岩土锚固的FBG-FRP锚杆及其智能监测系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从解决岩土锚固安全问题的角度出发,针对锚固耐久性及其安全监测需要,结合FRP材料的优良特性和光纤光栅传感器的感知性能,研制开发出了FBG-FRP智能锚杆,通过理论分析和有限元模拟研究了FRP锚杆的工作机理,并根据岩土锚固的目的确定了锚固系统的监测内容及方法,构建了岩土锚固的智能监测系统,主要研究内容如下:
     首先,介绍了FRP材料的构成及其特点,阐述了FBG的传感原理及其参数选取原则,在此基础上,构思并开发出了FBG-FRP智能锚杆,该锚杆能充分发挥FRP材料的优点来满足岩土锚固的需求,同时具有耐腐蚀、易清除和自监测等优点。
     其次,分析了在轴向荷载作用下FRP锚杆锚固段上的界面粘结力分布特征,并基于Mindlin问题的位移解将其与钢锚杆做了对比计算;根据简化的粘结-滑移关系,从围岩与锚杆相互作用的角度,推导了FRP锚杆轴力和界面剪切力的计算公式;研究了FRP锚杆的存在对节理面抗剪能力的影响,并分析了在发生拉剪大变形时,FRP锚杆在节理面上的变形角及内力的计算方法,还结合Tsai-Hill破坏判据提出了FRP锚杆的拉剪破坏准则。
     接着,针对采用ANSYS自带库仑摩擦模型模拟锚杆-砂浆滑移时存在的缺陷,提出了引入“生死”单元的方法,成功地建立了与试验结果吻合得较好的FRP锚杆拉拔试验有限元模型;根据数值模拟结果,分析了FRP锚杆与砂浆界面的剪切力随拉拔荷载增大时的演化过程,以及锚固系统的内力和位移的分布特征,并讨论了锚固长度对锚杆承载力的影响。
     最后,分析了使用传统拉拔试验方法检测锚固质量时的不足;基于岩土锚固的目的,提出了锚固效果的评价指标及其监测内容;讨论了钻孔过程、锚杆内力、锚固段长度及密实度、围岩压力和位移等方面的监测方法,并据此构建了岩土锚固的智能监测系统,还提出了锚固系统的动态设计与全寿命维护的思路。
To solve the security problem of ground anchorage system, this paper aims at the need of durability and safety monitoring of ground anchorage. Considering the excellent characteristics of FRP material and FBG’s sensing properties, a new kind of FBG-FRP intelligent anchor bolts has been developed. The working mechanism of FRP anchor bolts has been studied by theoretical analysis and finite element simulation. The contents and approaches for monitoring of the anchorage systems have been determined according to the objective of ground anchorage, and the intelligent monitoring systems of ground anchorage have been set up. The main contents include:
     Firstly, the composition and characteristics of FRP material have been introduced, FBG’s sensing properties and principles of parameters selection have also been described, and then, the intelligent FBG-FRP anchor bolts have been conceived and developed. The FBG-FRP anchor bolts can fully exert the advantages of FRP material to meet the needs of ground anchorage, and they also have many properties such as corrosion resistant, easy to be eliminated, self-monitoring, et al.
     Secondly, lateral resistance distribution of FRP bolt’s anchoring section has been studied, and it also has been compared to the steel anchor bolt based on the Mindlin’s solution of displacement in elastic theory. According to a simplified bond-slip relationship of FRP bar and mortar, the calculation formulas of axial force and interfacial shear stress of FRP anchor bolt have been derived from the interaction of the surrounding rock and anchor bolt. The effect of FRP anchor bolts on the resisting shear ability of joint surface has been studied. The calculation methods of FRP bolts’deformation angles and internal force under the shearing-tensile load are put forward, and the failure criterion for FRP anchor bolts with axial shear combined force using the Tsai-Hill criterion is presented as well.
     Thirdly, to avoid the defect that occurred when using the ANSYS’Coulomb friction model to simulate the sliding between bolt and mortar, a method of introducing birth-death element has been proposed, and a FEM model of FRP anchor bolt’s pull-out test has been established, the analysis results by which can accurately fit the field data. The evolutionary process of shear distribution on the anchorage interface with the increase of load has been analyzed by FEM, and the distribution features of the anchorage system’s internal force and displacement have also been studied.
     Fourthly, the deficiencies of the pull-out test are summarized when it is used to detect the anchoring quality as a traditional method. Based on the purpose of ground anchorage, the evaluation indexes of the anchoring effects have been determined. According to those indexes, the monitoring contents should include drilling processes, the internal force of the bolts, the length of anchoring sections, the mortar compactness, the pressure and displacement of the surrounding rock. And the monitoring methods of the contents have been discussed, based on that, the intelligent monitoring system of ground anchorage is set up, the thought of dynamic design and security maintenance of anchorage system is also put forward.
引文
1程良奎,范景伦,韩军等.岩土锚固.中国建筑工业出版社, 2003:1~13
    2曾宪明,雷志梁,张文巾等.关于锚杆“定时炸弹”问题的讨论—答郭映忠教授.岩石力学与工程学报. 2002, 21(1):143~147
    3程良奎,韩军,张培文.岩土锚固工程的长期性能与安全评价.岩石力学与工程学报. 2008, 27(5):865~872
    4曾宪明,陈肇元,王靖涛等.锚固类结构安全性与耐久性问题探讨.岩石力学与工程学报. 2004, 23(13):2235~2242
    5黄育,郭志昆.锚杆腐蚀与防腐保护分析.第八次全国岩石力学与工程学术大会论文集.成都, 2004:812~816
    6程良奎.岩土锚固的现状与发展.土木工程学报. 2001, 34(3):7~12
    7曲永新,张永双,冯玉勇.当前国际环境地质工程(环境岩土工程)研究的热点领域及其相关技术.工程地质学报. 1998, 6(4):301~304
    8张乐文,汪稔.岩土锚固理论研究之现状.岩土力学. 2002, 23(5):627~631
    9 A. Evangelista, G. Sapio. Behavior of Ground Anehors in Stiff Clays. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo, 1977:39~47
    10 A. Evangelista, G. Sapio. Researeh on Ground Anehors in Non-cohesive Soils. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, 1977:92~97
    11 K. Fujita et al.. A Method to Predict the Load-displacement Relationship of Ground Anchors. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo, 1977: 58~62
    12 A.J. Hyett, W.F. Bawden, R.D. Reichert. The Effect of Rock Mass Confinement on the Bond Strength of Fully Grouted Cable Bolts. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1992, 29(5):503~524
    13 D.J. Jarred, C.M. Haberfield. Tendon /Grout Interface Performance in Grouted Anchors. Proceeding of Ground Anchorages and Anchored Structures. London, 1997:75~83
    14 G. Wijk. A Theoretical Remark on the Stress Field Around Prestressed Rock Bolts. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1978, (15):289~294
    15尤春安.全长粘结式锚杆的受力分析.岩石力学与工程学报. 2000, 19(3):339~341
    16张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型.岩土工程学报. 2002, 24(2):188~192
    17李明,张起森,何唯平. FRP锚杆的研究与应用综述.中外公路. 2005, 25(6):141~143
    18 B. Benmokrane, H.X. Xu, E. Bellavance. Bond Strength of Cement Grouted Glass Fibre Reinforce Plastic (GFRP) Anchor Bolts. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1996, 33(5):455~465
    19谢晶晶.纤维增强塑料筋锚杆锚固机理及设计方法的研究.郑州大学硕士学位论文. 2002:81~84
    20张钢琴.纤维聚合物锚杆的锚固机理及数值分析.郑州大学硕士学位论文. 2004:42~49 71~72
    21谷传耀.玻璃纤维增强塑料锚杆试验研究.中冶集团建筑研究总院硕士学位论文. 2004:68~69
    22贾新.玻璃纤维增强塑料锚杆锚固机理研究.同济大学硕士学位论文. 2005:99~101
    23李国维,高磊,黄志怀等.全长黏结玻璃纤维增强聚合物锚杆破坏机制拉拔模型试验.岩石力学与工程学报. 2007, 26(8):1653~1663
    24黄志怀,李国维,王思敬等.不同围岩条件玻璃纤维增强塑料杆结构破坏机制现场试验研究.岩石力学与工程学报. 2008, 27(5):1008~1018
    25姚爱敏,孙世国,刘玉福.锚杆支护现状及其发展趋势.北方工业大学学报. 2006, 19(3):90~94
    26 P.M. Nellen, A. Frank, R. Bronnimann, et al.. Optical Fiber Bragg Gratings for Tunnel Surveillance. SPIE. 2000, (3986):263~270
    27刘泉声,徐光苗,张志凌.光纤测量技术在岩土工程中的应用.岩石力学与工程学报. 2004, 23(2):310~314
    28裴雅兴,谭先康,王爱勋.光纤传感技术在预应力锚杆应力测试中的应用.人民长江. 2004, 35(1):25~27
    29姜德生,左军,信思金等.光纤Bragg光栅传感器在水布垭工程锚杆上的应用.传感器技术. 2005, 24(1):72~74
    30冯仁俊.基于光纤光栅的全长锚固锚固实验研究.西安科技大学硕士学位论文. 2006:13~14
    31许明,张永兴.锚固系统质量检测的小波分析法.岩土力学. 2003, 24(2):262~265
    32 M.D. Beard, M.J.S. Lowe, P. Cawley. Development of a Guidedwave Inspection Technique for Rock Bolts. Review of Quantita-tive Nondestructive Evaluation. 2002, (21):1318~1325
    33 H.G. Harris, W. Somboonsong, et al.. New Ductile Hybrid FRP Reinforcing Bar for Concrete Structures. Journal of Composites for Construction. 1998, 2(1):28~37
    34 M.R. Ehsani. Glass-fiber Reinforcing Bars-Alternative Materials for the Reinforcement and Prestressing of Concrete. London. 1993:35~54
    35 ACI Committee. Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures. Designing for Effects of Creep, Shrinkage and Temperature in Concrete Structures, ACI SP27-4. Dertoit, Mich. 1992:51~93
    36周智.土木工程结果光纤光栅智能传感元件及其监测系统.哈尔滨工业大学博士学位论文. 2003:25~44
    37 H.Q. Yuan, J. Yuan, J. Du. The Sensing Principle of FBG and its Experimental Application in Structure Strengthening Detection. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2003, 18(3):94~95
    38 B.R. Zhang. Experimental and Theoretical Investigations of a New Bond-Type Anchorage System for Post-Tensioning Applications With FRP Tendons. Ph.D Dissertation of University of Sherbrooke, 2001:68~81
    39 B.R. Zhang, B. Benmokrane. Design and Evaluation of a New Bond-type Anchorage System for Fiber Reinforced Polymer Tendons. Canadian Journal of Civil Engineering. 2004, 31(1):14~26
    40薛伟辰.非金属锚杆界面粘结强度试验研究.岩土工程学报. 2005, 27(2):206~209
    41孙钧.围岩大变形巷道的可缩式锚索支护.中国岩土锚固工程协会第九次全国岩土锚固学术研讨会.成都, 2000: 7~8
    42贾颖绚,宋宏伟.土木工程中锚杆支护机理研究现状与展望.岩土工程界.2003, 6(8):53~55
    43王明恕.全长锚固锚杆机理的探讨.煤炭学报. 1983, 1(1):40~41
    44尤春安.锚固系统应力传递机理理论及应用研究.山东科技大学博士学位论文. 2004: 14~26
    45 A. Kilic, E. Yasar, C.D. Atis. Effect of Bar Shape on the Pull-out Capacity of Fully-grouted Rockbolts. Tunnelling and Underground Space Technology. 2003, (18):1~6
    46葛修润,刘建武.加锚节理面抗剪性能研究.岩土工程学报. 1988, 10(1):8~19
    47刘波,陶龙光,李先炜等.锚杆拉剪大变形应变分析.岩石力学与工程学报. 2000, 19(3):334~338
    48 B. Liu, X.W. Li. Lateral Large Deformation of Bolt in Discontinuous Rock. Proceeding of 99’International Symposium on Mining Science and Technology. Rotterdam, 1999:427~430
    49刘瑞堂,刘文博,刘锦云.工程材料力学性能.哈尔滨工业大学出版社, 2001:178~218
    50薛守义,刘汉东.岩体工程学科性质透视.黄河水利出版社, 2002:110~112
    51庄茁,朱万旭,彭文轩.预应力结构锚固-接触力学与工程应用.科学出版社, 2006:28~35
    52张楚汉.论岩石、混凝土离散-接触-断裂分析.岩石力学与工程学报. 2008, 27(2):219~220
    53 ANSYS. ANSYS ELEMENT REFERENCE. 2000
    54 ANSYS. ANSYS THEORY REFERENCE. 2000
    55郭红仙,陈奕奇,宋二祥等.岩土锚固结构腐蚀及其影响因素.岩土工程界. 2007, 10(2):35~38
    56岳中琦.锚固钻孔过程数字自动监测以优化岩土锚固.第八次全国岩石力学与工程学术大会论文集.成都:879~886
    57 Z.Q. Yue, C.F. Lee, K.T, Law, et al.. Automatic Monitoring of Rotary-precussive Drilling for Ground Characterization– Illustrated By A Case Example In HongKong. International Journal of Rock Mechanics and Mining Science. 2004, (41):573~612
    58 V. Madenga, D.H. Zou, C. Zhang. Effects of Curing Time and Frequency onUltrasonic Wave Velocity in Grouted Rock Bolts. Journal of Applied Geophysics. 2006, (59):79~81
    59 R.D. Neilson, A. Ivanovic, A.J. Starkey, et al.. Design and Dynamic Analysis of A Pneumatic Impulse Generating Device for the Non-destructive Testing of Ground Anchorages. Mechanical Systems and Signal Processing. 2007, (21): 2523~2545
    60周智.系列光纤传感制品研制与开发及其工程应用.哈尔滨工业大学博士后研究工作报告. 2006:59~62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700