华北克拉通东南缘新生代碱性玄武岩的成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钠质碱性玄武岩是中国东部新生代火山作用的主要岩石类型,分布十分广泛,为探讨大陆板内碱性玄武岩的成因、地幔源区的性质以及引发玄武质岩浆活动的深部动力学机制提供了理想的研究对象。本文选择华北克拉通东南缘山东、苏皖两区域的新生代碱性玄武岩作为我们的研究对象,开展了系统的岩石地球化学研究(主量元素、微量元素和Sr-Nd-Hf同位素),并结合玄武岩中橄榄岩捕掳体的微区原位矿物化学(电子探针和LA-ICPMS)分析,揭示了钠质碱性玄武岩成因上的多样性,建立了地幔化学不均一性与源区岩性之间的联系,为探讨玄武质岩浆形成的深部动力学机制提供了新的线索。
     山东新生代碱性玄武岩可分为晚期的强碱性玄武岩与早期的链状弱碱性玄武岩两类。稀土倒转模式的计算结果显示,强碱性玄武岩的部分熔融程度(1-3%)要明显低于链状弱碱性玄武岩(3-10%)。强碱性玄武岩具有比链状弱碱性玄武岩偏低的SiO2(39.2-45.1wt.%)、Al2O3(10.3-13.8wt.%)含量,偏高的全碱(Na2O+K2O=4.3-8.6wt.%)、CaO(8.0-12.6wt.%)含量,偏高的Ca/Al(0.7-1.3)比值,以及更富集的绝大多数不相容元素含量(Zr、Hf、Ti和K除外),且在微量元素蛛网图上呈现出强烈的K、Zr、Hf和Ti的负异常(Hf/Hf*=0.59-0.77,Ti/Ti*=0.46-0.71)。这些特征与碳酸岩相似,暗示强碱性玄武岩的源区曾经遭受过碳酸盐质流体或熔体的交代,强碱性玄武岩是碳酸盐化的地幔低程度熔融的产物。而链状弱碱性玄武岩具有比强碱性玄武岩相对富集的Sr-Nd-Hf同位素组成,且同位素比值之间存在相关性,表明其源区存在三个不同的地幔端元。亏损端元的地球化学特征与大山玄武岩相似,暗示其也来源于碳酸盐化的软流圈地幔。其它两个富集端元均具有高的SiO2含量、低的CaO含量、低的Ce/Pb、Th/La和Zr/Hf比值、以及解耦的Nd-Hf同位素组成,与榴辉岩或石榴子石辉石岩组分熔融的特征相类似,暗示链状弱碱性玄武岩的地幔源区还存在重循环的古老下地壳。此外,链状弱碱性玄武岩的双链之间还存在系统的、小尺度的地球化学差异,暗示它们源区的榴辉岩组分并不均一,而榴辉岩组分之间细微的差别则是由于重循环的大陆地壳在早期经历过不同程度的部分熔融引起的。
     苏皖地区的盘石山和塔山玄武岩含大量地幔捕掳体,且具有区别苏皖地区其它玄武岩独特的地球化学特征,包括偏低的sc含量(10.3-17.8ppm)和Ca/Al比值(0.4-0.6),偏高的Na/Ti(?)匕值(2.8-5.0)等,暗示它们在形成过程中明显受单斜辉石的影响。这些玄武岩中含大量橄榄岩捕掳体,它们由岩性不同的核部与边部组成,其边部的辉石含量要明显低于核部,且在显微镜下和电子探针背散射图像中均见单斜辉石呈明显的筛状边结构,暗示这些橄榄岩捕掳体在随寄主岩浆的上升过程中发生了部分熔融。而玄武岩独特的单斜辉石效应特征,则是继承自橄榄岩捕掳体部分熔融所释放的熔体。此外,橄榄岩在显微镜下还可见橄榄石包裹斜方辉石现象,暗示橄榄岩捕掳体与寄主岩浆之间发生了反应,消耗斜方辉石生成橄榄石,并引起寄主玄武岩的Si02含量增加。因此,盘石山和塔山玄武岩独特的地球化学特征是上升过程中玄武岩与橄榄岩捕掳体相互作用的产物。
Cenozoic volcanism in eastern China is wide-spread, and the most important rock type in this area is the sodic alkaline basalt. It provides an ideal setting in which to study the genesis of intra-continental alkaline basalts, the characteristics of the mantle source, and the potential geodynamic mechanism inducing continental volcanism. Here we present major, trace-element, and Sr-Nd-Hf isotopes data for the Cenozoic alkaline basalts from Shandong and Jiangsu-Anhui area in the southeastern margin of North China Craton, as well as the major, trace-element data for minernals in peridotite xenoliths hosted in Tashan basalts (one of the volcanoes in Jiangsu-Anhui area), to argue the multiple genesis of the sodic alkaline basalt. We also suggest that the geochemical heterogeneity of the mantle is induced by different lithologies in the source, and it provides a new clue to discuss the potential geodynamic mechanism for the Cenozoic continental volcanism in eastern China.
     The Cenozoic alkaline basalts in Shandong can be divided into two types:the strongly alkaline basalts and the weakly alkaline basalts. Inverse rare earth element (REE) modeling suggests that the strongly and the weakly alkaline basalts represent melting amounts of1.5-3%and3-10%, respectively. In comparison with the weakly alkaline basalts, these strongly alkaline basalts have relatively lower contents of SiO2(39.2-45.1wt.%) and Al2O3(10.3-13.8wt.%), higher contents of alkalis (Na2O+K2O=4.3-8.6wt.%) and CaO (8.0-12.6wt.%), higher Ca/Al ratios (0.7-1.3), and higher concentrations of most incompatible elements. On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline basalts have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf*=0.59-0.77, Ti/Ti*=0.46-0.71) than do the weakly alkaline basalts. These main characteristics of the strongly alkaline basalts resemble those of carbonatites. Therefore, we suggest that the carbonatitic "fingerprints" of these rocks are inherited from an asthenospheric source that had undergone enrichment with carbonatitic liquids, and our observations indicate that the source rocks of the strongly alkaline basalts in Shandong were mainly carbonated peridotite. Sr-Nd-Hf isotopic compositions for the weakly alkaline basalts form separate binary mixing arrays which converge on the compositions of Dashan, an isolated, nephelinitic volcano with the most depleted isotopic signature. The two enriched endmembers have higher SiO2contents, lower CaO contents, lower Ce/Pb, Th/La, Zr/Hf ratios, and significantly diverging isotopic enrichment trends from this common endmember. Both trends deviate from the normal Nd-Hf mantle array toward higher εHf values. All these features point to a recycled eclogitic source for the weakly alkaline basalts in Shandong. In addition, the isotopic compositions of basalts from the two volcanic chains show two slightly different mixing trends, which indicates that the enriched endmembers of the two chains are different. Such differences reflect an additional, small-scale chemical and isotopic difference between the recycled crustal components in the respective mantle sources. These are explained by different proportions of melts extracted from eclogite during the first (Mesozoic) stage of evolution.
     Panshishan and Tanshan are two Cenozoic volcanoes in the Jiangsu-Anhui area, which are characterized with abundant mantle xenoliths. Basalts from these two volcanoes have lower Sc contents (10.3-17.8ppm), lower Ca/Al ratios (0.4-0.6) and higher Na/Ti ratios (2.8-5.0) than those for other alkaline basalts in Jiangsu-Anhui area, indicating the influence of clinopyroxene in the genesis of these basalts. Peridotite xenoliths from these two volcanoes are usually composed of core and rim with different lithologies. The core of peridotite xenoliths generally contains more amounts of pyroxene than the rim. The spongy textures are observed in clinopyroxene, which indicates that it has been melted during the ascending process, and the "clinopyroxene fingerprints" are inherited from these melts during melting. In addition, we observed that the orthopyroxenes are included in the olivine, suggesting the reaction between peridotite and basaltic melts. This reaction can consume the orthopyroxenes, produce the olivines, and raise the SiO2contents of basalts. Therefore, the Panshishan and Tashan basalts are produced by the interactions between basaltic magma and peridotite xenoliths.
引文
Abouchami, W., Galer, S., Hofmann, A.,2000. High precision lead isotope systematics of lavas from the Hawaiian Scientific Drilling Project. Chemical Geology 169:187-209.
    Abouchami, W., Hofmann, A.W., Galer, S.J.G, Frey, F.A., Eisele, J., Feigenson, M.,2005. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434:851-856.
    Adam, J., Green, T.,2006. Trace element partitioning between mica-and amphibole-bearing garnet lherzolite and hydrous basanitic melt:1. Experimental results and the investigation of controls on partitioning behavior. Contributions to Mineralogy and Petrology 152:1-17.
    Aldanmaz, E., K pruba, N., Giirer, F., Kaymak, N., Gourgaud, A.,2006. Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey:Implications for mantle sources and melting processes. Lithos 86:50-76.
    Anders, E., Grevesse, N.,1989. Abundances of the elements:meteoritic and solar. Geochimica et Cosmochimica Acta 53:197-214.
    Basu, A.R., Wang, J.W., Huang, W.K., Xie, GH., Tatsumoto, M.,1991. Major element, Ree, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic-rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters 105:149-169.
    Bizimis, M., Salters, V.J.M., Dawson, J.B.,2003. The brevity of carbonatite sources in the mantle; evidence from Hf isotopes. Contributions to Mineralogy and Petrology 145:281-300.
    Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T., Marini, J.C.,2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nature Geoscience 1:64-67.
    Chen, L.H., Zeng, G, Jiang, S.Y., Hofmann, A.W., Xu, X.S.,2009a. Sources of Anfengshan basalts:Subducted lower crust in the Sulu UHP belt, China. Earth and Planetary Science Letters 286:426-435.
    Chen, L., Cheng, C., Wei, Z.,2009b. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth and Planetary Science Letters 286:171-183.
    Chu, Z.Y., Wu, F.Y., Walker, R.J., Rudnick, R.L., Pitcher, L., Puchtel, I.S., Yang, Y.H., Wilde, S.A., 2009. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology 50:1857-1898.
    Chung, S.L., Wang, K.L., Crawford, A.J., Kamenetsky, V., Chen, C.H., Lan, C.Y.,2001. High-Mg potassic rocks from Taiwan:implications for the genesis of orogenic potassic lavas. Lithos 59: 153-170.
    Conticelli, S., Francalanci, L., Manetti, P., Cioni, R., Sbrana, A.,1997. Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, central Italy:the role of evolutionary processes in the genesis of variably enriched alkaline magmas. Journal of Volcanology and Geothermal Research 75:107-136.
    Dasgupta, R., Hirschmann, M.M., McDonough, W.F., Spiegelman, M., Withers, A.C.,2009. Trace element partitioning between garnet lherzolite and carbonatitie at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chemical Geology 262:57-77.
    Dasgupta, R., Hirschmann, M.M., Smith, N.D.,2007. Partial melting experiments of peridotitie+ CO2 at 3 GPa and genesis of alkalic ocean island basalts. Journal of Petrology 48:2093-2124.
    Dasgupta, R., Hirschmann, M.M., Stalker, K..,2006. Immiscible transition from carbonate-rich to slicate-rich melts in the 3 GPa melting interval of eclogite+CO2 and genesis of silica-undersaturated ocean island lavas. Journal of Petrology 47:647-671.
    Dasgupta, R., Jackson, M.G., Lee, C.T.,2010. Major element chemistry of ocean island basalts-Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters 289:377-392.
    Dautria, J.M., Dupuy, C., Takherist, D., Dostal, J.,1992. Carbonate metasomatism in the lithospheric mantle:peridotitic xenoliths from a melilititic district of the Sahara basin. Contributions to Mineralogy and Petrology 111:37-52.
    Deng, J.F., Mo, X.X., Zhao, H.L., Wu, Z.X., Luo, Z.H., Su, S.G,2004. A new model for the dynamic evolution of Chinese lithosphere:'continental roots-plume tectonics'. Earth-Science Reviews 65:223-275.
    Ebinger, C.J., Sleep, N.H.,1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395:788-791.
    Farmer, G.L.,2003. Continental Basaltic Rocks. In:Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. Elsevier, Oxford, pp.85-121.
    Farnetani, C.G., Hofmann, A.W.,2010. Dynamics and internal structure of the Hawaiian plume. Earth and Planetary Science Letters 295:231-240.
    Feigenson, M.D., Bolge, L.L., Carr, M.J., Herzberg, C.T.,2003. REE inverse modeling of HSDP2 basalts:Evidence for multiple sources in the Hawaiian plume. Geochemistry, Geophysics, Geosystems 4. doi:10.1029/200 lgc00027.
    Gao, S., Rudnick, R.L., Xu, W.L., Yuan, H.-L., Liu, Y.-S., Walker, R.J., Puchtel, I.S., Liu, X., Huang, H., Wang, X.-R., Yang, J.,2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters 270: 41-53.
    Gao, S., Rudnick, R.L., Yuan, H.L., Liu, X.M., Liu, Y.S., Xu, W.L., Ling, W.L., Ayers, J., Wang, X.C., Wang, Q.H.,2004. Recycling lower continental crust in the North China craton. Nature 432:892-897.
    Gorring, M.L., Kay, S.M.,2000. Carbonatite metasomatized peridotite xenoliths from southern Patagonia:implications for lithospheric processes and Neogene plateau magmatism. Contributions to Mineralogy and Petrology 140:55-72.
    Govindaraju, G,1994. Compilation of working values and sample description for 383 geostandards. Geostandards Newslett,18. Geostandards Newslett,1-158 pp.
    Green, T.H., Blundy, J.D., Adam, J., Yaxley, G.M.,2000. SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5GPa and 1080-1200℃. Lithos 53:165-187.
    Herzberg, C.,2006. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444:605-609.
    Herzberg, C., Asimow, P.D.,2008. Petrology of some oceanic island basalts:PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems 9. doi: 10.1029/2008gc002057.
    Hirose, K.,1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophysical Research Letters 24:2837-2840.
    Hirose, K.., Kushiro, I.,1993. Partial melting of dry peridotites at high pressures:determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth and Planetary Science Letters 114:477-489.
    Hirschmann, M.M., Kogiso, T., Baker, M.B., Stolper, E.M.,2003. Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481-484.
    Hoernle, K., Tilton, G., Le Bas, M.J., Duggen, S., Garbe-Schonberg, D.,2002. Geochemistry of oceanic carbonatites compared with continental carbonatites:mantle recycling of oceanic crustal carbonate. Contributions to Mineralogy and Petrology 142:520-542.
    Hofmann, A.W.,1997. Mantle geochemistry:the message from oceanic volcanism. Nature 385: 219-229.
    Hofmann, A.W., Jochum, K.P., Seufert, M., White, W.M.,1986. Nb and Pb in oceanic basalts:new constraints on mantle evolution. Earth and Planetary Science Letters 79:33-45.
    Hole, M., Rogers, G, Saunders, A., Storey, M.,1991. Relation between alkalic volcanism and slab-window formation. Geology 19:657-660.
    Huang, J.L., Zhao, D.P.,2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research 111. doi:10.1029/2005 JB004066.
    Ionov, D.A., Dupuy, C, O'Reilly, S.Y., Kopylova, M.G., Genshaft, Y.S.,1993. Carbonated peridotite xenoliths from Spitsbergen:implications for trace element signature of mantle carbonate metasomatism. Earth and Planetary Science Letters 119:283-297.
    Ionov, D.A., O'Reilly, S.Y., Genshaft, Y.S., Kopylova, M.G.,1996. Carbonate-bearing mantle xenoliths from Spitsbergen:phase relationships, mineral compositions and trace element residence. Contributions to Mineralogy and Petrology 125:375-392.
    Jahn, B., Wu, F., Lo, C.H., Tsai, C.H.,1999. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology 157:119-146.
    Johnson, K.T.M., Dick, H.J.B., Shimizu, N.,1990. Melting in the oceanic upper mantle:an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research 95: 2661-2678.
    Jull, M., Kelemen, P.,2001. On the conditions for lower crustal convective instability. Journal of Geophysical Research 106:6423-6446.
    Kempton, P., Fitton, J., Hawkesworth, C., Ormerod, D.,1991. Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. Journal of Geophysical Research 96:13713-13735.
    Klemme, S., Blundy, J.D., Wood, B.J.,2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta 66: 3109-3123.
    Kogiso, T., Hirschmann, M.M.,2006. Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth and Planetary Science Letters 249:188-199.
    Kogiso, T., Hirschmann, M.M., Frost, D.J.,2003. High-pressure partial melting of garnet pyroxenite:possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters 216:603-617.
    Le Bas, M., Le Maitre, R., Streckeisen, A., Zanettin, B.,1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27:745-750.
    Linnen, R.L., Keppler, H.,2002. Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta 66:3293-3301.
    Liu, C.Q., Masuda, A., Xie, G.H.,1994. Major-and trace-element compositions of Cenozoic basalts in eastern China:petrogenesis and mantle source. Chemical Geology 114:19-42.
    Liu, R.X., Sun, J.Z., Chen, W.J.,1983. Cenozoic basalts in North China:their distribution, geochemical characteristics and tectonic implications. Chinese Journal of Geochemistry 2: 17-33.
    Liu, Y.S., Gao, S., Kelemen, P.B., Xu, W.L.,2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica et Cosmochimica Acta 72:2349-2376.
    McDonough, W.F., Sun, S.S.,1995. The composition of the Earth. Chemical Geology 120: 223-253.
    McKenzie, D.A.N., O'Nions, R.K.,1995. The source regions of ocean island basalts. Journal of Petrology 36:133-159.
    Menzies, M.A., Fan, W.M., Zhang, M.,1993. Palaeozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China. In:Prichard, H.M., Alabaster, T., Harris, N.B.W., Neary, C.R. (Eds.), Magmatic processes and plate tectonics. Geological Society, London, Special Publications, pp.71-78.
    Miller, C., Schuster, R., Kl tzli, U., Frank, W., Purtscheller, F.,1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology 40:1399-1424.
    Munker, C., Pfander, J.A., Weyer, S., BuchI, A., Kleine, T., Mezger, K.,2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science 301:84-87.
    Nielsen, R.L., Gallahan, W.E., Newberger, F.,1992. Experimentally determined mineral-melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite. Contributions to Mineralogy and Petrology 110:488-499.
    Niu, Y., O'Hara, M.J.,2003. Origin of ocean island basalts:A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research 108. doi:10.1029/2002JB002048.
    Norman, M.D.,1998. Melting and metasomatism in the continental lithosphere:laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contributions to Mineralogy and Petrology 130:240-255.
    O'Reilly, S.Y., Zhang, M.,1995. Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources:Connections with the subcontinental lithospheric mantle? Contributions to Mineralogy and Petrology 121:148-170.
    Peng, Z.C., Zartman, R.E., Futa, K., Chen, D.G.,1986. Pb-, Sr-and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chemical Geology 59:3-33.
    Pertermann, M., Hirschmann, M.M.,2002. Trace-element partitioning between vacancy-rich eclogitic clinopyroxene and silicate melt. American Mineralogist 87:1365-1376.
    Pertermann, M., Hirschmann, M.M.,2003a. Anhydrous partial melting experiment on MORB-like eclogites phase relations, phase composition and mineral-melt partitioning of major elements at 2-3 Gpa. Journal of Petrology 44:2173-2202.
    Pertermann, M., Hirschmann, M.M.,2003b. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa:Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research 108: 2125-2142.
    Pilet, S., Baker, M.B., Stolper, E.M.,2008. Metasomatized Lithosphere and the Origin of Alkaline Lavas. Science 320:916-919.
    Pilet, S., Hernandez, J., Bussy, F., Sylvester, P.J.,2004. Short-term metasomatic control of Nb/Th ratios in the mantle sources of intraplate basalts. Geology 32:113-116.
    Pilet, S., Hernandez, J., Sylvester, P., Poujol, M.,2005. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters 236:148-166.
    Plank, T., Langmuir, C.H.,1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145:325-394.
    Prouteau, G., Scaillet, B., Pichavant, M., Maury, R.,2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197-200.
    Prytulak, J., Elliott, T.,2007. TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters 263:388-403.
    Rapp, R.P., Watson, E.B.,1995. Dehydration melting of metabasalt at 8-32 kbar:Implications for continental growth and crust-mantle recycling. Journal of Petrology 36:891-931.
    Ren, J., Tamaki, K., Li, S., Junxia, Z.,2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics 344:175-205.
    Rudnick, R., Fountain, D.,1995. Nature and composition of the continental crust:a lower crustal perspective. Reviews of Geophysics 33:267-309.
    Rudnick, R.L., Gao, S.,2003. Composition of the continental crust. In:Rudnick, R.L. (Ed.), Treatise on Geochemistry. Elsevier, pp.1-64.
    Rudnick, R.L., McDonough, W.F., Chappell, B.W.,1993. Carbonatite metasomatism in the northern Tanzanian mantle:Petrographic and geochemical characteristics. Earth and Planetary Science Letters 114:463-475.
    Salters, V.J.M., Longhi, J.E., Bizimis, M.,2002. Near solidus trace element partitioning at pressures up to 3.4 GPa. Geochemistry, Geophysics, Geosystems 3. doi: 10.1029/2001GC000148.
    Sisson, T.W., Kimura, J.I., Coombs, M.L.,2009. Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnct peridotite at Hawaii's leading magmatic edge. Contributions to Mineralogy and Petrology 158:803-829.
    Sleep, N.H.,2002. Local lithospheric relief associated with fracture zones and ponded plume material. Geochemistry, Geophysics, Geosystems 3. doi:10.1029/2002GC000376.
    Sleep, N.H.,2006. Mantle plumes from top to bottom. Earth-Science Reviews 77:231-271.
    Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., Yaxley, G.M., Arndt, N.T., Chung, S.L., Danyushevsky, L.V., Elliott, T., Frey, F.A., Garcia, M.O., Gurenko, A.A., Kamenetsky, V.S., Kerr, A.C., Krivolutskaya, N.A., Matvienkov, V.V., Nikogosian, I.K., Rocholl, A., Sigurdsson, I.A., Sushchevskaya, N.M., Teklay, M.,2007. The amount of recycled crust in sources of mantle-derived melts. Science 316:412-417.
    Sobolev, A.V., Hofmann, A.W., Sobolev, S.V., Nikogosian, I.K.,2005. An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590-597.
    Song, Y., Frey, F.A., Zhi, X.,1990. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology 88:35-52.
    Su, B.X., Zhang, H.F., Sakyi, P.A., Yang, Y.H., Ying, J.F., Tang, Y.J., Qin, K.Z., Xiao, Y., Zhao, X.M., Mao, Q.,2011. The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contributions to Mineralogy and Petrology 161:465-482.
    Sun, S.S., Hanson, G.N.,1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contributions to Mineralogy and Petrology 52:77-106.
    Tang, Y.J., Zhang, H.F., Ying, J.F.,2006. Asthenosphere-lithospheric mantle interaction in an extensional regime:Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology 233:309-327.
    Trua, T., Esperanca, S., Mazzuoli, R.,1998. The evolution of the lithospheric mantle along the N. African Plate:geochemical and isotopic evidence from the tholeiitic and alkaline volcanic rocks of the Hyblean plateau, Italy. Contributions to Mineralogy and Petrology 131:307-322.
    Van Achterbergh, E., Ryan, C.G., Jackson, S.E., Griffin, W.L.,2001. Data reduction software for LA-ICP-MS. In:Sylvester, P.J. (Ed.), Laser Ablation-ICPMS in the earth sciences:principles and applications. MAC Short Course Series, Ottawa, Ontario, Canada, pp.239-243.
    van Westrenen, W., Blundy, J., Wood, B.,1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. American Mineralogist 84:838-847.
    Villemant, B., Jaffrezic, H., Joron, J., Treuil, M.,1981. Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaine-Des-Puys (Massif Central, France). Geochimica et Cosmochimica Acta 45:1997-2016.
    Walter, M.J.,1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39:29-60.
    Wendlandt, R.F., Mysen, B.O.,1980. Melting phase relations of natural peridotite+CO2 as a function of degree of partial melting at 15 and 30 kbar. American Mineralogist 65:37-44.
    Wilson, M., Patterson, R.,2001. Intraplate magmatism related to short-wavelength convective instabilities in the upper mantle, evidence from the Tertiary-Quaternary volcanic province of western and central Europe. In:Ernst, R.E., Buchan, K.L. (Eds.), Mantle plumes:their identification through time. Geological Society of America, Boulder, Colorado, pp.37-58.
    Workman, R.K., Hart, S.R.,2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters 231:53-72.
    Wyllie, P.J., Huang, W.L.,1976. Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications. Contributions to Mineralogy and Petrology 54:79-107.
    Xiao, Y., Zhang, H.F., Fan, W.M., Ying, J.F., Zhang, J., Zhao, X.M., Su, B.X.,2010. Evolution of lithospheric mantle beneath the Tan-Lu fault zone, eastern North China Craton:evidence from petrology and geochemistry of peridotite xenoliths. Lithos 117:229-246.
    Xu, W.L., Gao, S., Yang, D.B., Pei, F.P., Wang, Q.H.,2009. Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos 107:269-280.
    Xu, X.S., O'Reilly, S.Y., Griffin, W.L., Zhou, X.M.,2003. Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chemical Geology 198:163-188.
    Xu, Y.G.,2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china:evidence, timing and mechanism. Physics and Chemistry of the Earth (A) 26:747-757.
    Xu, Y.G., Bodinier, J.L.,2004. Contrasting enrichments in high-and low-temperature mantle xenoliths from Nushan, eastern China:results of a single metasomatic event during lithospheric accretion? Journal of Petrology 45:321-341.
    Xu, Y.G., Ma, J.L., Frey, F.A., Feigenson, M.D., Liu, J.F.,2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology 224:247-271.
    Yang, Y.H., Zhang, H.F., Chu, Z.Y., Xie, L.W., Wu, F.Y.,2010. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry 290:120-126.
    Yaxley, G.M., Crawford, A.J., Green, D.H.,1991. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth and Planetary Science Letters 107: 305-317.
    Yaxley, G.M., Green, D.H.,1998. Reactions between eclogite and peridotite:mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen 78:243-255.
    Yaxley, G.M., Green, D.H., kAMEnetsky, V.,1998. Carbonatite metasomatism in the Southeastern Australian lithosphere. Journal of Petrology 39:1917-1930.
    Zack, T., Foley, S.F., Jenner, G.A.,1997. A consistent partition coefficient set for clinopyroxene, amphibole and garnet from laser ablation microprobe analysis of garnet pyroxenites from Kakanui, New Zealand. Neues Jahrbuch fur Mineralogie, Abhirchen 172:23-41.
    Zanetti, A., Tiepolo, M., Oberti, R., Vannucci, R.,2004. Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrious basanite melt. Lithos 75:39-54.
    Zhang, H.F., Sun, M., Zhou, X.H., Fan, W.M., Zhai, M.G, Yin, J.F.,2002. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology 144:241-254.
    Zhang, J.J., Zheng, Y.F., Zhao, Z.F.,2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110:305-326.
    Zhang, M., O'Reilly, S.Y.,1997. Multiple sources for basaltic rocks from Dubbo, eastern Australia: geochemical evidence for plume-lithospheric mantle interaction. Chemical Geology 136: 33-54.
    Zhang, M., Suddaby, P., Thompson, R.N., Thirlwall, M.F., Menzies, M.A.,1995. Potassic volcanic-rocks in NE China-Geochemical Constraints on Mantle Source and Magma Genesis. Journal of Petrology 36:1275-1303.
    Zhao, GC., Sun, M., Wilde, S.A., Li, S.Z.,2005. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited. Precambrian Research 136:177-202.
    Zhao, L., Allen, R.M., Zheng, T.Y., Hung, S.H.,2009. Reactivation of an Archean craton: constraints from P-and S-wave tomography in North China. Geophysical Research Letters 36:L17306.
    Zheng, T.Y., Zhao, L., Xu, W.W., Zhu, R.X.,2008. Insight into modification of North China Craton from Seismological study in the Shandong Province. Geophysical Research Letters 35.
    Zhi, X.C., Song, Y., Frey, F.A., Feng, J.L., Zhai, M.Z.,1990. Geochemistry of Hannuoba basalts, eastern China:Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology 88:1-33.
    Zhou, X.H., Armstrong, R.L.,1982. Cenozoic volcanic rocks of eastern China-secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters 58:301-329.
    Zindler, A., Hart, S.,1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences 14:493-571.
    Zou, H.B., Zindler, A., Xu, X.S., Qi, Q.,2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China:mantle sources, regional variations, and tectonic significance. Chemical Geology 171:33-47.
    陈道公,彭子成,1985.山东新生代火山岩K-Ar年龄和Pb-Sr同位素特征.地球化学4:293-303.
    [Chen, D.G, Peng, Z.C.,1985. K-Ar ages and Pb, Sr isotopic characteristics of Cenozoic volcanic rocks in Shandong, China. Geochimica 4:293-303.]
    安徽地质调查院,1977.1:200000地质图(南京幅).
    [Anhui Institute of Geological Survey,1977.1:200000 Geological Map (Nanjing Scope).]
    陈道公,彭子成,1988.皖苏若干新生代火山岩的钾氩年龄和铅锶同位素特征.岩石学报2:3-12.
    [Chen, D.G, Peng, Z.C.,1988. K-Ar ages and Pb, Sr isotopic characteristics of some Cenozoic volcanic rocks from Anhui and Jiangsu provinces, China. Acta Petrologica Sinica 2:3-12.]
    陈文寄,葛同明,李大明,徐行,李齐,樊利民,王昕,文思郁,1992a.雷琼地区新生代玄武岩的K-Ar-磁性地层年代学.见:刘若新(Ed.),中国新生代火山岩年代学与地球化学.地震出版社,北京,pp.239-245.
    [Chen, W.J., Ge, T.M., Li, D.M. Xu, X., Li, Q., Fan, L.M., Wang, X., Wen, S.Y.,1992a. The K-Ar-magnetostratigraphic chronology of Cenozoic basalt in Hainan Island and Leizhou Peninsula. In:Liu, R.X. (Ed.), The age and geochemistry of Cenozoic Volcanic Rock in China. Seismology Press, Beijing, pp.239-245.]
    陈文寄,李大明,戴潼谟,蒲志平,刘若新,李齐,孙建中,王昕,Jager, E., Hurford, A.J., Hunziker, J.G.,1992b.大同第四纪玄武岩的K-Ar年龄及过剩氩.见:刘若新(Ed.),中国新生代火山岩年代学与地球化学.地震出版社,北京,pp.81-92.
    [Chen, W.J., Li, D.M., Dai, T.M., Pu, Z.P., Liu, R.X., Li, Q., Sun, J.Z., Wang, X., Jager, E., Hurford, A.J., Pfeifer, H.R.,1992b. The K-Ar age and excess Ar of Quaternary basalt in Datong. In:Liu, R.X. (Ed.), The age and geochemistry of Cenozoic Volcanic Rock in China. Seismology Press, Beijing, pp.81-92.]
    江苏地质调查院,1978.1:200000地质图(盱眙幅)
    [Jiangsu Institute of Geological Survey,1978.1:200000 Geological Map (Xuyi Scope).]
    金隆裕,1989.郯庐断裂带中段新生代火山岩的岩石学和地球化学特征.岩石学报4:45-57.
    [Jin, L.Y.,1989. Petrologic and geochemical characteristics of Cenozoic volcanic rocks in the middle segment of the Tancheng-Lujiang fault zone. Acta Geologica Sinica 4:45-57.]
    刘嘉麒,1987.中国东北地区新生代火山岩的年代学研究.岩石学报4:21-31.
    [Liu, J.Q.,1987. Study on geochronology of the Cenozoic volcanic rocks in Northeast China. Acta Geologica Sinica 4:21-31.]
    刘嘉麒,1988.中国东北地区新生代火山幕.岩石学报1:1-10.
    [Liu, J.Q.,1988. The Cenozoic volcanic episodes in Northeast China. Acta Geologica Sinica 1: 1-10.]
    刘若新,陈文寄,孙建中,李大明,1992a.中国新生代火山岩的K-Ar年代与构造环境.见:刘若新(Ed.),中国新生代火山岩年代学与地球化学.地震出版社,北京,pp.1-43.
    [Liu, R.X., Chen, W.J., Sun, J.Z., Li, D.M.,1992a. The K-Ar age and tectonic environment of Cenozoic volcanic rock in China, in:Liu, R.X. (Ed.), The Age and Geochemistry of Cenozoic Volcanic Rock in China. Seismic Press, Beijing, pp.1-43.]
    刘若新,李继泰,魏海泉,许东满,郑祥身,1992b.长白山天池火山:一座具潜在喷发危险的近代火山.地球物理学报35:661-665.
    [Liu, R.X., Li, J.T., Wei, H.Q., Xu, D.M., Zhen, X.S.,1992b. Volcano at Tianchi Lake, Changbaishan MT.:a modern volcano with potential danger of eruption. Acta Geophysica Sinica 35:661-665.]
    罗丹,陈立辉,曾罡,2009.陆内强碱性火山岩的成因:以山东无棣大山霞石岩为例.岩石学报25:311-319.
    [Luo, D., Chen, L.-H., Zeng, G,2009. Gensis of intra-continental strongly alkaline volcanic rocks: A case study of Dashan nephelinites in Wudi, Shandong Province, North China. Acta Petrologica Sinica 25:311-319.]
    罗修泉,陈启桐,1990.内蒙古新生代玄武岩年代学初步研究.岩石矿物学杂志9:37-46.
    [Luo, X.Q., Chen, Q.T.,1990. Preliminary study on geochronology for Cenozoic basalts from Inner Mongolia. Acta Petrologica et Mineralogica 9:37-46.]
    濮巍,高剑峰,赵葵东,凌洪飞,蒋少涌,2005.利用DCTA和HIBA快速有效分离Rb-Sr,Sm-Nd的方法.南京大学学报(自然科学)41:445-450.
    [Pu, W., Gao, J.F., Zhao, K.D., Lin, H.F., Jiang, S.Y.,2005. Separation method of Rb-Sr, Sm-Nd using DCTA and HIBA. Journal of Nanjing University (Natural Sciences) 41:445-450.]
    山东省地质矿产勘查开发局,1992.1:200000地质图(蓬莱幅).
    [Shandong Geology & Mineral Exploration Bureau,2005.1:250000 Geological Map (Penglai Scope).]
    山东省地质调查院,2005.1:250000地质图(潍坊幅)
    [Shandong Institute of Geological Survey,2005.1:250000 Geological Map (Weifang Scope).]
    徐嘉炜,马国锋,1992.郯庐断裂带研究的十年回顾.地质论评38:316-324.
    [Xu, J.W., Ma, G.F.,1992. Review of ten years of research on the Tancheng-Lujiang fault zone. Geological Review 38:316-324.]
    王慧芬,杨学昌,朱炳泉,范嗣昆,戴檀谟,1988.中国东部新生代火山岩K-Ar年代学及其演化.地球化学1:1-11.
    [Wang, H.F., Yang, X.C., Zhu, B.Q., Fan, S.K., Dai, T.M.,1988. K-Ar Geochronology and evolution of Cenozoic volcanic rocks in eastern China. Geochimica 1:1-11.]
    王人镜,杨淑荣,1987.浙江嵊县一新昌新生代玄武岩及包体的研究.地球科学12:241-248.
    [Wang, R.J., Yang, S.R.,1987. Research on Cenozoic basalts and inclusions in Shengxian-Xingchang counties, Zhengjiang province. Earth Science 12:241-248.]
    孙伟汉,赖志敏,1980.福建省新生代火山岩岩石化学特征及与构造地质关系的讨论.地球化学2:134-147.
    [Sun, W.H., Lai, Z.M.,1980. Petrochemical characteristics of Cenozoic volcanic rocks in Fujian province and its relationship to tectonics. Geochimica 2:134-147.]
    赵大升,肖增岳,王艺芬,1983.郯庐断裂带及其邻近地区新生代火山岩岩石特征及成因探讨.地质学报2:128-141.
    [Zhao, D.S., Xiao, Z.Y., Wang, Y.T.,1983. Petrological characteristics and genesis of the Cenozoic volcanic rocks in Tancheng-Lujiang fault belt and the adjacent areas. Acta Geologica Sinica 2: 128-141.]
    郑洪汉,高维明,朱照宇,黄宝林,卢良才,1991.山东半岛和苏皖北部的第四纪火山活动.地球化学3:205-210.
    [Zheng, H.H., Gao, W.M., Zhu, Z.Y., Huang, B.L., Lu, L.C.,1991. Quaternary volcanic activities in Shandong peninsula and northern parts of Jiangsu and Anhui provinces. Geochimica 3: 205-210.]
    周新民,1981.福建省牛头山两个系列玄武岩及其包头的研究.南京大学学报(自然科学)3:382-391.
    [Zhou, X.M.,1981. An investigation of two basaltic series and their inclusions on Niutoushan of Fujian province of south-eastern China. Journal of Nanjing University (Natural Sciences) 3: 382-391.]
    周新民,陈图华,1980.南街附近新生代玄武岩火山锥及其喷发特征.南京大学学报(自然科学)2:83-103.
    [Zhou, X.M., Chen, T.H.,1980. Cenozoic basalt volcanic cones and their characters of the eruption in the vicinity of Nanjing. Journal of Nanjing University (Natural Sciences) 2: 83-103.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700