DWI对肝癌射频消融术后病灶的早期诊断和定量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究磁共振扩散加权成像(DW-MRI)在肝癌射频术后肿瘤残存/复发或新发病灶的早期诊断和射频消融灶各组织成分定量评价中的应用价值。
     材料与方法:对31例肝癌患者射频消融(RFA)术前及术后和20例正常对照组的DW-MRI资料进行分析,观察DWI对肝癌RFA术后病灶的显示情况及DWI和ADC图上感兴趣区域(ROI)的信号变化,在ADC图上测量RFA前病灶的ADC值和RFA后消融灶内不同组织的ADC值,并与病理或DSA图像对照,获得各组织成分的ADC界限值。
     结果:分析28例CT图像和31例RFA治疗前磁共振平扫+增强、DWI图像的敏感度、特异度、PPV和NPV,结果显示磁共振平扫+增强结合DWI的敏感度最高(100%)。31例患者的扫描结果显示b值选取600和800 s/mm~2的DWI图像显示肝癌病灶及消融灶信号较准确。31例患者的38个病灶RFA治疗前后均进行了MRI平扫、增强、DWI图像分析及ADC值测量。利用整体测量法和高低信号区测量法,在b值为800 s/mm~2的ADC图中测得肝癌病灶的ADC值与正常肝实质ADC值间的差异分别具有显著性(P<0.05);在b值为600和800 s/mm~2的ADC图测得肝癌病灶与周围肝组织、肝癌病灶与炎性反应组织以及肝癌病灶RFA术前与术后的ADC值间差异分别具有显著性(P<0.05);在b值为400 s/mm~2的ADC图测得肝癌病灶与周围肝组织、肝癌病灶与炎性反应组织以及肝癌病灶RFA术前与术后的ADC值间差异无显著性(P>0.05);在b值为400、600和800 s/mm~2的ADC图中测得RFA术后肝癌病灶与凝固坏死组织、肝癌病灶与液化坏死组织的ADC值间差异分别具有显著性(P<0.05)。
     结论:DWI发现肿瘤的敏感性较高,结合MRI应用可提高肝癌病灶的检出能力。在病灶显示清楚的前提下尽量选取b值为800 s/mm~2的ADC图测量所得的ADC值接近真实DC值。DWI结合ADC图可显示肿瘤与正常肝实质、炎性组织以及坏死组织之间的信号差异,并且每种组织具有较特定的ADC值范围,可定量评价RFA治疗的疗效。
Objective: To evaluate the clinic value of DW-MRI in the early diagnosis of residual lesions or new lesions and the quantitative evaluation of DWI for the lesions after RFA of hepatic carcinoma.
     Materials and methods: The data of DW-MRI of 31 patients with hepatic carcinoma before and after RFA and of 20 normal persons were analyzed. The lesions after RFA in the DWI and the change of signal of ROI were analyzed in the DWI and ADC imaging, and ADC values of lesions were measured before RFA and different organizations after RFA. The limiting value of ADC was obtained with pathology or DSA images in control.
     Results: The sensitivity, specificity, PPV and NPV of CT images in 28 cases and enhanced MRI in 31 cases before RFA were analyed, which showed the highest sensitivity (100%) of contrast-enhanced MRI(CE-MRI)combined with DWI. Results showed that the signal of lesions was more accurate when b value was 600 and 800s/mm~2 in DWI. Thirty one patients with 38 lesions before and after RFA were analyzed in the routine MRI, CE-MRI and DWI, and ADC values of image were measured. ADC values of lesions were acquired by using of overall level measurement and high and low signal area measurement, the differences of ADC values between lesions and normal liver in the ADC imaging with b value 800 s/mm~2 were significant (P< 0.05). Differences of ADC values between lesions and liver tissue around lesions, the lesions and inflammation tissue, the lesions before RFA and after's, were significant in the ADC imaging with b value 600 and 800 s/mm~2 (P<0.05), where the differences of ADC values were no statistically significant in the ADC imaging with b value 400 s/mm~2 (P>0.05). Differences of ADC values between lesions and coagulation necrotic tissue, lesions and liquefaction necrosis after RFA were significant in the ADC imaging with b value 400, 600 and 800 s/mm~2 (P<0.05).
     Conclusion: DWI displays a higher sensitivity for tumor detection. And the detection capacity could be even improved by combination of DWI and MRI. ADC value measured is near to the true DC value in the ADC imaging when b value was 800 s/mm~2, if the lesion showed a clear boundary. DWI combined with ADC imaging could show signal differences between tumors and other tissues, such as normal liver parenchyma, inflammatory tissue, and necrotic tissue. A various of pathological types have a relatively specific range of ADC values, which could be as the quantitative evaluation for the RFA efficacy.
引文
[1]张晓鹏.在宏观静止中感受微观运动:磁共振扩散加权成像临床应用的若干认识.中国医学影像技术, 2005, 21(12): 1796-1798.
    [2] Miller FH, Hammond N, Siddiqi AJ, et al. Utility of diffusion-weighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging, 2010, 32(1): 138-147.
    [3] Luypaert R, Boujraf S, Sourbron S, et al. Diffusion and perfusion MRI: basic physics. Eur J Radiol, 2001, 38(1): 19-27.
    [4] Herneth AM, Guccione S, Bednarski M. Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur J Radiol, 2003, 45(3): 208-213.
    [5] Kauppinen RA. Monitoring cytotoxic tumour treatment response by diffusion magnetic resonance imaging and proton spectroscopy. NMR Biomed, 2002, 15(1): 6-17.
    [6] Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst, 2000, 92(24): 2029-2036.
    [7] Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med, 2000, 43(6): 828-836.
    [8] Benveniste H, Hedlund LW, Johnson GA. Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke, 1992, 23(5): 746-754.
    [9] Dudeck O, Zeile M, Wybranski C, et al. Early prediction of anticancer effects with diffusion-weighted MR imaging in patients with colorectal liver metastases following selective internal radiotherapy, 2010, 20(11): 2699-2706.
    [10] Guglielmi A, Ruzzenente A, Battocchia A, et al. Radiofrequency ablation of hepatocellular carcinoma in cirrhotic patients. Hepatogastroenterology, 2003, 50(50): 480-482.
    [11] Machi JJ, Bueno RS, Wong LL. Long-term Follow-up Outcome of Patients Undergoing Radiofrequency Ablation for Unresectable Hepatocellular Carcinoma. World J Surg, 2005, 29: 1-3.
    [12] Min-Hua Chen, Wei Yang, Kun Yan, et al. Treatment efficacy of radiofrequency ablation of338 patients with hepatic malignant tumor and the relevant complications. World J Gastroenterol, 2005, 11(40): 6395-6397.
    [13] Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol, 2007, 188(6): 1622-1635.
    [14] Zhao M, Pipe JG, Bonnett J, Evelhoch JL. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo Br J Cancer, 1996, 73(1): 61-64.
    [15] Moffat BA, Hall DE, Stojanovska J, et al. Diffusion imaging for evaluation of tumor therapies in preclinical animal models. MAGMA, 2004, 17(3-6): 249-259.
    [16] Kauppinen RA. Monitoring cytotoxic tumour treatment response by diffusion magnetic resonance and proton spectroscopy. NMR Biomed, 2002, 15(1): 6-17.
    [17] Evelhoch JL, Gillies RJ, Karczmar GS, et al. Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia, 2000, 2(1-2): 152-165.
    [18] Ross BD, Moffat BA, Lawrence TS, et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging.Mol Cancer Ther, 2003, 2(6): 581-587.
    [19] Thoeny HC, De Keyzer F, Chen F, eet al.Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of the effects of combretastatin a-4 phosphate after repeated administration. Neoplasia, 2005, 7(8): 779-787.
    [20] Moffat BA, Chenevert TL, Meyer CR, et al. The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome.Neoplasia, 2006, 8(4): 259-267.
    [21] Muhi A, Ichikawa T, Motosugi U, et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging, 2009, 30(5): 1005-1011.
    [22] Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR, 2010, 94(1): 33-37.
    [23]严昆,陈敏华,杨薇等.超声造影评价肝恶性肿瘤射频治疗疗效:与常规超声及增强CT比较.中华超声影像学杂志, 2005, 14(9): 655-656.
    [24] Dromain C, Baere T, Elias D, et al. Hepatic Tumors treated with percutaneous radio-frequency ablation: CT and MR imaging Follow-up. Radiology, 2002, 223(1):255-262.
    [25] Merkle EM, Boll DT, Boaz T, et al. MRI guided radiofrequecy thermal ablation of implanted VX2 liver tumors in a rabbit model: demonstration of feasibility at 0.2T. Magn Reson Med, 1999, 42(1): 141-145.
    [26] Lyng H, Haraldseth O, Rofstad EK. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging.Magn Reson Med, 2000, 43(6): 828-836.
    [27] Kele, P, van der Jagt, E. Diffusion weighted imaging in the liver. World J Gastroenterol, 2010, 16(13): 1567-1576.
    [28] Dunn JF, Ding S, O`Hara JA, et al. The apparent diffusion constant measured by MRI correlates with pO2 in a RIF-1 tumor .Magn Reson Med, 1995, 34(4): 515-519.
    [29] Guo AC, Cummings TJ, Dash RC, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology, 2002, 224(1): 177-183.
    [30] Heo SH, Jeong YY, Shin SS, et al. Apparent diffusion coefficient value of diffusion-weighted imaging for hepatocellular carcinoma: correlation with the histologic differentiation and the expression of vascular endothelial growth factor. Korean J Radiol, 2010, 11(3): 295-303.
    [31] Hayashida Y, Yakushiji T, Awai K, et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results. Eur Radiol, 2006, 16(12): 2637-2643.
    [32] Dzik-Jurasz A, Domenig C, George M, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet, 2002, 360(9329): 307-308.
    [33] Pickles MD, Gibbs P, Lowry M, et al. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging, 2006, 24(7): 843-847.
    [34] Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology, 2005, 234(3): 756-764.
    [35] Lang P, Wendland MF, Saeed M, et al. Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology, 1998, 206(1): 227-235.
    [36] Nasu K, Kuroki Y, Tsukamoto T, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma: imaging characteristics and relationship among signal intensity,apparent diffusion coefficient, and histopathologic grade. AJR, 2009, 193(2): 438-444.
    [37]侯仲军,廉宗澄,韩悦,等.碘油栓塞兔肝脏的MRI研究.实用放射学杂志, 1998, 14(9): 543-545.
    [38] Schraml C, Schwenzer NF, Clasen S, et al. Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation-initial results. J Magn Reson Imaging, 2009, 29(6):1308-1316.
    [39]强永乾,郭佑民,孙兴旺,等.弥散加权成像在肝脏占位性病变中的应用价值.第四军医大学学报, 2006, 27(18): 1711-1713.
    [1] Livraghi T, Goldberg SN, Monti F, et al. Saline enhanced radio-frequency tissue ablation in the treatment of liver metastases. Radiology, 1997, 202: 205-208.
    [2] Goldberg SN, Gazell GS, Solbiati L, et al. Ablation of liver tumors using percutaneous RF therapy. AJR, 1998, 170: 1023-1027.
    [3] Rossi S, Buslarini E, Garbagnati F, et al. Percutaneous treatment of small hepatic tumor by an expandable RF needle electrode. AJR, 1998, 170: 1015-1016.
    [4]刘海鹰,余南荣.肝癌射频治疗现状.现代实用医学, 2005, 17: 322-324.
    [5] Zerbini A, Pilli M, Penna A, et al. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res, 2006, 66: 1139-1143.
    [6] Numata K, Isozaki T, Ozawa Y, et al. Percutaneous ablation therapy guided by contrast-enhanced sonography for patients with hepatocelluar carcinoma. AJR, 2003, 180: 143-144.
    [7] Toyoda M, Kakizaki S, Horiuchi K, et al. Computed tomography-guided transpulmonary radiofrequency ablation for hepatocellular carcinoma located in hepatic dome. World J Gastroenterol, 2006, 12: 608-610.
    [8]王月香,梁萍.肝癌热凝固治疗疗效的影像学判断.中华超声影像学杂志, 2004, 13: 623-626.
    [9] Raman SS, Lu DS, Vokopich DJ, Sayre J, et al. Creation of radiofrequency lesions in a porcine model: correlation with sonography, CT, and histopathology. AJR, 2000, 175: 1253-1255.
    [10] Cha CH, Lee FTJ, Gurney JM, Markhardt BK, et al. CT versus sonography for monitoring radiofrequency ablation in a porcine liver. AJR, 2000, 175: 705-713.
    [11] Livraghi T, Solbiati L, Meloni F, et al. Treatment of focal liver tumors with percutaneous radio-frequency ablation: Complications encountered in a multicenter study. AJR, 2003, 226: 441-445.
    [12] Kim SK, Lim HK, Kim YH, et al. Hepatocellular carcinoma treated with radio-frequencyablation: Spectrum of imaging findings. Radiographics, 2003, 23: 107-112.
    [13] Dromain C, Baere T, Elias D, et al. Hepatic Tumors treated with percutaneous radio-frequency ablation: CT and MR imaging Follow-up. Radiology, 2002, 223: 255-256.
    [14] Hotta N, Tagaya T, Maeno T, et al. Advanced dynamic flow imaging with contrast-enhanced ultrasonography for the evaluation of tumor vascularity in liver tumors. Clin Imaging, 2005, 29: 34-36.
    [15] Solbiati L,Goldberg N,Ierace T,et al. Radio-frequency Ablation of Hepatic Metastases: Postprocedural Assessment with a US Microbubble Contrast Agent-Early Experience. Radiology, 1999, 211: 643-647.
    [16] Choi D, Lim HK, Kim SH, et al. Hepatocellular Carcinoma Treated with Percutaneous Radio-frequency Ablation: Usefulness of Power Doppler US with a Microbubble Contrast Agent in Evaluating Therapeutic Response-Preliminary Results. Radiology, 2000, 217: 558-561.
    [17] Meloni MF, Goldberg SN, Livraghi T, et al. Hepatocellular Carcinoma Treated with Radiofrequency Ablation: Comparison of Pulse Inversion Contrast-Enhanced Harmonic Sonography, Contrast-Enhanced Power Doppler Sonography, and Helical CT. AJR, 2001, 177: 375-382.
    [18] Wen YL, Kudo M, Zheng RQ, et al. Radiofrequency Ablation of Hepatocellular Carcinoma: Therapeutic Response Using Contrast-Enhanced Coded Phase-Inversion Harmonic Sonography. AJR, 2003, 181: 57-59.
    [19] Cioni D, Lencioni R, Rossi S, et al. Radiofrequency thermal ablation of hepatocellular carcinoma: using contrast-enhanced harmonic power doppler sonography to assess treatment outcome. AJR, 2001, 177: 783-786.
    [20] Choi D, Lim HK, Kim SH, et al. Assessment of therapeutic response in hepatocellular carcinoma treated with percutaneous radiofrequency ablation: comparison of multiphase helical computed tomography and power Doppler ultrasonography with a microbubble contrast agent. J Ultrasound Med, 2002, 21: 391-393.
    [21]严昆,陈敏华,杨薇,等.超声造影评价肝恶性肿瘤射频治疗疗效:与常规超声及增强CT比较.中华超声影像学杂志, 2005, 14: 655-656.
    [22] Zhou X, Strobel D, Haensler J, et al. Hepatic transit time: indicator of the therapeutic response to radiofrequency ablation of liver tumours. Br J Radiol, 2005, 78: 433-435.
    [23] Lu DS, Yu NC, Raman SS, et al. Radiofrequency ablation of hepatocellular carcinoma: treatment success as defined by histologic examination of the explanted liver. Radiology, 2005, 234: 954-957.
    [24] Goldberg SN, Gazelle GS, Compton CC, et al. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer, 2000, 88: 2452-2453.
    [25] Morimoto M, Sugimori K, Shirato K, et al. Treatment of hepatocellular carcinoma with radiofrequency ablation: radiologic-histologic correlation during follow-up periods. Hepatology, 2002, 35: 1467-1472.
    [26]Lim HK, Choi D, Lee WJ, et al. Hepatocellular carcinoma treated with percutaneous radio-frequency ablation: evaluation with follow-up multiphase Helical CT. Radiology, 2001, 221: 447-448.
    [27] Chopra S, Dodd GD 3rd, Chintapalli KN, et al. Tumor recurrence after radiofrequency thermal ablation of hepatic tumors: spectrum of findings on dual-phase contrast-enhanced CT. AJR, 2001, 177: 381-385.
    [28] Limanond P, Zimmerman P, Raman SS, et al. Interpretation of CT and MRI after radiofrequency ablation of hepatic malignancies. AJR, 2003, 181: 1635-1639.
    [29] Tsuda M, Majima K, Yamada T, et al. Hepatocellular carcinoma after radiofrequency ablation therapy: dynamic CT evaluation of treatment. Clin Imaging, 2001, 25: 409-413.
    [30] Rhim H, Dodd GD. Radio-frequency thermal ablation of liver tumors. Journal of Clinical Ultrasound, 1999, 27: 221-222.
    [31] Filippone A, Iezzi R, Di Fabio F, et al. Multidetector-row computed tomography of focal liver lesions treated by radiofrequency ablation: spectrum of findings at long-term follow-up. J Comput Assist Tomogr, 2007, 31: 42-48.
    [32]宋莉,佟小强,王健,等. CTAP联合CTA评价肝脏恶性肿瘤射频消融术疗效.中国介入影像与治疗学, 2006, 3(5): 333-334.
    [33] Livraghi T, Goldberg SN, Lazzaroni S, et al. Hepatocellular carcinoma: radio-frequency ablation of medium and large lesions. Radiology, 2000, 214: 761-765.
    [34] Masashi T, Hiroya R, Kazuhiro M, et al. Time-Related Changes of Radiofrequency Ablation Lesionin the Normal Rabbit Liver: Findings of MagneticResonance Imaging and Histopathology. Invest Radiol, 2003, 38: 525-527.
    [35] Merkle EM, Boll DT, Boaz T, et al. MRI guided radiofrequecy thermal ablation of implanted VX2 liver tumors in a rabbit model: demonstration of feasibility at 0.2T. Magn Reson Med, 1999, 42: 141-143.
    [36]郑晓林,徐辉雄,吕明德,等.肝脏扩增加权MRI在检测消融后肿瘤存活中的应用.临床放射学杂志, 2006, 25: 153-154.
    [37] Jean-Francois H , Dimitri A , Susan A ,et al . Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. Radiology, 2000, 11:1245-1246.
    [38]李文涛,王建华,颜志平,等.肝癌射频治疗后的血管造影表现.临床放射学杂志, 2003, 22: 408-411.
    [39]许若才,孔轶,李建良,等.数字减影血管造影在射频切除肝脏恶性肿瘤疗效评价中的应用.中国肿瘤临床与康复, 2004, 11: 149-150.
    [40] Donckier V, Van Laethem JL, et al. [F-18] fluorodeoxyglucose positron emission tomography as a tool for early recognition of incomplete tumor destruction after radiofrequency ablation for liver metastases. J Surg Oncol, 2003, 84: 215-216.
    [41] Anderson GS, Brinkmann F, Soulen MC, et al. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med, 2003, 28: 192.
    [42] Barker DW, Zagoria RJ, Morton KA. Evaluation of liver metastases after radiofrequency ablation: utility of 18F-FDG PET and PET/CT. AJR, 2005, 184: 1096-1099.
    [43] Mitsuo Toyoda Satoru Kakizaki Katsuhiko Horiuchi, et al. Computed tomography- guided transpulmonary radiofrequency ablation for hepatocellular carcinoma located in hepatic dome. World J Gastroenterol, 2006, 12(4): 608-611.
    [44] Hilmar K, Gerald A, Hrvoje S, et al. Comparison of FDG-PET, PET-CT and MRI for follow-up of colorectal liver metastases treated with radiofrequency ablation: initial results. Eur Radiol, 2008, 67: 362-371.
    [45] Yulri P, Dongil C, Lim HK, et al. Growth rate of new hepatocellular carcinoma after percutaneous radiofrequency ablation: evaluation with multiphase CT. AJR, 2008, 191: 215-220.
    [46] Vilgrain V. Advancement in HCC imaging: diagnosis, staging and treatment efficacy assessments : Hepatocellular carcinoma: imaging in assessing treatment efficacy. J HepatobiliaryPancreat Sci, 2010, 17(4): 374-379.
    [47] B. Taouli, D.-M. Koh. Diffusion-weighted MR Imaging of the Liver. Radiology, 2010, 254(1): 47-66.
    [48] Nasu K,Kuroki Y,Tsukamoto T, et al. Diffusion-Weighted Imaging of Surgically Resected Hepatocellular Carcinoma: Imaging Characteristics and Relationship Among Signal Intensity, Apparent Diffusion Coefficient, and Histopathologic Grade. AJR, 2009, 193(2): 438-444.
    [49] Eric K. Outwater, MD. Imaging of the Liver for Hepatocellular Cancer. Moffitt Cancer Center and Research Institute, 2010, 17(2): 72-82.
    [50] Low RN, Gurney J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI.J Magn Reson Imaging, 2007, 25: 848-858.
    [51] Muhi A, Ichikawa T, Motosugi U, et al. High-b-value diffusion-weighted MR imaging of hepatocellular lesions: estimation of grade of malignancy of hepatocellular carcinoma. J Magn Reson Imaging, 2009, 30(5): 1005-1011.
    [52] Kwee TC, Taro T, Koh DM, et al. Comparison and reproducibility of ADC measurements in breathhold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging, 2008, 28: 1141-1148.
    [53] Schraml C, Schwenzer NF, Clasen S, et al. Navigator respiratory-triggered diffusion-weighted imaging in the follow-up after hepatic radiofrequency ablation-initial results. J Magn Reson Imaging, 2009, 29(6): 1308-1316.
    [54] CHUNG GE, Lee JH, Kim HY, Hwang SY, et al. Transarterial chemoembolization can be safely performed in patients with improve the overall survival. Radiology, 2011, 258: 627-634.
    [55] Cheng B-Q, Jia C-Q, Liu C-T, et al. Chemoembolization combined with radiofrequency ablation for patients with hepatocellular carcinoma larger than 3 cm: a randomized controlled trial. JAMA, 2008, 299(14): 1669-1677.
    [56] Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology, 2008, 248: 804-900.
    [57] Lorenzo Mannelli, Sooah Kim, Cristina H. Hajdu, et al. Assessment of Tumor Necrosis of Hepatocellular Carcinoma After Chemoembolization: Diffusion-Weighted andContrast-Enhanced MRI With Histopathologic Correlation of the Explanted Liver. AJR, 2009, 93: 1044-1052.
    [58] Kubota K, Yamanishi T, Itoh S, Murata Y, et al. Role of diffusion-weighted imaging in evaluating therapeutic efficacy after transcatheter arterial chemoembolization for hepatocellular carcinoma. Oncol Rep, 2010, 24(3): 727-732.
    [59] Annet L, Peeters F, Abarca-Quinones J, et al. Assessment of diffusion-weighted MR imaging in liver fibrosis. J Magn Reson Imaging, 2007, 25: 122-128.
    [60] Nishie A, Tajima T, Ishigami K, et al.Detection of hepatocellular carcinoma (HCC) using super paramagnetic iron oxide (SPIO)-enhanced MRI: Added value of diffusion-weighted imaging (DWI). J Magn Reson Imaging, 2010, 31(2): 373-382.
    [61] Xu PJ, Yan FH, Wang JH, et al. Added value of breathhold diffusion-weighted MRI in detection of small hepatocellular carcinoma lesions compared with dynamic contrast- enhanced MRI alone using receiver operating characteristic curve analysis. J Magn Reson Imaging, 2009, 29(2): 341-349.
    [62] Sergio S, Paola T, Francesca M, et al. Subcapsular liver tumors treated with percutaneous radiofrequency ablation: a prospective comparison with nonsubcapsular liver tumors for safety and effectiveness. Radiology, 2008, 248: 670-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700