray scattering intensities[J].Acta Cryst,1975,A31:391-392.
    [113]江美福.反应磁控溅射法制备的氟化类金刚石薄膜的结构和性能研究:[硕士学位论文].苏州:苏州大学,2005.
    [114]蒋先明,何伟平.简明红外光谱识谱法[M].广西师范大学出版社,1992.
    [115]钟海庆.红外光谱法入门[M],化学工业出版社,1984.
    [116](美)中西香尔,P.H.索罗曼.红外吸收光谱[M].中国化学学会,1980.
    [117]施耀曾.有机化合物光谱和化学鉴定[M].江苏科学技术出版社,1988.
    [118]王宗明,何欣翔,孙殿卿.使用红外光谱学[M].石油工业出版社,1990.
    [119]孔金丞.磁控溅射非晶态碲镉汞薄膜及其结构和光电特性研究:[博士学位论文].昆明:昆明物理所,2008.
    [120]K.I.Choo,W.K.Choo,J.Y.Lee,et al.Defect formation in the solid phase epitaxial growth of GaAs films on Si(001)substrate[J].J.Appl.Phys.1991,69(1):237-241.
    [121]M.C.Ridgway,G.de M.Azevedo,C.J.Glover,et al.Common structure in amorphised compound semiconductors[J].Nucl.Instr.Meth.Phys.Res.B.2003,199():235-239.
    [122]N.J.Shevchik,W.Paul.The structure of tetrahedrally coordinated amorphous semiconductors[J].J.Non-Cryst.Solids,1973,13(1):1-12.
    [123]L.Alimoussa,H.Carchano,F.Lalande,et al.in:Proc.Poly-micro-crystalline and Amorphous Semiconductors.Paris:Les Editions de Physique,1984:743-745.
    [124]Lean-Lue Seguin,Benachir El Hadadi,Herv(?) Carchano,et al.High-temperature sputtered amorphous GaAs[J].J.Non-Cryst.Solids,1995,183:175-181.
    [125]G.V.Bunton,S.C.M.Day.Epitaxial thin films of ZnS and GaAs prepared by R.F.sputtering on NaCl substrates[J].Thin Solid Films,1972,10:11-20.
    [126]P.Lautenschlager,M.Garriga,S.Logothetidis,et al.Interband critical points of GaAs and their temperature dependence[J].Phys.Rev.B,1987,35:9174-9189.
    [127]D.E.Aspnes,A.A.Studna.Dielectric functions and optical parameters of Si,Ge,GaP,GaAs,GaSb,InP,InAs,and InSb from 1.5 to 6.0 Ev[J].Phys.Rev.B,1983,27(27):985-1009.
    [128]L.Alimoussa,H.Carchano,F.Lalande,et al.Poly-microcrystalline and amorphous semiconductors, France:P. Pinard and S. Kalbitzer (eds.), MRS, June, 1984.
    [129] K.Steeple,G.Dearnaley, A.M.Stoneham. Reversible conductivity changes in discharge-produced amorphous Si[J].Appl.Phys.Lett.,1980,36(12):981-1984.
    [130] A. K. Sharma,P. Jayarama Reddy. Electrical properties of amorphous and crystallines InSb and InAs thin films[J].Journal of Non-Crystalline Solids, 1980,41:13-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700