微型拍翅式飞行机器人翅运动及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微型拍翅式飞行机器人是一种仿生飞行的飞行器,其在军事上和民用上均具有广阔的应用前景,它已成为目前国际上的研究热点之一。本文作为“仿生飞行机器人及其关键技术研究”课题的一部分,主要围绕拍翅运动模型及控制系统展开了相应的研究。
     参照固定翼飞机建立坐标系的方法,建立了一组适用于微型拍翅式飞行机器人的坐标系统,定义了坐标系之间的关系参数,导出了坐标系之间的变换矩阵。
     研究了微型拍翅式飞行机器人的拍翅运动形式,提出了适用于刚性结构翅和柔性结构翅的两种拍翅模型。对这两种拍翅模型产生的气动力和气动力矩进行理论分析和计算,分析了多个运动参数对气动力和气动力矩的影响,比较了这两个模型的各自特点。结果表明:采用刚性结构翅的拍翅式飞行机器人,具有平飞飞行和驻飞飞行两种飞行方式,分别适用于飞行机器人的平飞飞行的驻飞飞行,这两种飞行方式的组合应用,能使拍翅式飞行机器人的飞行机动性大大提高;采用柔性结构翅的拍翅式飞行机器人,适用于前飞和驻飞,翅的柔性变形能够提高气动效率和飞行稳定性。进一步对柔性结构翅,提出了柔性翅产生气动力的翅后缘“鱼尾效应”机理,指出柔性翅的制作材料和翅弦刚度是影响柔性翅性能的关键。
     分别计算了两种拍翅模型下,左右翅拍动所产生的气动力和气动力矩,通过对两种拍翅模型的运动学和动力学的分析,导出了微型拍翅式飞行机器人机体的运动微分方程。
     设计了一个采用压电双晶片(PZT)驱动的两自由度的双摇杆拍翅机构,该机构可以驱动刚性翅实现两自由度的拍翅运动,具有:结构简单、重量轻、动作可靠、拍动幅度大、驱动容易和控制方便等特点,适用于微型拍翅式飞行机器人的拍翅系统。同时指出由于目前PZT的驱动电压较高,在现阶段难以实现独立飞行。设计了一个电机驱动的曲柄摇杆机构,驱动柔性结构翅,利用该机构制作出大比例飞行样机,指出该机构微型化比较困难。
     对微型拍翅式飞行机器人的飞行控制系统,提出分层控制的方法,将飞行机器人的控制系统分为三个相对独立的控制层:轨迹规划控制层、位置控制层和姿态控制层。重点研究了位置控制层和姿态控制层的控制系统设计。设计了一种以周期平均气动力和气动力矩代替瞬时气动力和气动力矩的控制方法,即在每个拍动周期结束后,检测系统状态参数,根据状态误差调整拍翅参数。对于不同的飞行拍翅模型,分别提出了与其相适应的位置和姿态控制方法,对控制系统进行了解耦分析,确定了各控制通道的控制参数。探讨了神经网络在驻飞飞行的姿态控制系统中的应用,最后采用MATLAB软件对控制系统进行了仿真分析。
     利用自行研制的气动力测量实验平台,对刚性结构翅和柔性结构翅的拍翅模型进行了气动力实验,实验结果验证了微型翅气动力的理论分析。研制出了柔性翅的大比例拍翅式飞行机器人试验样机,分析了样机的结构,确定了样机各部分的制作材料,最后成功地进行了样机的试飞飞行。
The micro flying robot with flapping wings is a bionic flying vehicle, which would find its extensive application for military and civilian purposes. At present, it has become a very active area of research in the world. Being a part of“Bionic flying robot and its key technologies”research, the moving models of wing and control system are studied in this paper. The major content and contribution of this paper are summarized as follows.
     A set of coordinate systems for the micro flying robot with flapping wings are established. The relationships and corresponding parameters of coordinate systems are defined, and the transformation matrixes between the coordinates transforms are derived.
     Aiming at researching the moving forms of flapping wings for micro flying robot, this paper proposes two kinds of flapping model for the rigid wings and the flexible wings, analyzes and calculates the aerodynamic forces and aerodynamic moments for the two flapping models. Further analyzed is the influence of parameters of movement for the aerodynamic forces and moments. Moreover, the features of these two models are compared respectively. Flapping robot with rigid wings has two flight modes, the horizontal flight and hovering flight, which may enhanced flight mobility if they work together. Flapping robot with flexible wings is suitable for forward and hovering flight, and the flexible wings enhance the aerodynamic efficiency and the flight stability. Also proposed is the mechanism of“fish tail effect”, which produces the aerodynamic force in wing back edge, for the flexible structure wing. Meanwhile, this paper points out that the manufacture material and the wing string rigidity of flexible wing are the key technology that has positive impact upon the flexible wing performance.
     The aerodynamic forces and moments which produced by two flapping wings are calculated for two flapping models. By the analysis of kinematics and dynamics for two kinds of flapping models, the paper exports the moving differential equations for body of micro flapping robot. Based on the equations, the position and attitude of micro flying robot with flapping wings can be controlled.
     For the rigid structure wing, a double rocker mechanism typical of two DOFs(Degree Of Freedom) is designed, which is actuated by two PZTs. The mechanism can actuate the rigid wing to realize two DOFs movements. This mechanism has many characteristics, simple instructure, light in weight, reliable in movement, large in range, easy in drive and convenience in control. Because the PZT’s voltage is high, independent flight is still difficulty at present. For the flexible structure wing, a motor-driven crank rocker mechanism is designed, which can be used in manufacturing the grand flying robot. However, this mechanism microminiaturization is difficult.
     For flying control system of micro flapping robot, the multilevel control system is proposed. It decomposes the global control system into three independent control systems, trajectory planner control system, position control system and attitude control system. For the position and the attitude control system, a method of average aerodynamic forces and moment is designed. At the end of each wing beat, the controller schedules the desired parameters of flapping wing according to state feedback errors. Further proposed is the position and the attitude control method separately, and also defined is the control parameter and decouple control system for different flapping model. Application of artificial neural network for micro flying robot in hovering flight is discussed. Finally, the control systems are simulated and analyzed by the MATLAB.
     The aerodynamic forces experiments for rigid and flexible wing are tested on the aerodynamic force measure equipment which is designed and developed by ourselves. The experimental result has confirmed the aerodynamic forces as put in theoretical analysis of micro flapping wing. A large-scale test model of micro flying robot with flapping wings is designed and developed. Its structure and material are clarified, The test flight has been successful.
引文
1. Dickinson M H, Lehmann F-O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284: 1954~1960.
    2. Hollingum J. Military Look to Flying Insect Robots[J]. Industrial Robot, 1998, 25(2): 124~128
    3. 李占科,宋笔锋,宋海龙. 微型飞行器的研究现状及其关键技术[J], 飞行力学, 2003, 21(4): 1~4
    4. 肖永利,张琛. 微型飞行器的研究现状与关键技术[J].宇航学报.2001,22(5):26~32
    5. 苑伟政,马炳和,毛竹群. 基于MEMS的微型飞机(MAV)关键技术[J].航空精密制造技术,2000,36(3):1~6
    6. Joel M, Matthew T. Development of the Black Widow Micro Air Vehicle[R]. AIAA-01- 0127, 2001.
    7. Wilson J R. MicroSTAR meets MAV[J]. Aerospace American, 1999,10(2):32~35.
    8. 李彦华,石文蕊.微型飞行器对传统航空技术的挑战[J].国际航空, 2000, (5): 41~44
    9. Kroo I, Prinz F, Shantz M. The Mesicopter. http://aero.stanford.edu/mesicopter/ htmlversion/index.htm
    10. 肖永利. 厘米级旋翼型微型飞行器研究与设计[D]: [博士学位论文], 上海:上海交通大学,2001
    11. Jones K D, Duggan S J, Piatzer M F. Flapping-wing propulsion for a micro air vehicle[R]. AIAA-01-0126,2001.
    12. 侯 宇,方宗德,刘 岚等.基于MEMS技术的微扑翼飞行器研究[J].航空制造技术. 2003(9):38~42,63
    13. Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. The Journal of Experimental Biology, 1973, 59: 169~230.
    14. Ellington C P. The aerodynamics of hovering insect flight, Ⅱ: Morphological parameters[C], Philosophical Transactions of the Royal Society of London B 1984, 305:17~40
    15. Ellington C P. The aerodynamics of hovering insect flight, Ⅲ: Kinematics[C], Philosophical Transactions of the Royal Society of London B 1984, 305: 41~78
    16. Ellington C P. The novel aerodynamics of insect flight: applications to micro-air vehicles[J]. The Journal of Experimental Biology, 1999, 202: 3439~3448.
    17. Ellington C P, van den Berg C, Willmott A P. Leading edge vortices in insect flight[J]. Nature, 1996, 384: 626~630.
    18. Berg C V D, Ellington C P. The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth[J]. Philosophical Transactions of the Royal Society of London, 1997, 352: 329~340.
    19. Berg C V D, Ellington C P. The vortex wake of a ‘hovering’ model hawmoth[J]. Philosophical Transactions of the Royal Society of London, 1997, 352: 317~328.
    20. Usherwood J R, Ellington C P. The aerodynamics of revolving wings I. Model hawkmoth wings [J]. The Journal of Experimental Biology, 2002, 205: 1547~1564.
    21. Usherwood J R, Ellington C P. The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail[J]. The Journal of Experimental Biology, 2002, 205: 1565~1576.
    22. Brich J M, Dickinson M H. Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 2001, 412: 729~733.
    23. Dickinson M H, G?tz K G. Unsteady aerodynamic performance of model wing at low Reynolds numbers[J]. The Journal of Experimental Biology, 1993, 174: 45~64.
    24. Dickinson M H, G?tz K G. The wake dynamics and flight forces of the fruit fly drosophila melanogaster[J]. The Journal of Experimental Biology, 1996, 199: 2085~2104.
    25. Sane S P, Dickinson M H. The control of flight force by a flapping wing: lift and drag production[J]. The Journal of Experimental Biology, 2001, 204: 2607~2626.
    26. Sane S P,Dickinson M H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight[J]. The Journal of Experimental Biology, 2002,205: 1087~1096.
    27. Smith M J C. The effects of flexibility on the aerodynamics of moth wings: towards the development of flapping wing technology[A]. AIAA Paper No.95-0743,1995
    28. Liu H, Ellington C P, Kawachiy K, et al. A computational fluid dynamic study of hawkmoth hovering[J], The journal of Experimental Biology, 1998, 201:461~477
    29. Liu H, Kawachiy K. A numerical study of insect flight[J], Journal of computational physics, 1998, 146:124~156
    30. Shyy Wei, Berg Mats, Daniel L. Flapping and flexible wing for biological and micro air vehicles[C]. Progress in Aerospace Sciences, 1999,35:455~505
    31. Combes S A, Daniel T L. Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta[J]. The Journal of Experimental Biology, 2003, 206:2999~3006.
    32. Srygley R B, Thomas A L R. Unconventional lift-denerating mechanisms in free-flying butterflies[J], Nature, 2002,420(12):8~12
    33. Michelson R, Reece S. Update on flapping wing micro air vehicle research ongoing workto develop a flapping wing, crawling “Entomopter”[C]. 13th Bristol International RPV Conference. March 30-April 1, 1998.
    34. Michelson R. MicroAir Vehicle “Entomopter” Project. http://avdil.gtri.gatech.edu/ RCM/RCM/Entomopter/EntomopterProject.html
    35. Pornsin-Sirirak T N, Tai Y C, Ho C M, et al. Microbat: a palm-sized electrically powered Ornithopter[C]. The NASA/JPL Workshop on Biomorphic Robotics. August 14-16 2000.
    36. SRI. Artificial muscle transducers. URL: http://www.erg.sri.com/automation/actuators. html.
    37. Micromechanical Flying Insect (MFI) Project. http://robotics.eecs.berkeley.edu/ ~ronf/ mfi.html
    38. Kubo Y, Shimoyama I, Miura H. Study of Insect-based Flying Microrobots[A]. IEEE International Conference on Robotics and Automation[C]. IEEE Computer Society Press, 1993, 2: 386~391.
    39. Fearing R S, Chiang K H, Dickinson M H, et al. Wing transmission for a micromechanical flying insect[C], IEEE International Conference on Robotics and Automation, San Francisco, 2000,2:1509~1516
    40. Sitti M, Hashimoto H. Two-Dimensional Fine Particle Positioning Under Optical Microscope Using a Piezoresistive Cantilever as a Manipulator[J]. Journal of Micromechatronics , 2000,1(1): 25~48.
    41. Sitti M, Campolo D, Yan J. Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms[C], IEEE International Conference on Robotics and Automation, Seoul Korea, 2001, 4: 3839~3846
    42. Sitti M, Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax[J], IEEE/ASME Transactions on Mechatronics, 2003,8(1):26~36
    43. Avadhanula S, Wood R J, Campolo D, et al. Dynamic tuned design of the MFI thorax[C], IEEE International Conference on Robotics and Automation, Washington, DC, 2002: 52~59
    44. Yan J, Wood R J, Avadhanula S, et al. Towards flapping wing control for a micromechanical flying insect[C], IEEE International Conference on Robotics and Automation, Seoul Korea, 2001, 4:3901~3908
    45. Deng X, Schenato L, Sastry S. Hovering Flight Control of a Micromechanical Flying Insect[C], Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001,1:235~240
    46. Schenato L, Deng X, Sastry S. Flight control system for a micromechanical flying insect:architecture and implementation[C], 15th IFAC World Congress on Automatic Control, Barcelona, Spain, 2002
    47. Deng X, Schenato L, Sastry S. Hovering flight for a micromechanical flying insect: modeling and robust control synthesis[C], IEEE International conference on Decision and Control, Qrlando, Florida, USA, 2001
    48. Wood R J, Fearing R S. Flight force measurements for a micromechanical flying insect[C], Proceedings, 2001IEEE/RSJ International conference on Intelligent Robots and systems, Hawaii, USA, 2001, 1:355~362
    49. Schenato L, Deng X, Wu W C, et al. Virtual insect flight simulator (VIFS)a software tested for insect flight[C], Proceedings of IEEE International conference on Robotics and Automation, Seoul ,Korea, 2001, 4:3885~3892
    50. 辛建成. 喷薄欲出的微型无人机(上)[J], 机器人技术与应用, 1999,(4):24~25
    51. 曾理江, 宋德强, 郝群. 昆虫运动机理的研究[J], 光学技术, 1999, 6:18~22
    52. 曾理江. 昆虫运动机理研究及应用[J], 中国科学基金, 2000:206~210
    53. 郝群, 曾理江, 河内启二. 昆虫翅膀的运动参数测量研究[J], 北京理工大学学报,2003, 20(4):444~449
    54. 孙茂. 昆虫飞行的高升力机理[J]. 力学进展. 2002,32: 425~434.
    55. Sun M, Tan J. Unsteady aerodynamic force generation by a model fruit-fly wing[J]. The journal of Experimental Biology, 2002, 2051:55~70
    56. 兰世隆,孙茂. 模型昆虫翼作非常运动时的气动力特征[J]. 力学学报,2001,33:
    173~182.
    57. 孙茂,吴江浩. 微型飞行器的仿生流体力学—昆虫前飞时的气动力和能耗[J]. 航空学报,2002,23: 385~393.
    58. 邱支振. 昆虫翅前缘涡的形成与保持[J], 自然杂志, 25(3):174~177
    59. 翁梓华, 黄太平. 扑翼飞行的高升力机理[J], 机电技术, 2003, S1:119~121
    60. 曾锐,昂海松. 仿鸟复合振动的扑翼气动分析[J], 南京航空航天大学学报, 2003, 35(1):6~12
    61. 胡宇群. 微型飞行器中的若干动力学问题研究[D]: [博士学位论文], 南京:南京航空航天大学宇航学院, 2002
    62. 胡玲心. 微小型扑翼飞行器[EB/OL], http://youth.nuaa.edu.cn/AOYOdownloads/ fxp.htm
    63. 刘斌,宁笔峰,李为吉.柔性翼微型飞行器试验样机研究[J].西北工大学报, 2003, 21(6):699~702
    64. 赵亚溥. 微型飞行器的关键力学和智能材料问题[J], 中国科学基金, 2000:11~14
    65. 王姝歆, 颜景平, 张志胜. 仿昆飞行机器人的研究[J], 机械设计, 2003, 20(6):1~4
    66. 王姝歆, 颜景平, 张志胜等. 基于昆虫运动机理的仿昆拍式翅研究[J], 中国机械工程, 2003, 14(23):2006~2009
    67. 王姝歆, 颜景平, 周建华等. 新型柔性铰链在微型机器人中的应用[J], 制造业自动化, 2004, 26(3):58~61
    68. 王姝歆. 微型仿生飞行机器人飞行机理及其仿生翅运动系统研究[D]:[博士学位论文]. 南京:东南大学机械系,2004
    69. 夏宇阳. 仿生扑翼飞行器的翅型设计及其实验研究[D]:[硕士学位论文]. 南京:东南大学机械系,2004
    70. 周建华,颜景平,王姝歆等.微型仿昆飞行机器人关键技术的研究[J].机器人,2003,25(7):751~755
    71. 周建华,颜景平,王姝歆等.微型仿昆飞行机器人翅运动模型及气动力分析[J].扬州大学学报,2004,7(1):36~39
    72. 周建华, 颜景平, 王姝歆等. 神经网络在仿昆微型飞行机器人控制中的应用[J],制造业自动化, 2004, 26(2):40~45
    73. 周建华,王姝歆,颜景平等.微型仿昆飞行机器人驻飞时姿态控制的研究[J].测控技术,2004,23(6):32~33,36
    74. Getzan G, Shimada M, Shimoyama I,et al. Aerodynamic Behavior of Microstructures[C]. proceeding of the 1995 IEEE/RSJ International Conference on Intelligent Robots ans System, 1995,Los Alamitos CA, Vol. 2, 230~235
    75. Mark Hewish. A bird in the hand. Jane’s international defense review, 1999, 32(11):
    22~28
    76. 梁秋憧,程维明,蒋蓁等.微型飞行器的研究与发展[J].机床与液压,2003,(3):
    11~15,49
    77. 谭湘强, 钟映春, 杨宜民. IPMC 人工肌肉的特性和应用[J], 高技术通讯, 2002, 01:50~52
    78. 李新贵,张瑞锐,黄美荣等. 导电聚合物人工肌肉[J] 材料科学与工程学报, 2004, 22(1):128~131
    79. Engineers Develop Microengines: The Batteries of the Future(17/06/2003) . http://www.newscentre.bham.ac.uk/release.htm?releaseId=580
    80. 吴鹰飞, 周兆英. 柔性铰链的计算和分析[J]. 机械设计与研究, 2002,18(3): 29~30
    81. 辛洪兵, 郑伟智, 赵 罘. 弹性铰链研究[J]. 光学精密工程, 2003, 11(1): 89~94
    82. Wu W C, Schenato L, Wood R J, et al. Biomimetic sensor suite for flight control of a micromechanical flight insect: Design and experimental results[C]. In Proc of the IEEEInternational Conference on Robotics and Automation, Taipei, Taiwan, May 2003.
    83. Schenato L, Wu W C, Sastry S S. Attitude Control for a Micromechanical Flying Insect via Sensor Output Feedback[J]. IEEE Journal of Robotics and Automation, 2004,20(1):93~106
    84. Dickinson M H. Solving the Mystery of Insect Flight[J], Scientific American, 2001,6: 31~34
    85. [美]戴莱 J W, 哈里曼 D R F. 空气动力学[M]. 北京:人民教育出版社, 1983.
    86. 肖业伦编著,飞行器运动方程[M],北京,航空工业出版社,1987.12
    87. 黄真. 空间机构学[M]. 北京: 机械工业出版社, 1991. 160~197
    88. [德]普朗特 L,奥斯瓦提奇 K,维格哈特 K. 流体力学概论[M]. 郭永怀,陆士嘉译. 科学出版社,北京: 1984.
    89. Combes S A, Daniel T L. Shape, flapping and flexion: wing and fin design for forward flight[J]. The Journal of Experimental Biology, 2001, 204(3):2073~2085.
    90. Combes S A, Daniel T L. Flexural stiffness in insect wings I. Scaling and the influence of wing venation[J]. The Journal of Experimental Biology, 2003, 206:2979~2987.
    91. Combes S A, Daniel T L. Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending[J]. The Journal of Experimental Biology, 2003, 206:2989~2997.
    92. Dickinson M H. Catching the wake[J]. Scientific American. Jun.28. 1999.
    93. 顾朴,郑芳杯,谢惠玲. 材料力学[M]. 高等教育出版社,北京:1985,195~202
    94. O Shakernia, Y Ma, T J Koo, et al. Landing an unmanned air vehicle: Vision based motion estimation and nonlinear control[J]. Asian Journal of Control, 1999,1(3): 128~ 145
    95. Shimoyama I, Kubo Y, Kaneda T, et al. Simple Microflight Mechanism on Silicon Wafer[C], IEEE Workshop on Micro Electro Mechanical Systems, Oiso, Japan, 1994: 148~152
    96. Shimasaki K, Inoue M, Arai K I. A theory for analyzing the flap motion of wings of small flying elements driven by a magnetic torque[J], IEEE transactions on magnetics, 1998, 34(4):2096~2098
    97. 吴鹰飞, 周兆英. 柔性铰链的计算和分析[J]. 机械设计与研究, 2002, 18(3): 29~ 30
    98. 辛洪兵, 郑伟智, 赵 罘. 弹性铰链研究[J]. 光学精密工程, 2003, 11(1):89~94
    99. 贾宏光,吴一辉,于振雷等.压电驱动微位移工作台动态特性分析[J].光学精密工程, 2000,8(5):440~443
    100. 罗怡,龚振邦,孙麟治等.双压电薄膜机器人驱动器的模态分析[J].高技术通讯, 2001,(3):85~87
    101. 胡正军,王莉,徐东等.PZT 压电薄膜在MEMS 中的应用[J].微细加工技术, 2001, (4):44~49
    102. 孙立宁,孙绍云,曲东升等.基于PZT的微驱动定位控制方法的研究[J].压电与声光,2003,25(5):436~438
    103. Smits J, Choi W. The constituent equations of piezoelectric heterogenous bimorphs[C], IEEE Transaction on Ultrasonics, Ferroelectrics and Frequence Control, 1991, 38:256~ 270
    104. [美]保罗 B.机构运动学与动力学[M].汪一麟,董师予,石绍琳译. 上诲科学技术出版社,上海:1989
    105. 曹龙华主编.机械原理[M].高等教育出版社,北京:1986
    106. Deng X, Schenato L, Sastry S. Model identification and attitude control for a micromechanical flying insect including thorax and sensor models[C]. ICRA 2003: 1152~1157
    107. 张明廉主编.飞行控制系统[M].航空工业出版社,北京:1994
    108. 王柳文. 微型飞行器自主控制系统的研究与设计[D]: [硕士学位论文], 南京:南京航空航天大学,2002
    109. 王孝武. 现代控制理论基础[M] 机械工业出版社,北京:1998
    110. 刘金琨. 先进 PID 控制及其 MATLAB 仿真[M]. 电子工业出版社,北京:2003
    111. 陈欣,苏丙未,曹云峰等. 一种基于神经网络的非线性飞行控制系统设计方案研究[J]. 数据采集与处理,2002,17(3):328~332
    112. 徐丽娜.神经网络控制[M].哈尔滨工业大学出版社,哈尔滨:1999
    113. 楼顺天,施阳. 基于 MATLAB 的系统分析与设计[M].西安电子科技大学出版社, 西安:1999
    114. 郑如定. 锂离子电池和锂聚合物电池概述[J], 通信电源技术, 2002 5:18~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700