高效环烯烃共聚物芯片电泳的分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微芯片电泳是一种快速高效的微分析技术,有巨大的应用潜力,但由于芯片制作成本高、方法的实用性不足,目前在实际样品分析中的应用仍然相当有限。为了促进微芯片电泳的实际应用,本研究利用廉价的环烯烃共聚物(COC)塑料芯片,结合实验室自己搭建的低成本程控高压电源和激光诱导荧光检测装置,针对有重要现实意义的分析对象开展了以下几方面的工作:
     第一章:介绍了微全分析系统的概念,简要总结了微芯片的发展历史、芯片制作材料、芯片制作技术、微芯片表面改性技术、微芯片分析的常用检测器以及微芯片电泳在实际样品分析中的应用。
     第二章:建立了一种基于芯片电泳-激光诱导荧光检测的快速高效测定水样和服装样品中违禁芳香胺的方法。很多芳香胺有毒,甚至可致癌,故建立一种快速检测违禁芳香胺的方法很有必要。本实验利用含2%羟乙基纤维素(HPC)的10mmol/L的硼砂作为运行缓冲液,五种FITC标记的违禁芳香胺可以在90s内达到基线分离,检测限为1-3nmol/L,重复性好,理论塔板数可达6.8-8.5×105/m。该方法被成功用于水样和服装样品中违禁芳香胺的检测,回收率在85-110%之间。
     第三章:建立了一种芯片电泳-激光诱导荧光间接检测苏丹红的方法。鉴于苏丹红染料的致癌性,许多国家已明令禁止在食品中添加苏丹红染料。苏丹红是偶氮染料,分解产物是芳香胺和萘酚类衍生物,本实验用两种不同的方法把苏丹红染料快速还原成芳香胺,然后用荧光胺标记,在激发波长为405nm的激光诱导荧光检测器上进行芯片电泳分离和检测。结果表明,四种苏丹红的还原产物可在60s内完成基线分离。
     第四章:以HPC为添加剂对COC微芯片通道进行动态改性,建立了一种快速高效分离检测氧化型谷胱甘肽和还原型谷胱甘肽的方法。利用荧光胺为衍生试剂标记两种待测物,在405nm激光诱导荧光检测器上对样品进行检测,以含有1.0%HPC的10mmol/L的硼砂为运行缓冲液,两种谷胱甘肽可以在30s内完成基线分离,理论塔板数可达1.0×106/m。实验结果表明该方法简单、快速、重复性好,可用于人血清中谷胱甘肽的检测。
Microchip electrophoresis is a miniaturized analytical technique with rapid separation speed and high separation efficiency. But its application in real analysis is quite limited because of the high cost of chip fabrication, it has not been a practical method yet. In order to promote the practical application of microchip electrophoresis, cheap COC microchips combined with low-cost programmable high voltage power supplies and laser induced fluorescence detectors were used in our work for the analysis of some analytes with practical importance. There are four chapters in this thesis.
     Chapter1:The μ-TAS was reviewed comprehensively. The development history of microfluidic chips, chip materials and production technologies, surface modification of microchannels, detection methods and the application of microchip-based electrophoresis in real samples were summarized.
     Chapter2:A fast and efficient microchip electrophoretic method for the analysis of banned aromatic amines was established. Because some aromatic amines are strongly toxic and even carcinogenic, it is highly necessary to detect them rapidly. In this work,5banned aromatic amines that were labeled with fluorescein isothiocyanate could be baseline separated within90s by using10mmol/L borax containing2%(w/v) hydroxypropyl cellulose (HPC) as the running buffer. The limits of detection were in a range of1-3nmol/L and the theoretical plate numbers were in a range of6.8-8.5×105/m. The method was successfully applied in the analysis of these banned aromatic amines in waste water and textile samples, recoveries of added standards were85-110%.
     Chapter3:A electrophoretic method using plastic microchips combined with low-cost laser-induced fluorescence detector was established to indirectly determinate sudan dyes, a group of dyes that are banned for use as food colorants due to their carcinogenicity. Because Sudan dyes can be reduced to aromatic amines and naphthalene phenolic derivatives, two methods of chemical reduction of Sudan dyes were adopted in this study. The aromatic amines from the dyes were labled by fluorescamine and were separated and detected with microchip electrophoresis with a405nm laser induced fluorescence detector. The experimental results showed that the reductive products could be baseline resolved within60s.
     Chapter4:A microchip electrophoresis based method for fast and efficient separation and detection of oxidized and reduced glutathione was established. Using HPC as additive for dynamic modification of the microchannels of COC microchips, fluorescamine labeled oxidized and reduced glutathione could be baseline separated in30s. The number of theoretical plates is up to1.0×106/m. The method is simple, rapid and reproducible, and were successfully used for the detection of glutathione in human serum sample.
引文
[1]Manz, A.; Graber, N.; Widmer, H. M., Miniaturized total chemical analysis systems:A novel concept for chemical sensing. Sensors and Actuators B:Chemical 1990,1 (1-2):244-248.
    [2]Reyes, D. R.; Iossifidis, D.; Auroux, P.-A.; Manz, A., Micro total analysis systems.1. Introduction,Theory, and Technology. Analytical chemistry 2002,74 (12):2623-2636.
    [3]Whitesides, G. M., The origins and the future of microfluidics. Nature 2006,442 (7101): 368-373.
    [4]Auroux, P.; Iossifidis, D.; Reyes, D.; Manz, A., Micro total analysis systems. Part 2. Analytical standard operations and applications. Analytical chemistry 2002,74 (12): 2637-2652.
    [5]Tudos A.; Besselink G.; Schasfoort R., Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 2001,1,83-95.
    [6]Verpoorte E., Microfluidic chips for clinical and forensic analysis. Electrophoresis 2002,23 (5): 677-712.
    [7]Berg A. van den, Lammerink T., Micro total analysis systems:microfluidic aspects, integration concept and applications. Topics in Current Chemistry 1998,194,21-49.
    [8]Darion, A.; Sequeira, M.; Pennarun-Thomas, G; Dirac, H.; Krog, J.; Gravensen, P.; Lichtenberg, J.; Diamond, D.; Verpoorte, E.; Rooij, N. de, Chemical sensing using an integrated microfluidic system based on the Berthelot reaction. Sensors and Actuators B: Chemical 2001,76 (1-3):235-243.
    [9]Verpoorte, E.; Schoot, B. H. V. D.; Jeanneret, S.; Manz, A., Three-dimensional micro-flow manifolds for miniaturized chemical analysis systems, Journal of Micromechanics and Microengineering 1994,4 (4):246-256.
    [10]Harrison, J.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.; Manz, A., Micromachning a miniaturized capillary electrophoresis-based chemical analysis system on chip. Science 1993, 261,895-897.
    [11]Liu, S.; Shi, Y.; Ja, W. W.; Mathies, R. A., Optimization of high-speed DNA sequencing on microfabricated capillary electrophoresis channels. Analytical Chemistry 1999,71 (3): 566-573.
    [12]Mathies, R.; Simpson, P.; Woolley, A., DNA analysis with capillary array electrophoresis Micro Total Analysis Systems 1998,1-6.
    [13]Simpson, P. C.; Roach, D.; Woolley, A. T; Thorsen, T; Johnston, R.; Sensabaugh, G. F.; Mathies, R. A., High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. Proceedings of the National Academy of Sciences of the United States of America 1998,95 (5):2256-2261.
    [14]Manz, A., et al., Planar chips technology for miniaturization and integration of separation techniques into monitoring systems:Capillary electrophoresis on a chip. Journal of Chromatography A 1992,593 (1-2):253-258.
    [15]Woolley, A.T.; Mathies, R.A., Ultra-High-Speed DNA sequencing using capillary electrophoresis chips. Analytical Chemistry 1995,67 (20):3676-3680.
    [16]Petersen K. E.,1998 Silicon as a mechanical material. Proceedings of the IEEE 1982,70 (5) 420-457.
    [17]Gardeniers, J. G. E.; Tjerkstra, R. W.; Berg, A. van den, Fabrication and application of silicon-based microchannels. Microreaction Technologies:Industrial Prospects 2000,36-44.
    [18]Iliescu, C., Wet etching of glass. Semiconductor Conference 2005,1,35-44.
    [19]Ilie M.; Foglietti V.; Cianci E., Deep wet etching of borosilicate glass for microfluidic devices. Proceedings of the 7th Italian Conference on Sensors and Microsystems, Bologna, Italy,2002, 4-6.
    [20]Shul, R. S.; Pearton, S. J., Handbook of advanced processing techniques (berlin:springer)
    [21]Sugawara M, Plasma etching-fundamentals and applications oxford university press (1998).
    [22]Roberts, M.A., et al., UV laser machined polymer substrates for the development of microdiagnostic systems. Analytical Chemistry 1997,69 (11):2035-2042.
    [23]Dang, F., et al., High-Performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding. Analytical Chemistry 2005,77 (7):2140-2146.
    [24]Pemg, B.Y., et al., Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polymers for Advanced Technologies 2010,21 (7):457-466.
    [25]Bowden, M., et al., CO2 laser microfabrication of an integrated polymer microfluidic manifold for the determination of phosphorus. Lab on a Chip 2003,3,221-223.
    [26]Solignac, D., et al., Powder blasting for the realisation of microchips for bio-analytic applications. Sensors and Actuators A:Physical.2001,92 (1-3):388-393.
    [27]Huang, M. S., et al., Fabrication of microfluidic chip using micro-hot embossing with micro electrical discharge machining mold. Polymers for Advanced Technologies 2012,23 (1): 57-64.
    [28]Zhigilei, L. V., Kodali, P. B. S.; Garrison, B. J., A Microscopic View of Laser Ablation. The Journal of Physical Chemistry B 1998,102 (16):2845-2853.
    [29]Martynova, L., et al., Fabrication of Plastic Microfluid Channels by Imprinting Methods. Analytical Chemistry 1997,69 (23):4783-4789.
    [30]Fukuba, T., et al., Microfabricated flow-through device for DNA amplification-towards in situ gene analysis. Chemical Engineering Journal 2004,101 (1-3):151-156.
    [31]Yi, S., K. Yien Chian, and N. Nam-Trung, Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. Journal of Micromechanics and Microengineering 2006,16 (8):1681.
    [32]Chen, Z., L. Zhang, and G. Chen, A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips. Electrophoresis 2010,31 (15):2512-2519.
    [33]Tan, A., S. Benetton, and J.D. Henion, Chip-Based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate. Analytical Chemistry 2003,75 (20):5504-5511.
    [34]Li, Y, et al., Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network. Analytical Chemistry 2004,76 (3):742-748.
    [35]Kameoka, J., et al., A polymeric microfluidic chip for CE/MS determination of small molecules. Analytical Chemistry 2001,73(9):1935-1941.
    [36]Xu, J., et al., Room-Temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry 2000,72(8):1930-1933.
    [37]Soper, S.A., et al., Peer reviewed:polymeric microelectromechanical systems. Analytical Chemistry 2000,72(19):642 A-651 A.
    [38]Becker, H.; Heim, U., Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A:Physical 2000,83(1-3):130-135.
    [39]KleemiB, M. H.; Gilges, M.; Schomburg, G., Capillary electrophoresis of DNA restriction fragments with solutions of entangled polymers. Electrophoresis 1993,14 (1):515-522.
    [40]Tian, H.; Landers, J. P., Hydroxyethylcellulose as an effective polymer network for DNA analysis in uncoated glass microchips:optimization and application to mutation detection via heteroduplex analysis. Analytical Biochemistry 2002,309 (2):212-223.
    [41]Zhang, J.; Das, C.; Fan, Z. H., Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices. Microfluid Nanofluid 2008,5,327-335.
    [42]Sun, X.; Yang, W.; Geng, Y.; Woolley, A. T., A general microchip surface modification approach using a spin-coated polymer resist film doped with hydroxypropyl cellulose. Lab Chip 2009,9,949-953.
    [43]Wei, X.; Gao, X.; Zhao, L.; Peng, X.; Zhou, L.; Wang, J.; Pu, Q., Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. Journal of Chromatography A 2013,1281,148-154,.
    [44]Bean, S. R.; Lookhart, G. L., Faster capillary electrophoresis separation of wheat proteins through modifications to buffer composition and sample handling. Electrophoresis 1998,19 (18):3190-3198.
    [45]Albarghouthi, M. N.; Stein, T. M.; Barron, A. E., Poly-N-hydroxyethylacrylamide as a novel, adsorbed coating for protein separation by capillary electrophoresis. Electrophoresis 2003,24 (7-8):1166-1175.
    [46]Mandabhushi, R. S., Separation of 4-color DNA sequencing extension products in noncovalently coated capillaries using low viscosity polymer solutions. Electrophoresis 1998, 19(2):224-230.
    [47]Song, L.; Fang, D.; Kobos, R. K.; Pace, S. J.; Chu, B., Separation of double-stranded DNA fragments in plastic capillary electrophoresis chips by using E99P69E99 as separation medium. Electrophoresis 1999,20 (14):2847-2855.
    [48]Zhang, Y.; Ping, G.; Kaji, N.; Tokeshi, M.; Baba, Y., Dynamic modification of poly(methyl methacrylate) chips using poly(vinyl alcohol) for glycosaminoglycan disaccharide isomer separation. Electrophoresis 2007,28 (18):3308-3314.
    [49]Wang, L.; Wu, J.; Wang, Q.; He, C.; Zhou, L.; Wang, J.; Pu, Q., Rapid and sensitive determination of sulfonamide residues in milk and chicken muscle by microfluidic chip electrophoresis. Journal of Agricultural and Food Chemistry 2012,60 (7):1613-1618.
    [50]Dang, F.; Zhang, L.; Hagiwara, H.; Mishina, Y.; Baba, Y., Ultrafast analysis of oligosaccharides on microchip with light-emitting diode confocal fluorescence detection. Electrophoresis 2003,24 (4):714-721.
    [51]Melanson, J. E.; Baryla, N. E.; Lucy, C. A., Double-Chained Surfactants for Semipermanent Wall Coatings in Capillary Electrophoresis. Analytical Chemistiy 2000,72 (17):4110-4114.
    [52]Legaz, M. E.; Pedrosa, M. M., Effect of polyamines on the separation of ovalbumin glycoforms by capillary electrophoresis. Journal of Chromatography A 1996,719 (1): 159-170.
    [53]Chiu, R. W.; Jimenez, J. C.; Monnig, C. A., High molecular weight polyarginine as a capillary coating for separation of cationic proteins by capillary electrophoresis. Analytica Chimica Acta 1995,307 (2-3):193-201.
    [54]Landers, J. P.; Oda, R. P.; Madden, B. J.; Spelsberg, T. C., High-performance capillary electrophoresis of glycoproteins:The use of modifiers of electroosmotic flow for analysis of microheterogeneity. Analytical biochemistry 1992,205 (1):115-124.
    [55]Bedia Erim, F.; Cifuentes, A.; Poppe, H.; Kraak, J. C., Performance of a physically adsorbed high-molecular-mass polyethyleneimine layer as coating for the separation of basic proteins and peptides by capillary electrophoresis. Journal of Chromatography A 1995,708 (2):356-361.
    [56]Yao. Y. J.; Li, S. F. Y., Capillary zone electrophoresis of basic proteins with chitosan as a capillary modifier. Journal of Chromatography A 1994,663 (1):97-104.
    [57]Henry, A. C.; Tutt, T. J.; Galloway, M.; Davidson, Y. Y; McWhorter, C. S.; Soper, S. A.; McCarley, R. L., Surface Modification of Poly(methyl methacrylate) Used in the Fabrication of Microanalytical Devices. Analytical Chemistry 2000,72 (21):5331-5337.
    [58]Soper, S. A.; Henry, A. C.; Vaidya, B.; Galloway, M.; Wabuyele, M.; McCarley, R. L., Surface modification of polymer-based microfluidic devices. Analytica Chimica Acta 2002,470 (1):87-99.
    [59]Johnson, T.J., et al., Laser modification of preformed polymer microchannels:application to reduce band broadening around turns subject to electrokinetic flow. Analytical Chemistry 2001,73 (15):3656-3661.
    [60]Soper, S.A., et al., Surface modification of polymer-based microfluidic devices. Analytica Chimica Acta 2002,470 (1):87-99.
    [61]Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M., Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry 1998,70 (23) 4974-4984.
    [62]Chaudhury, M. K.; Whitesides, G. M., Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 1991,7 (5):1013-1025.
    [63]Xia, Y. N., Whitesides, G. M., Soft Lithography. Angewandte Chemie International Edition 1998,37,551-575.
    [64]Hu, S.; Ren, X.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L., Surface-Directed, Graft polymerization within microfluidic channels. Analytical Chemistry 2004,76 (7):1865-1870.
    [65]Stachowiak, T. B., et al., Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. Journal of Separation Science 2007,30 (7): 1088-1093.
    [66]Hwang, S. J., et al., Surface modification of cyclic olefin copolymer substrate by oxygen plasma treatment. Surface and Coatings Technology 2008,202 (15):3669-3674.
    [67]Woolley, A. T.; Lao, K.; Glazer, A. N.; Mathies, R. A., Capillary electrophoresis chips with integrated electrochemical detection. Analytical Chemistry 1998,70 (4):684-688.
    [68]Jackson, D. J.; Naber, J. F.; Roussel, T. J.; Crain, M. M.; Walsh, K. M.; Keynton. R. S.; Baldwin, R. P., Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. Analytical Chemistry 2003,75 (14):3643-3649.
    [69]Huang, X.; Ren, J., On-line chemiluminescence detection for isoelectric focusing of heme proteins on microchips. Electrophoresis 2005,26 (19):3595-3601.
    [70]Ocvirk, G.; Tang, T.; Jed Harrison, D., Optimization of confocal epifluorescence microscopy for microchip-based miniaturized total analysis systems. Analyst 1998,123 (7):1429-1434.
    [71]Jed Harrison, D., Fan, Z., Seiler, K. Rapid separation of fluorescein derivatives using a micromachined capillary eletrophoresis system. Analytica Chimica Acta 1993,283 (1):361-366.
    [72]Jacobson, S.C.; Hergenroeder, R.; Moore, A.W.; Ramsey, J. M., Precolumn reactions with electrophoretic analysis integrated on a microchip. Analytical Chemistry 1994,66 (23):4127-4132.
    [73]Liang, Z., Chiem, N., Ocvirk, G., Tang, T., Fluri, K., Harrison, D.J. Microfabrication of a planar absorbance and fluorescence cell for integrated capillary electrophoresis devices. Analytical Chemistry 1996,68 (6):1040-1046.
    [74]Fister, J. C.; Jacobson, S. C.; Davis, L. M.; Ramsey, J. M., Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices. Analytical Chemistry 1998,70 (3):431-437.
    [75]Zhang, Y.; Lee, H. K.; Li, S. F. Y., Fluorescence detection in short capillary and chip using a variable wavelength epi-fluorescence microscope. Talanta 1998,45 (4):613-618.
    [76]Lee, T. T.; Yeung, E. S., Quantitative determination of native proteins in individual human erythrocytes by capillary zone electrophoresis with laser-induced fluorescence detection. Analytical Chemistry 1992,64 (23):3045-3051.
    [77]Tong, W.; Yeung, E. S., Determination of insulin in single pancreatic cells by capillary electrophoresis and laser-induced native fluorescence. Journal of Chromatography B 1996, 685(1):35-40.
    [78]Lazar, I. M.; Ramsey, R. S.; Sundberg, S.; Ramsey, J. M., Subattomole-Sensitivity microchip nanoelectrospray source with time-of-flight mass spectrometry detection. Analytical Chemistry 1999,71 (17):3627-3631.
    [79]Sung, W. C.; Huang, S. Y.; Liao, P. C.; Lee, G. B.; Li, C. W.; Chen, S. H., Poly(dimethylsiloxane)-based microfluidic device with electrospray ionization-mass spectrometry interface for protein identification. Electrophoresis 2003,24 (21):3648-3654.
    [80]Liu, B. F.; Ozaki, M.; Utsumi, Y.; Hattori, T.; Terabe, S., Chemiluminescence detection for a microchip capillary electrophoresis system fabricated in poly(dimethylsiloxane). Analytical Chemistry 2003,75 (1):36-41.
    [81]Mitnik, L.; Carey, L.; Burger, R.; Desmarais, S.; Koutny, L.; Wernet, O.; Matsudaira, P.; Ehrlich, D., High-speed analysis of multiplexed short tandem repeats with an electrophoretic microdevice. Electrophoresis 2002,23 (5):719-726.
    [82]Liu, S.; Shi, Y.; Ja, W. W.; Mathies, R. A., Optimization of high-Speed DNA sequencing on microfabricated capillary electrophoresis channels. Analytical Chemistry 1998,71 (3): 566-573.
    [83]Liu, S.; Ren. H.; Gao, Q.; Roach, D. J.; Loder, R. T.; Armstrong, T. M.; Mao. Q.; Blaga,I.; Barker, D. L.; Jovanovich, S. B., Automated parallel DNA sequencing on multiple channel microchips. Proceedings of the National Academy of Scineces of the United States of America 2000,97 (10):5369-5374.
    [84]Bousse, L.; Mouradian, S.; Minalla, A.; Yee, H.; Williams, K.; Dubrow, R., Protein sizing on a microchip. Analytical Chemistry 2001,73 (6):1207-1212.
    [85]Tan, W.; Fan, Z. H.; Qiu, C. X.; Ricco, A. J.; Gibbons, I., Miniaturized capillary isoelectric focusing in plastic microfluidic devices. Electrophoresis 2002,23 (20):3638-3645.
    [86]Ceriotti, L.; Shibata, T.; Folmer, B.; Weiller, B. H.; Roberts, M. A.; Rooij, N. F.; Verpoorte, E., Low-density lipoprotein analysis in microchip capillary electrophoresis systems. Electrophoresis 2002,23 (20):3615-3622.
    [1]Scott, T. S., Carcinogenic and toxic hazards of aromatic amines. Elsevier, Amsterdam 1962.
    [2]Pinheiro, H. M.; Touraud, E.; Thomas, O., Aromatic amines from azo dye reduction:status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments 2004,61 (2):121-139.
    [3]Kamarei, F.; Ebrahimzadeh, H.; Yamini, Y., Optimization of solvent bar microextraction combined with gas chromatography for the analysis of aliphatic amines in water samples. Journal of Hazardous Materials 2010,178 (1-3):747-752.
    [4]Kataoka, H.; Miyake, M.; Mitani, K., Analysis of aromatic amines as N-propoxycarbonyl derivatives by gas chromatography with nitrogen-phosphorus selective detection. Journal of Separation Science 2007,30 (1):90-97.
    [5]Rehorek, A.; Plum, A., Characterization of sulfonated azo dyes and aromatic amines by pyrolysis gas chromatography/mass spectrometry. Analytical and Bioanalytical Chemistry 2007,388 (8):1653-1662.
    [6]Zhang, Q.; Wang, C.; Bai, H.; Wang, X.; Wu, T.; Ma, Q., Determination of aromatic amines from azo dyes reduction by liquid-phase sorbent trapping and thermal desorption-gas chromatography-mass spectrometry. Journal of Separation Science 2009,32 (14):2434-2441.
    [7]Zhu, L. Y.; Tay, C. B.; Lee, H. K., Liquid-liquid-liquid microextraction of aromatic amines from water samples combined with high-performance liquid chromatography. Journal of Chromatography A 2002,963 (1-2):231-237.
    [8]Huang, X. J.; Qiu, N. N.; Yuan, D. X.; Lin, Q. M., Sensitive determination of strongly polar aromatic amines in water samples by stir bar sorptive extraction based on poly(vinylimidazole-divinylbenzene) monolithic material and liquid chromatographic analysis. Journal of Chromatography A 2009,1216 (20):4354-4360.
    [9]Kitahara, K. I.; Okuya, S.; Yoshihama, I.; Hanada, T.; Nagashima, K.; Arai, S., Preparation of monodispersed vinylpyridine-divinylbenzene porous copolymer resins and their application to high-performance liquid chromatographic separation of aromatic amines. Journal of Chromatography A 2009,1216 (44):7409-7414.
    [10]Sarafraz Yazdi, A.; Mofazzeli, F.; Es'haghi, Z., A new high-speed hollow fiber based liquid phase microextraction method using volatile organic solvent for determination of aromatic amines in environmental water samples prior to high-performance liquid chromatography. Talanta 2009,79 (2):472-478.
    [11]Zhao, X.; Suo, Y., Analysis of primary aromatic amines using precolumn derivatization by HPLC fluorescence detection and online MS identification. Journal of Separation Science 2008,31 (4):646-658.
    [12]Garcia Lavandeira, J.; Salgado Petinal, C.; Blanco, E.; Cela, R., A sensitive and efficient procedure for the high throughput determination of banned aromatic amines in textiles and leather products aided by advanced sample composition. Analytical and Bioanalytical Chemistry 2010,397 (2):751-763.
    [13]Sutthivaiyakit, P.; Achatz, S.; Lintelmann, J.; Aungpradit, T.; Chanwirat, R.; Chumanee, S.; Kettrup, A., LC-MS/MS method for the confirmatory determination of aromatic amines and its application in textile analysis. Analytical and Bioanalytical Chemistry 2005,381 (1): 268-276.
    [14]Schubert, J.; Kappenstein, O.; Luch, A.; Schulz, T. G, Analysis of primary aromatic amines in the mainstream waterpipe smoke using liquid chromatography-electrospray ionization tandem mass spectrometry. Journal of Chromatography A 2011,1218 (33):5628-5637.
    [15]Mourya, S. K.; Bose, D.; Durgbanshi, A.; Esteve-Romero, J.; Carda-Broch, S., Determination of some banned aromatic amines in waste water using micellar liquid chromatography. Analytical Methods 2011,3 (9):2032-2040.
    [16]Li, R. P.; Zhang, Y.; Lee, C. C.; Lu, R. R.; Huang, Y. P., Development and validation of a hydrophilic interaction liquid chromatographic method for determination of aromatic amines in environmental water. Journal of Chromatography A 2010,1217(11):1799-1805.
    [17]Narvekar, M. S.; Srivastava, A. K., Separation of isomers of aromatic amines on HPTLC plates impregnated with 18-Crown-6. Journal of Planar Chromatography 2002,15,120-123.
    [18]Huang, X. J.; You, T. Y.; Li, T.; Yang, X. R.; Wang, E. K., End-Column electrochemical detection for aromatic amines with high performance capillary electrophoresis. Electroanalysis 1999,11 (13):969-972.
    [19]Asthana, A.; Bose, D.; Durgbanshi, A.; Sanghi, S. K.; Kok, W. T., Determination of aromatic amines in water samples by capillary electrophoresis with electrochemical and fluorescence detection. Journal of Chromatography A 2000,895 (1-2):197-203.
    [20]Dossi, N.; Toniolo, R.; Pizzariello, A.; Susmel, S.; Bontempelli, G., A modified electrode for the electrochemical detection of biogenic amines and their amino acid precursors separated by microchip capillary electrophoresis. Electrophoresis 2011,32 (8):906-912.
    [21]Hsieh, M. M.; Chang, H. T., Impact of halides on the simultaneous separation of aromatic amines and their acidic metabolites by capillary electrophoresis with laser-induced native fluorescence detection under acidic conditions. Journal of Chromatography A 2006,1102 (1-2):302-308.
    [22]Wang, X. Y.; Chen, Y, Determination of aromatic amines in food products and composite food packaging bags by capillary electrophoresis coupled with transient isotachophoretic stacking. Journal of Chromatography A 2009,1216 (43):7324-7328.
    [23]Zhang. J. H.; Wu, X. P.; Zhang, W.; Xu, L. J.; Chen, G. N., A sweeping-micellar electrokinetic chromatography method for direct detection of some aromatic amines in water samples. Electrophoresis 2008,29 (4):796-802.
    [24]Lin, Z.; Zhang, J. H.; Cui, H. M.; Zhang, L.; Chen, G. N., Determination of aromatic amines in environmental water sample by hollow fiber-liquid phase microextraction and microemulsion electrokinetic chromatography. Journal of Chromatography A 2010,1217 (26): 4507-4510.
    [25]Tabuchi, M.; Kuramitsu, Y.; Nakamura, K.; Baba, Y., A 15-s protein separation employing hydrodynamic force on a microchip. Analytical Chemistry 2003,75 (15):3799-3805.
    [26]Teng, Y.; Liu, R.; Li, C.; Zhang, H., Effect of 4-aminoantipyrine on oxidative stress induced by glutathione depletion in single human erythrocytes using a microfluidic device together with fluorescence imaging. Journal of Hazardous Materials 2011,192 (3):1766-1771.
    [27]Shin, D.; Tryk, D. A.; Fujishima, A.; Muck, A.; Chen, G.; Wang, J., Microchip capillary electrophoresis with a boron-doped diamond electrochemical detector for analysis of aromatic amines. Electrophoresis 2004,25 (17):3017-3023.
    [28]Pu, Q. S.; Oyesanya, O.; Thompson, B.; Liu, S.; Alvarez, J. C., On-Chip micropatterning of plastic (cylic olefin copolymer, COC) microfluidic channels for the fabrication of biomolecule microarrays using photografting methods. Langmuir 2006,23 (3):1577-1583.
    [29]Peng, Z. Y.; Soper, S. A.; Pingle, M. R.; Barany, F.; Davis, L. M., Ligase detection reaction generation of reverse molecular beacons for near real-time analysis of bacterial pathogens using single-pair fluorescence resonance energy transfer and a cyclic olefin copolymer microfluidic chip. Analytical Chemistry 2010,82 (23):9727-9735.
    [30]Faure, K.; Albert, M.; Dugas, V.; Cretier, G.; Ferrigno, R.; Morin, P.; Rocca, J.-L. Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation. Electrophoresis 2008,29 (24):4948-4955.
    [31]Gustafsson, O.; Mogensen, K. B.; Kutter, J. P., Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. Electrophoresis 2008,29 (15):3145-3152.
    [32]Wang, Q.; Zhang, Y.; Ding, H.; Wu, J.; Wang, L. L.; Zhou, L.; Pu, Q. S., The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips. Journal of Chromatography A 2011,1218 (52):9422-9427.
    [33]Wang, L. L.; Wu, J.; Wang, Q.; He, C. H.; Zhou, L.; Wang, J.; Pu, Q. S., Rapid and sensitive determination of sulfonamide residues in milk and chicken muscle by microfluidic chip Electrophoresis. Journal of Agricultural and Food Chemistry 2012,60 (7):1613-1618.
    [34]Hutt, L. D.; Glavin, D. P.; Bada, J. L.; Mathies, R. A., Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. Analytical Chemistry 1999,71 (18):4000-4006.
    [35]Martynova, L.; Locascio, L. E.; Gaitan, M.; Kramer, G. W.; Christensen, R. G.; MacCrehan, W. A., Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry 1997,69 (23):4783-4789.
    [36]Pu, Q. S.; Luttge, R.; Gardeniers, H. J. G. E.; Berg, A. van den, Comparison of capillary zone electrophoresis performance of powder-blasted and hydrogen fluoride-etched microchannels in glass. Electrophoresis 2003,24 (1-2):162-171.
    [37]Zhang, L.; Yin, X. F.; Fang, Z. L., Negative pressure pinched sample injection for microchip-based electrophoresis. Lab on a Chip 2006,6,258-264.
    [38]Belder, D.; Ludwig, M., Surface modification in microchip electrophoresis. Electrophoresis 2003,24 (21):3595-3606.
    [39]Mela, P.; Berg, A. van den; Fintchenko, Y.; Cummings, E. B.; Simmons, B. A.; Kirby, B. J., The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Electrophoresis 2005,26 (9): 1792-1799.
    [40]Beattie, J.K., The intrinsic charge on hydrophobic microfluidic substrates. Lab on a Chip 2006, 6,1409-1411.
    [41]Crabtree, H. J.; Cheong, E. C. S.; Tilroe, D. A.; Backhouse, C. J., Microchip injection and separation anomalies due to pressure effects. Analytical Chemistry 2001,73 (17): 4079-4086.
    [1]Lumbet, R. A.; Connolly, C.; Kouri, R. E.; Nebert, D. W.; Bigelow, S. W., Biological effect of the Sudan dyes:role of the Ahcytosolic receptor. Biochemical Pharmacology 1983,32 (20): 3053-58.
    [2]Stiborova, M.; Frei, E.; Schmeiser, H. H.; Wiessler, M.; Hradec, J., Detoxication products of the carcinogenic azodye sudan:1 (solvent yellow 14) bind to nucleic acids after activation by peroxidase. Cancer Letters 1993,68 (1):43-47.
    [3]Commission decision of 23 May 2005 on emergency measures regarding chilli products, curcuma and palm oil, Official Journal of the European Union (2005/402/EC) L135/34.
    [4]Cruz Yaguez, L.E. de la; Pingarron Carrazon, J. M.; Polo Diez, L.M., Polarographic study of the 1-(2,4-dimethylphenylazo)-2-naphthol (Sudan-Ⅱ) in hydroalcoholic medium. Electrochimica Acta 1986,31 (1):119-21.
    [5]Marshall, P. N., Thin-layer chromatography of Sudan dyes. Journal of Chromatography A 1997,136,353-357.
    [6]Daood, H. G.; Biacs, P. A., Simultaneous determination of Sudan dyes and carotenoids in Red pepper and tomato products by HPLC. Journal of Chromatographic Science 2005,43 (9): 461-465.
    [7]Ertas, E.; Ozer, H.; Alasalvar, C., A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper. Food Chemistry 2007,105 (2):756-760.
    [8]Fan, Y.; Chen, M.; Shentu, C.; El-Sepai, F.; Wang, K.; Zhu, Y.; Ye, M., Ionic liquids extraction of Para Red and Sudan dyes from chilli powder, chilli oil and food additive combined with high performance liquid chromatography. Analytica Chimica Acta 2009,650 (1):65-69.
    [9]Zhang, Y.; Zhang, Z.; Sun, Y., Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO-luminol chemiluminescence detection. Journal of Chromatography A 2006,1129 (1):34-40.
    [10]Wang, S.;Xu, Z. X.; Fang, G. Z.; Duan, Z. J.; Zhang, Y.;Chen, S., Article, Synthesis and Characterization of a Molecularly Imprinted Silica Gel Sorbent for the On-Line Detennination of Trace Sudan I in Chilli Powder through High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry 2007,55 (10):3869.
    [11]Zhang, Y.; Wu, H. L.; Xia, A. L.; Han, Q. J.; Cui, H.; Yu, R. Q., Interference-free detennination of Sudan dyes in chilli foods using second-order calibration algorithms coupled with HPLC-DAD. Talanta 2007,72 (3):926-931.
    [12]Cornet, V.; Govaert, Y.; Moens, G.; Loco, J. V.; Degroodt, J. M., Development of a Fast Analytical Method for the Determination of Sudan Dyes in Chili-and Curry-Containing Foodstuffs by High-Performance Liquid Chromatography-Photodiode Array Detection. Journal of Agricultural and Food Chemistry 2006,54 (3):639-644.
    [13]Chailapakul, O.; Wonsawat, W.; Siangproh, W.; Grudpan, K.; Zhao, Y.; Zhu, Z., Analysis of sudan Ⅰ, sudan Ⅱ. sudan III, and sudan IV in food by HPLC with electrochemical detection: Comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode. Food Chemistry 2008,109 (4):876-882.
    [14]Donna, L. D.; Maiuolo, L.; Mazzotti, F.; Luca, D. D.; Sindona, G., Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Analytical Chemistry 2004,76 (17):5104-5108.
    [15]Tateo, F.; Bononi, M., Fast Determination of Sudan I by HPLC/APCI-MS in hot chilli, spices, and oven-baked foods. Journal of Agricultural and Food Chemistry 2004,52 (4):655-658.
    [16]Mazzotti, F.; Donna, L. D.; Maiuolo, L.; Napoli, A.; Salerno, R.; Sajjad, A.; Sindona, G., Assay of the set of all Sudan azodye (Ⅰ, Ⅱ,Ⅲ, Ⅳ, and para-red) contaminating agents by liquid chromatography-tandem mass spectrometry and isotope dilution methodology. Journal of Agricultural and Food Chemistry 2008,56 (1):63-67.
    [17]Yu, C. H.; Liu, Q.; Lan, L. D.; Hu, B., Comparison of dual solvent-stir bars microextraction and U-shaped hollow fiber-liquid phase microextraction for the analysis of Sudan dyes in food samples by high-performance liquid chromatography-ultraviolet/mass spectrometry. Journal of Chromatography 2008,1188(2):124-131.
    [18]Mejia, E.; Ding, Y.; Mora, M. F.; Garcia, C. D., Determination of banned sudan dyes in chili powder by capillary electrophoresis. Food Chemistry 2007,102 (4):1027-1033.
    [19]Fukuji, T. S.; Castro-Puyana, M.; Tavares, M. F. M.; Cifuentes, A., Fast determination of Sudan dyes in chilli tomato sauces using partial filling micellar electrokinetic chromatography. Journal of Agricultural and Food Chemistry 2011,59 (22):11903-11909.
    [20]Wang, L. L.; Wu, J.; Wang, Q.; He, C. H.; Zhou, L.; Wang, J.; Pu, Q. S., Rapid and sensitive determination of sulfonamide residues in milk and chicken muscle by microfluidic chip Electrophoresis. Journal of Agricultural and Food Chemistry 2012,60 (7):1613-1618.
    [21]Wei, X.; Gao, X. T.; Zhao, L.; Peng, X. L.; Zhou, L.; Wang, J.; Pu, Q. S., Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. Journal of Chromatography A 2013,1281,148-154.
    [22]Li, R. N.; Wang, L. L.; Gao, X. T.; Du, G. F.; Zhai, H. L.; Wang, X. Y.; Guo, G S.; Pu, Q. S., Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis. Journal of Hazardous Materials 2013,248-249,268-275.
    [1]Carru, C.; Zinellu, A.; Sotgia, S.; Marongiu, G.; Farina, M. G.; Usai, M. F.; Pes, G. M.; Tadolini, B.; Deiana, L., Optimization of the principal parameters for the ultrarapid electrophoretic separation of reduced and oxidized glutathione by capillary electrophoresis. Journal of Chromatography A 2003,1017 (1-2):233-238.
    [2]Monostori, P.; Wittmann, G.; Karg, E.; Turi, S., Determination of glutathione and glutathione disulfide in biological samples:An in-depth review. Journal of Chromatography B 2009,877 (28):3331-3346.
    [3]蔡鹏,刘叙仪,王萍,谷胱甘肽还原酶循环法测定血浆谷胱甘肽含量在肿瘤化疗中的意义.中国肿瘤临床1994.10,717-719.
    [4]Mergel, D.; Andermann, G.; Andermann, C., Simultaneous spectrophotometric determination of oxidized and reduced glutathione in human and rabbit red cells. Methods Find Exp Clin Pharmacol 1979,1 (5):277-283.
    [5]Besada, A.; Tadros, N. B.; Gawargious, Y. A., Copper (Ⅱ)-neocuproine as colour reagent for some biologically active thiols:Spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine. Microchimica Acta 1989,99,143-146.
    [6]Teare, J. P.; Punchard, N. A.; Powell, J. J.; Lumb, P. J.; Mitchell, W. D.; Thompson, R. P., Automated spectrophotometric method for determining oxidized and reduced glutathione in liver. Clin Chem 1993,39 (4):686-689.
    [7]Zhang, J.; Hu, Z.; Chen, X., Quantification of glutathione and glutathione disulfide in human plasma and tobacco leaves by capillary electrophoresis with laser-induced fluorescence detection. Talanta 2005,65 (4):986-990.
    [8]Sakhi, A. K.; Russnes, K. M.; Smeland, S.; Blomhoff, R.; Gundersen, T. E., Simultaneous quantification of reduced and oxidized glutathione in plasma using a two-dimensional chromatographic system with parallel porous graphitized carbon columns coupled with fluorescence and coulometric electrochemical detection. Journal of Chromatography A 2006, 1104(1-2):179-189.
    [9]Sakhi, A. K.; Blomhoff, R.; Gundersen, T. E., Simultaneous and trace determination of reduced and oxidized ghtathione in minute plasma samples using dual mode fluorescence detection and column switching high performance liquid chromatography. Journal of Chromatography A 2007,1142(2):178-184.
    [10]Salamon, Z.; Gleason, F. K.; Tollin, G., Direct electrochemistry of thioredoxins and glutathione at a lipid bilayer-modifled electrode. Archives of Biochemistry and Biophysics 1992,299(1):193-198.
    [11]Jan, V.; Jiri, P.; Rene, K.; Ladislav, H.; Borivoj, K.; Libuse, T.; Frantisek. J., Electrochemical determination of lead and glutathione in a plant cell culture. Bioelectrochemistry 2004,63 (1-2):347-351.
    [12]Norris, R. L.; Eaglesham. G. K.; Shaw, G. R.; Smith, M. J.; Chiswell, R. K.; Seawright, A. A.; Moore, M. R., A sensitive and specific assay for glutathione with potential application to glutathione disulphide, using high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 2001,762 (1):17-23.
    [13]Giustarini, D.; Dalle-Donne, I.; Colombo, R.; Milzani, A.; Rossi, R., An improved HPLC measurement for GSH and GSSG in human blood. Free Radical Biology and Medicine 2003, 35(11):1365-1372.
    [14]Steghens, J. P.; Flourie, F.; Arab, K.; Collombel, C., Fast liquid chromatography-mass spectrometry glutathione measurement in whole blood:micromolar GSSG is a sample preparation artifact. Journal of Chromatography B 2003,798(2):343-349.
    [15]Vovk, T.; Bogataj, M.; Roskar, R.; Kmetec, V.; Mrhar, A., Determination of main low molecular weight antioxidants in urinary bladder wall using HPLC with electrochemical detector. International Journal of Pharmaceutics 2005,291 (1-2):161-169.
    [16]Zhu, P.; Oe, T.; Blair, I. A., Determination of cellular redox status by stable isotope dilution liquid chromatography/mass spectrometry analysis of glutathione and glutathione disulfide. Rapid Communications in Mass Spectrometry 2008,22 (4):432-440.
    [17]Panak, K. C.; Ruiz, O. A.; Giorgieri, S. A.; Diaz, L. E., Direct determination of glutathione in human blood by micellar electrokinetic chromatography:Simultaneous determination of lipoamide and lipoic acid. Electrophoresis 1996,17 (10):1613-1616.
    [18]Yang, Q.; Krautmacher, C.; Schilling, D.; Pittelkow, M. R.; Naylor, S., Simultaneous analysis of oxidized and reduced glutathione in cell extracts by capillary zone electrophoresis. Biomedical Chromatography 2002,16 (3):224-228.
    [19]Carru, C.; Zinellu, A.; Pes, G. M.; Marongiu, G.; Tadolini, B.; Deiana, L., Ultrarapid capillary electrophoresis method for the determination of reduced and oxidized glutathione in red blood cells. Electrophoresis 2002,23 (11):1716-1721.
    [20]Carru, C.; Zinellu, A.; Sotgia, S.; Marongiu, G.; Farina, M. G.; Usai, M. F.; Pes, G. M.; Tadolini, B.; Deiana, L., Optimization of the principal parameters for the ultrarapid electrophoretic separation of reduced and oxidized glutathione by capillary electrophoresis. Journal of Chromatography A 2003,1017 (1-2):233-238.
    [21]Kong, Y.; Zheng, N.; Zhang, Z.; Gao, R., Optimization stacking by transient pseudo-isotachophoresis for capillary electrophoresis:example analysis of plasma glutathione. Journal of Chromatography B 2003,795 (1):9-15.
    [22]Whitesides, G. M., The origins and the future of microfluidics. Nature 2006,442,368-373.
    [23]Dittrich, P. S.; Tachikawa, K.; Manz, A., Micro total analysis systems. Latest advancements and trends. Analytical Chemistry 2006,78 (12):3887-3908.
    [24]Hulvey, M. K.; Frankenfeld, C. N.; Lunte, S. M., Separation and detection of peroxynitrite using microchip electrophoresis with amperometric detection. Analytical Chemistry 2010,82 (5):1608-1611.
    [25]Gao, N.; Li, L.; Shi, Z.; Zhang, X.; Jin, W.. High-throughput determination of glutathione and reactive oxygen species in single cells based on fluorescence images in a microchannel. Electrophoresis 2007,28 (21):3966-3975.
    [26]Qin, J.; Ye, N.; Yu, L.; Liu, D.; Fung, Y.; Wang, W.; Ma, X.; Lin, B., Simultaneous and ultrarapid determination of reactive oxygen species and reduced glutathione in apoptotic leukemia cells by microchip electrophoresis. Electrophoresis 2005,26 (6):1155-1162.
    [27]Ling, Y. Y.; Yin, X. F.; Fang, Z. L.; Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis. Electrophoresis 2005,26 (4): 4759-4766.
    [28]Wang, L. L.; Wu, J.; Wang, Q.; He, C. H.; Zhou, L.; Wang, J.; Pu, Q. S., Rapid and sensitive determination of sulfonamide residues in milk and chicken muscle by microfluidic chip Electrophoresis. Journal of Agricultural and Food Chemistry 2012,60 (7):1613-1618.
    [29]Wei, X.; Gao, X. T.; Zhao, L.; Peng, X. L.; Zhou, L.; Wang, J.; Pu, Q. S., Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips. Journal of Chromatography A 2013,1281,148-154.
    [30]Li, R. N.; Wang, L. L.; Gao, X. T.; Du, G. F.; Zhai, H. L.; Wang, X. Y.; Guo, G. S.; Pu, Q. S., Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis. Journal of Hazardous Materials 2013,248-249,268-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700