GPS精密定位的数学模型、数值算法及可靠性理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对GPS双差相位精密定位的若干理论和应用问题,本文从数学模型、数值算法和可靠性理论三个方面进行了系统和深入的研究。综合起来,本文的主要工作和重要结论如下:
     1.数学模型方面:
     对于GPS精密静态定位,介绍了在双差模式下的函数模型和随机模型,构建了一个适宜于编程的通用法方程式。通过对不同类型观测值的权比因子是否设置为零,来达到这些类型观测值的选择使用的目的,以便得到各种类型的基线位置参数解。另外,还推导出了各类基线位置参数解之间的理论换算关系公式,以及各类基线位置参数解精度之间的关系公式。
     对于GPS精密动态定位,分别给出了在单历元方式和OTF方式下的函数模型和随机模型,以及适宜于编程的通用法方程式。同样,通过对不同类型观测值的权比因子是否设置为零,来达到这些类型观测值的选择使用的目的,以便得到各种类型的位置参数解。
     在GPS精密静态定位中法方程式的结构很有规律性,主要表现为方程中系数阵的各子块对各历元进行求和,因此在编制程序时只需要根据各历元的误差方程式和相应的随机模型组成法方程,再对各历元法方程系数阵的子块求和,来组成多个历元总的法方程式。这样可大大降低了各计算矩阵在计算机上运行和存储的阶数,极大地提高了计算效率。特别是在当历元数很大时,这种效果尤为明显。
     对于GPS精密静态定位,在只用相位观测值进行平差的情况下,当采样间隔较短且观测历元数较少时,由于系数矩阵变化甚小,基线浮点解的精度很差。因此,当不顾及模糊度的整数性质时,应尽量用足够历元的数据来求出基线的浮点解,以保证其精度。而在只用精码观测值和同时用相位观测值与精码观测值的情况下,不存在这种现象。
     2.模糊度的求解算法方面:
     在介绍整数最小二乘方法、LAMBDA方法、直接凑整方法和Bootstrapping方法的同时,深入剖析了LAMBDA方法的结构。通过实例试算表明:LAMBDA方法的搜索效率明显高于整数最小二乘方法,它是整数最小二乘方法的一个发展。
     由于在双差模式下短观测时段的GPS模糊度具有很强的相关性,如果直接应用整数最小二乘方法或LAMBDA方法将得不到正确的模糊度整数解,因此必须事先对原始的双差模糊度进行降相关的可容许整数变换。本论文介绍了Teunissen提出的二维整数变换方法和S.Han与C.Rizos提出的多维整数变换方法。这两种整数变换方法都是可容许的降相关的变换方法。实例计算表明:原始的双差模糊度通过降相关的可容许整数变换后,再使用整数最小二乘方法或LAMBDA方法不仅可提高求解模糊度整数解的正确性,而且还能够提高模糊度整数解的搜索速度。
Focused on several theoretical and applying problems on GPS precise positioning, this thesis makes a systemic and deep research on three aspects: mathematical model, numerical algorithm and reliability. Summarized speaking, the main research contents and important conclusions in this thesis are given as follows:1. Mathematical model sectionBased on the double-difference mode for GPS precise static positioning, the corresponding function model and stochastic model are given, and a general normal equation to suit programming in computer is constructed in this section. Through whether let the scale factors equal zero, the classes of observable can used selectively, hence many classes of baseline position parameter solution are obtained. In addition, the transformation formulas among many classes of baseline position parameter solution is deduced, and the relation formulas among precisions of many classes of baseline position parameter solution is also deduced in this section. For GPS precise kinematic/mobile positioning, the function models and stochastic models in both single epoch way and OTF (on-the-flying) way are respectively given, and the general normal equations to suit programming in computer are constructed in this section. Through whether let the scale factors equal zero, the classes of observable can used selectively, hence many classes of baseline position parameter solution are obtained.In GPS precise static positioning, the structure of normal equation exists obvious rule that each sub-block in coefficient matrix is summed up through each epoch ° This rule is very useful for programming.In the case of only using phase observable for GPS precise static positioning, when the sampling interval is very short and the epoch number is very small, the precision of baseline float solution is very poor since the coefficient matrix changes very little. Hence, when the property that ambiguities are integer is not considered, we should use the data of enough epochs to resolve the baseline float solution for guaranteeing its precision. But in the case of only using P-code observable or using both phase observable and P-code observable, there is not this kind of phenomena.2. Algorithm section for resolving ambiguity:After the integer least-square method, the LAMBDA method, the direct rounding method and the Bootstrapping method are introduced, the structure of the LAMBDA method is deeply analyzed. It is demonstrated by examples that the efficiency of LAMBDA method is apparently higher than that of integer least-square method. May to say, it is a developed integer least-square
    method.Since there is strong correlation between GPS ambiguities of short observation spans based on t he d ouble-difference m ode, t he c orrect a mbiguity integer s olution w ill n ot b e obtained i f LAMBDA m ethod o r i nteger 1 east-square method i s u sed d irectly. T herefore t he decorrelated and admissible integer transformation for the original ambiguity vector must be performed beforehand. The two-dimensional integer transformation method and the multi-dimensional integer transformation method are introduced in this section. Both these two methods are decorrelated and admissible. It is showed by examples that: After the original ambiguities are transformed through using the decorrelated and admissible integer transformation methods, the integer least-square method or LAMBDA method can improve not only the correctness of ambiguity integer solution but also the searching efficiency of ambiguity integer solution.Bootstrapping method is such a method that resolves ambiguity integer solution without searching. It is an approximate algorithm of LAMBDA method too. It is demonstrated by examples that: when the observation epoch number is very small, the correct ambiguity integer solution cannot be obtained through using Bootstrapping method even though the decorrelated and admissible integer transformation is performed for original ambiguities. Hence this method does not fit GPS precise positioning on short observation spans.hi order to decrease the correlation of high-dimension ambiguities, the paired Cholesky integer transformation method is presented in this section. It is proved theoretically that this paired Cholesky integer transformation method is decorrelated and admissible. It is demonstrated by examples that the multi-time paired Cholesky integer transformation method is better than other methods for decreasing the correlation of high-dimension ambiguities.Through using the back sequent conditional LS ambiguity technique, another form of LAMBDA method—RLAMBDA method—is given and another form of Bootstrapping method—Return Bootstrapping method—is given too in this section. Since both LAMBDA method a nd RLAMBDA m ethod a re b ased o n t he i nteger 1 east-square m ethod, t hat i s t o s ay, their principles are identical, their ambiguity integer solutions are the same and their search efficiency is equivalent too. Return bootstrapping approach is an approximate algorithm of RLAMBDA method. When the observation epoch number is very small, the baseline results through using this Return bootstrapping approach is very poor, hence this approach cannot be used in GPS precise positioning on short observation spans.3. Reliability theory section of ambiguityOn the basis of the original definition for the admissible integer estimation given by Teunissen, a new severer definition is presented in this section. Based on this new definition, the pull-in regions of the direct rounding estimator, the bootstrapping estimator, the return bootstrapping estimator, and the integer least-square estimator (include the LAMBDA estimator and the RLAMBDA estimator) are given. At the same time, the concept of the ambiguity success
    rate is introduced based on statistics theory in this section.After the easy-to-compute formula on ambiguity success rate of the Bootstrapping approach is introduced, the easy-to-compute formula on ambiguity success rate of the return bootstrapping approach is deduced. For the ambiguity success rate of the direct rounding approach, the upper and lower bound calculation formula presented by Teunissen is introduced, moreover the new upper bound calculation formula is deduced. In addition, after the upper and lower bound calculation formula on the ambiguity success rate of integer least-square method is introduced in this section, the new lower bound calculation formula is given, hi order to resolve directly the ambiguity success rate of the direct rounding approach, and the integer least-square method, the simulation approach on ambiguity success rate is also introduced in this section.For the expectation and variance of both the integer ambiguity solution and the baseline fixed-solution, their calculation formulas are introduced in this section. When the 'float' ambiguity solution is unbiased, the integer ambiguity solutions of the direct rounding approach, the bootstrapping approach, the return bootstrapping approach, and the integer least-square method all are unbiased. It is stated that these several methods all are unbiased estimation approach on integer ambiguity solutions. In addition, as long as both the 'float' ambiguity solution and the 'float' baseline position parameter solution are unbiased, the fixed baseline position parameter solution obtained through using these several approaches is also unbiased.The probability density function of fixed baseline position parameter solutions is discussed in this section. This probability density function has a symmetric property and a multi-peak property. At the same time, the probability mass function of which the fixed baseline position parameter solution belongs to the confidence space is given.After the joint probability density function between the 'float' ambiguity solution and the fixed ambiguity solution is introduced in this section, the conditional probability density function of the integer ambiguity solution is gotten according to this joint probability density function. It is very interesting that the conditional expectation of the integer ambiguity solution is just equal to the admissible integer estimator of this ambiguity vector. In order to discuss the property of the ambiguity residual error vector, the joint probability density function between the integer ambiguity solution and the ambiguity residual error vector is also introduced in this section. According to this joint probability density function, the probability density function of the ambiguity residual vector is obtained.At last, in order to discuss the joint statistic property between the ambiguity solution and the position parameter solution, their two joint probability density functions are introduced in this section. According to these two joint density functions, various joint probability density functions between the ambiguity solution and the position parameter solution are obtained, and various conditional probability density functions of baseline position parameter vectors are also obtained.
引文
1 崔希璋、於宗俦、陶本藻、刘大杰等(2001),广义测量平差,武汉,武汉测绘科技大学出版社,2001年。
    2 崔希璋、陶本藻 (1980),矩阵论在测量中的应用,测绘出版社,1980年。
    3 於宗俦、鲁林成主编 (1983),测量平差基础(增订本),测绘出版社,1983年。
    4 许其风 (1989),GPS卫星导航与精密定位,北京,解放军出版社,1989年。
    5 刘大杰、施一民、过静君(1996),全球卫星定位系统的原理与应用,上海,同济大学出版社,1996年。
    6 刘基余、李征航等编著(1993),全球定位系统原理及其应用,测绘出版社,1993年。
    7 魏子卿、葛茂荣 (1998),GPS相对定位的数学模型,北京,测绘出版社,1998年。
    8 刘经南、陈俊勇、张燕平等(1999),广域差分GPS原理和方法,北京,测绘出版社,1999年。
    9 周忠谟、易杰军、周琪 编著(1992),GPS卫星测量原理与应用,北京,测绘出版社1992年。
    10 王松桂(1987),线性模型的理论及其应用,合肥,安徽教育出版社,1987年。
    11 黄维彬(1992),近代平差理论及其应用,北京,解放军出版社,1992年。
    12 李德仁(1988),误差处理和可靠性理论,测绘出版社,1988年。
    13 刘炳初(1998),泛函分析,北京,科学出版社,1998年。
    14 周性伟(1998),实变函数,北京,科学出版社,1998年。
    15 郑莉、董渊、傅仕星 (2000),C++语言程序设计,北京,清华大学出版社,2000年。
    16 周江文 (1979),误差理论,北京,测绘出版社,1979年。
    17 E.克里兹格[美]著 (1986),泛函分析引论及应用,重庆出版社,1986年。
    18 史忠科 (2001),最优估计的计算方法,北京,科学出版社,2001年。
    19 陆恺、田蔚风 (1990),最优估计理论及其在导航中的应用,上海交通大学出版社,1990年。
    20 张守信 (1996),GPS卫星测量定位理论与应用,长沙,国防科技大学出版社,1996年7月。
    21 钱能 (1999),C++程序设计教程,北京,清华大学出版社,1999年。
    22 王学辉、张明辉 (2001),Matlab 6.1最新应用详解,北京,中国水利水电出版社,2001年10月。
    23 方开泰 (1987),统计分布,北京,科学出版社,1987年。
    24 周扬眉 (1989),一次范数最小平差方法研究及其应用探讨,河海大学硕士学位论文,1989年4月。
    25 周扬眉 (1997),一种改进的一次范数最小平差方法,华东地质学院学报,1997(1),76-82
    26 周扬眉 (1997),用于变形分析的L-X-1平差方法,华东地质学院学报,1997(1),83-87
    27 李淑慧 (2002),整周模糊度搜索方法的比较研究,武汉大学硕士学位论文,2002年。
    28 李洪涛、许国昌、薛鸿印、赵洪、陈晶、王广运 (1999),GPS应用程序设计,北京,科学出版社,1999年。
    29 A. Bjerhammar(1973), Theory of Errors and Generalized Matrix Inverses, New York, 1973
    30 Abidin HZ(1993), On the construction of the ambiguity searching space for on-the-fly ambiguity resolution, Journal of Navigation 40:321-338
    31 Baarda W.(1967), Statistical Concepts in Geodesy, Netherlands Geodetic Commision, New Series Vo.12, No.4, Delft 1967
    32 Baarda W.(1968), A Testing Procedure for Use in Geodetic Networks. Netherlands Geodetic Commision, Publications on Geodesy, No.5, Delft, 1968
    33 Blewitt G (1989), Carrier phase ambiguity resolution for the GPS applied to geodetic baseline up to 2000 km. J Geophys Res. 94 (B8): 10187-10203
    34 Beutler, G., I. Bauersima, W. Gurtner, M. Rothacher, T. Schidknecht and A.Geiger (1988), Atmospheric Refraction and Other Important Biases in GPS Carrier Phase Observations, Atmospheric Effects on Geodetic Space Measurements, Monograph 12, School of Surveying, University of New South Wales.
    35 Black, H.D. (1978), An Easily Implemented Algorithm for the Tropospheric Range Correction, Journal of Geophysical Research, 83(B4), pp. 1825-1828.
    36 Braasch, M.S. and F. van Graas (1991), Guidance Accuracy Considerations for Realtime GPS Interferometry, Proceedings of ION GPS 91, Albuquerque, New Mexico, September 11-13, pp. 373-386.
    37 Brown, R.G. and P.Y.C. Hwang (1992), Introduction to Random Signals and Applied Kalman Filtering, John Wiley & Sons, Inc., New York.
    38 Borre K (1995) GPS i landmaelingen, Aalborg
    39 Cannon, M. E. (1987), Kinematic Positioning Using GPS Pseudorange and Carrier Phase observations, UCSE Reports No. 20019, Department of Geomatics Engineering, The University of Calgary.
    40 Cannon, M.E. (1990), High-Accuracy GPS Semikinematic Positioning: Modeling and Results, Navigation, Vol. 37, No. 1, pp. 53-64.
    41 Cannon, M.E. (1991), Airborne GPS/INS with an Application to Aerotriangulation, UCSE Report No. 20040, Department of Geomatics Engineering, The University of Calgary.
    42 Cannon, M.E. and K.P. Schwarz (1990), A Discussion of GPS/INS Integration for Airborne Photogrammetric Applications, Preceeding of Kinematic Systems in Geodesy, Surveying, and Remote Sensing (IAG Symposium 107), Banff, Alberta, Canada, September 10-13, pp. 443-452.
    43 Cannon, M.E., K.P. Schwarz and M. Wei (1992), A Consistency Test of Airborne GPS Using Multiple Monitor Stations, Bulletin Géodésique, Vol. 66, No. 1, pp. 2-11.
    44 Chen, D., and G. Lachapelle (1995), A Comparison of the FASF and Least Squares Algorithms forAmbiguity Resolution On the FLY, Navigation, Journal of The Institute of Navigation, Vol. 42,No. 2, Alexandria, VA, pp371-390
    45 Colombo, Oscar L. (1991), Errors in Long Distance Kinematic GPS, Proceeding of ION GPS 91, Albuquerque, New Mexico, Sept. 11-13, pp. 673-680.
    46 C.R. Rao (1973), Linear Statistical Inference And Its Applications, Second Edition, John Wiley & Sons, Inc., New York, 1973.
    47 De Jonge PJ, Tiberius CCJM, Teunissen PJG (1996), Computational aspects of the LAMBDA method for GPS ambiguity resolution. In: Proc ION GPS-96, Kansas City, Missouri, Sept.Wild U.
    48 De Jonge P, Tiberius C. (1996), The LAMBDA method for integer ambiguity estimation: implementation aspects, Tech rep, 1996, Delft Geodetic Computing Center, Delft University ofTechnology, Delft.
    49 Dedes G, Goad CC (1994), Real-Time cm-level GPS Positioning of Cutting Blade and Earth Moving Equipment. Proc 1994 National Technical Meeting ION, San Diego, Calif, pp 587-594
    50 Esmond Mok, Han Shaowei (1999), Satellite geometry consideration for efficient GPS ambiguity resolution, Survey Review, 35,271, 23-32
    51 Euler HJ, Goad CC. (1990) On Optimal Filtering of GPS Dual Frequency Observations without the using Orbit Information. Bull Geod 65:130-143
    52 Euler HJ, Hatch R (1994) Comparison of Several AROF Kinematic Techniques. Proc ION-94 San Diego, Calif, pp 363-370
    53 Erik W. Grafarend (2000), Mixed Integer-Real Valued Adjustment (IRA) Problem: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm, GPS Solutions, Vol. 4, No. 2, pp.31-44
    54 Frei E, Beutler G (1990), Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA: Theory and First Results. Manuscr Geod 15:325-356
    55 Georgiadou, Y. and A. Kleusberg (1991), Algorithms and Results of Kinematic GPS Positioning, CISM Journal ACSGC Vol. 45, No. 4, pp. 569-575.
    56 Goad, C. C. & Lt. L. Goodman (1974), A Modified Hopfield Tropospheric Refraction Correction Model, Presented at the Fall Annual Meeting American Geophysical Union, San Francisco, California, Dec. 12-17
    57 Goad CC (1998), Short Distance GPS Models. In: Kleusberg A, and Teunissen PJG (eds), GPS for Geodesy, Springer, Berlin Heidelberg New York, pp239-262
    58 Golub GH, Van Loan CF (1993), Matrix computation, 2nd edn. The Johns Hopkins University Press, Baltimore
    59 Gundlich B., Koch K.-R. (2002), Confidence regions for GPS baselines by Bayesian statistics, Journal of Geodesy 76:55-62
    60 H. B. Iz, M. Ge, Y. Q. Chen (1998), Grid point search algorithm for fast integer ambiguity resolu-tion, Journal of Geodesy, 72:639-643
    61 Han S (1997), Carrier phase-based long-range GPS kinematic positioning. UNISURV Report S-49, The University of New South Wales, Sydney
    62 Han S. (1997), Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning, Journal of Geodesy 71: 351-361
    63 Hatch RR (1990), Instantaneous ambiguity resolution. In: Kinematicsystems in geodesy, surveying and remote sensing, IAG Symp 107, Ban., Canada. Springer, Berlin Heidelberg NewYork, pp 299-308
    64 Hatch R (1982), The Synergism of GPS Code and Carrier Measurements. Proc 3rd Int Geod Symp Satellite Positioning, Las Cruces, New Mexico, 8±12 February, Vol 2, pp 1213±1231
    65 Hassibi A. &S Boyd (1998), Integer parameter estimation in linear models with applications to GPS, 1EEE Transactions on Signal Processing, 46,2938-52
    66 Hein, G.W., H. Landau, and G. Baustert (1988), Terrestrial and Aircraft Differential Kinematic GPS Positioning, Presented at the International GPS Workshop Darmstadt, Germany, April 10-13.
    67 Henderson, T and M. Leach (1990), An Assessment of the Absolute Accuracy of Longbaseline Kinematic Vehicle, Proceeding of ION GPS 90, Colorado Springs, Colorado, Sept. 19-21, pp. 91-100.
    68 Hofman-Wellenhof B, Lichtenegger H, Collins J (1997), Global positioning system: theory and practice, 4th edn. Springer, Berlin Heidelberg New York
    69 Huang Dingfa, Ding Xiaoli, Chen Yongqi (2001), Ambiguity online estimation by combining dual-frequency phase and carrier smoothed, code measurements: performance on short baselines, Survey Review, 36, 282,263-272
    70 Jennings A (1977), Matrix computation for engineers and scientists, John Wiley, London
    71 Kannan R. (1983), Improved algorithms for integer programming and related problems. in Proc. 23rd IEEE Symp. Foundations Comput. Sci., 1983
    72 Koch KR (1999), Parameter estimation and hypothesis testing in linear models, Springer, Berlin Heidelberg New York
    73 Lachapelle, G. (1990), GPS Observables and Error Sources for Kinematic Positioning, Preceeding of Kinematic Systems in Geodesy, Surveying, and Remote Sensing (IAG Symposium 107), Banff, Alberta, Sept. 10-13, pp. 17-26.
    74 Lachapelle. G., M.E Cannon, and G. Lu (1992a). "High Precision GPS Navigation with Emphasis on Carrier Phase Ambiguity Resolution." Marine Geodesy, Vol 15, 4, pp. 253-269.
    75 Lachapelle. G., M.E Cannon, and G. Lu (1992b). "Ambiguity Resolution On-The-Fly-A Comparison of P Code and High Performance C/A Code Receiver Technologies." Proc. of ION GPS-92, The Institute of Navigation, Alexandria, VA, pp. 1025-1032.
    76 Lachapelle, G. (1993), NAVSTAR GPS Theory and Applications, ENGO 625 Lecture Notes, The University of Calgary, Calgary, Alberta.
    77 Lachapelle, G., Messrs. C. Liu, G. Lu and R. Hare (1993), Water Level Profiling with GPS, proceedings of ION GPS 93, Salt Lake City, Sept. 22-24, pp. 1581-1587.
    78 Lachapelle, G., H. Sun, M.E. Cannon, and G. Lu (1994a), "Precise Aircraft-to-Aircraft Positioning Using a Multiple Receiver Configuration." Canadian Aeronautics and Space Journal, Canadian Aeronautics and Space Institute, Vol. 40, No. 2, pp. 74-78.
    79 Lachapelle, G., M.E. Cannon, H. Gehue, T. Goddard, and D. Penney (1994b), "GPS System Integration and Field Approaches in Precision Farming." Navigation, Vol. 41, No. 3, The Institute of Navigation, Alexandria, pp. 271-278.
    80 Lachapelle, G., C. Liu, G. Lu, Q. Weigen, and R. Hare (1994c). "Water-Borne Leveling with GPS." Marine Geodesy, Vol. 17, No. 4, pp. 271-278.
    81 Landau, H., H.-J. Euler (1992). "On-the-Fly Ambiguity Resolution for Precise Differential Positioning." Proc. of ION-92, The Institute of Navigation, Alexandria, VA., pp. 607-613.
    82 Landau, H., and U. Vollath (1994) "Differential GPS-New Developments on High Precision Positioning." Proc. of 3'rd International Conf. on Differential Satellite Navigation Systems (DSNS), The Royal Institute of Navigation, London, Paper No. 23.
    83 Leick A (1995), GPS Satellite Surveying, 2nd edn. John Wiley, New York
    84 Lenstra A. K., Lenstra H. W. & Lovacz L. (1982), Factoring polynomials with rational coefficients, Math. Ann. 261,515-534
    85 Lenstra H. W. (1983), Integer programming with a fixed number of variables, Mathematical Operations Research 8, 538-548
    86 Lichten SM (1990), Estimation and filtering for high-precision GPS positioning applications, Manuscr Geod, 15:159-176
    87 Li Zuofa, Gao Yang (1998). A method for the construction of high dimensional transformation matrices in LAMBDA, Geomatica, 52:433-439
    88 Liu LT, Hsu HT, Zhu YZ, Ou JK(1999). A new approach to GPS ambiguity decorrelation, Journal of Geodesy, 1999, 73:478-490
    89 Loomis, P. (1989). "A Kinematic GPS Double-Differencing Algorithm." Proc. of Fifth International Geodetic Symposium on Satellite Positioning, DMA, U.S., DoD, NGS, NOAA, Vol. 2, Held at Las Cruces, N. Mex., pp. 611-620.
    90 Parkinson B, Spilker JJ (eds). GPS: Theory and Applications, vols 1 and 2. AIAA, Washington, DC, 1996
    91 Klobuchar J.A. (1987), Ionospheric time-delay algorithm for single frequency GPS users. IEEE Trans Aerosp Electr Syst AES-23(3): 325-331
    92 Mader, G.L. (1986), Dynamic Positioning Using GPS Carrier Phase Measurements, Manuscripta Geodaetica, Vol. 11, No. 4, pp. 272-277.
    93 Mader, G.L. and J.R. Lucas (1989) Verification of Airborne Positioning Using Global Positioning System Carrier Phase Measurements, Journal of Geophysical Research, Vol. 94, No. B8, pp. 10175-10181.
    94 Mader, G.L. (1992). "Rapid static and kinematic Global Positioning System Solutions Using the Ambiguity Function Technique." J. of Geophysical Res., Vol. 97, No. B3, pp. 3271-3283.
    95 Maybeck PS (1994), Stochastic models, estimation, and control, vol. 1, Navtech, Arlington, VA
    96 Melbourne WG (1985) The case for ranging in GPS based geodetic systems. In: Goad C (ed) 1st Int symp precise positioning with the GPS. US Department of Commerce, Rockville, MD,pp 373-386
    97 Merrell, R.L., M.P. Leach and J.R. Clynch (1989), Development of an Operational GPS Controlled Aerial Photography Capability, Proceeding of the Fifth International Geodetic Symposium on Satellite Positioning, Las Cruces, New Mexico, March 13-17, pp. 634-642.
    98 M. Pohst, and H. Zassenhaus (1989), Algorithmic Algebraic Number Theory. Cambridge U. Press.
    99 M. Horemuz, L. E. Sjoberg (2002) Rapid GPS ambiguity resolution for short and long baselines, Journal of Geodesy 76:381-391
    100 Misra PN, Abbot RI, Bayliss E (1994), SGS85±WGS84 transformation, Manuscr Geod 19:300-308
    101 Misra PN, Abbot RI, Gaposchkin EM (1996a), Integrated use of GPS and GLONASS: transformation between WGS84 and PZ90. In: Proc ION GPS-96. Institute of Navigation, Kansas City, Missouri pp 307-314
    102 Misra PN, Pratt M, Muchnil R, Burke B, Hall T (1996b) GLONASS performance: measurement data quality and system upkeep. In: Proc ION GPS-96. Institute of Navigation, Kansas City, Missouri pp 261-270
    103 Nemhauser G, Wolsey L (1998), Integer and combinatorial optimization, John Wiley, New York
    104 Remondi BW (1985), Performing Centimeter-Level Surveys in Seconds with GPS Carrier Phase: Initial Results, NOAA Technical Memorandum NOS NGS-43, Rockville, MD.
    105 Remondi BW (1985). Performing centimetre level surveys in seconds with GPS carrier phase: initial results. Navigation 32(4):386-400
    106 Remondi, B. W. (1989), Extending the National Geodetic Survey Standard GPS Orbit Formats, National Information Center, Rockville, Maryland, NOAA Technical Report NOS 133, NGS 46.
    107 Remondi, B. W. and B. Hofmann-Wellenhof(1989), GPS Broadcast Orbits Versus Precise Orbit: A Comparison Study, GPS Bulletin, Vol 2, No. 6, pp. 8-13.
    108 Rizos C, Han S(1995). A new method for constraining multi-satellite ambiguity combinations for improved ambiguity resolution. Proc ION GPS-95, Palm springs, 12-15, September, pp 1145-1153.
    109 Rossbach U, Habrich H, Zarraoa N (1996) Transformation parameters between PZ90 and WGS84. In: Proc ION GPS-96. Institute of Navigation, Kansas City, Missouri, pp 279-285
    110 Rothacher M, Beutler G, Gurtner W, Bockmann E, Mervart L. (1993) Bernese GPS software v 3.4. Documentation, May 1993. University of Bern
    111 Saalfeld A. (1999), Generating basis sets of double differences, Journal of Geodesy 73:291-297
    112 Schaffrin B., & Grafarend E. (1986), Generating classes of equivalent linear models by nuisance parameter elimination, Manuscripta Geodaetica 11,262-271
    113 Schwarz, K.P., M.E. Cannon and R.V.C. Wong (1989), A Comparison of GPS Kinematic Models for the Determination of Position and Velocity Along a Trajectory, Manuscripta Geodaetica, Springer-Verlag, Vol. 14, pp. 345-353.
    114 Schwarz K.P., M.A. Chapman, M.E. Cannon, P. Gong and D. Cosandier (1994), A Precise Positioning/Attitude System In Support of Airborne Remote Sensing, Proceedings of Sixth International Conference on Geographic Information Systems (in press), Ottawa, Canada, June 6-10.
    115 Schwarz KP, Zang G (1994) Development and testing of a low-cost integrated GPS/INS. Proc ION GPS, 7th Int Tech Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, UT, 20-23 September, pp 1137-1144
    116 Seeber, G. (1993). Satellite Geodesy: Foundations, Methods, and Applications. Walter de Gruyter, Berlin, New York.
    117 Sjoberg L. E. (1996) Application of GPS in detailed surveying. Z Vermess 121(10): 485-491
    118 Sjoberg L. E. (1997), On optimality and reliability for GPS base ambiguity resolution by combined phase and code observables.Z Vermess 122(6): 270-275
    119 Sjoberg L. E. (1998a), A new method for GPS phase base ambiguity resolution by combined phase and code observables. Surv Rev 34 (268): 363-372
    120 Sjoberg L. E. (1998b), The ionospheric problem in GPS phase ambiguity resolution and some possible solutions. In: Bo Jonssen (ed.) Proc 13th General Meeting of NKG, Part 2, pp 320-330, Reports in Geodesy and GIS, The National Land Survey, Gavle, Sweden
    121 Sjoberg L. E. (1999), Unbiased vs biased estimation of GPS phase ambiguities from dual-frequency code and phase observables, Journal of Geodesy 73:118-124
    122 Strang G, Borre K (1997), Linear algebra, geodesy, and GPS. Wellesley-Cambridge Press
    123 Talbot, N.C. (1991), Sequential Phase Ambiguity Resolution for Real-Time Static Differential Positioning, Manuscripta Geodetica, Springer Verlag, 16, 274-282.
    124 Teunissen PJG (1993), Least-squares estimation of the integer GPS ambiguities, Invited Lecture, Sect Ⅳ,Theory and methodology. IAG General Meeting, Beijing.
    125 Teunissen PJG (1994), A new meth0d for fast carrier phase Ambiguity Estimation, Proceedings of PLANS'94, Las Vegas, NV, April 11-15, pp. 562-573
    126 Teunissen PJG(1995a), The invertible GPS ambiguity transformations. Manuscript Geodesy, 20(6): 489~497
    127 Teunissen PJG (1995b), The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70:65-82.
    128 Teunissen PJG (1996a) An analytical study of ambiguity decorrelation using dual frequency code and carrier phase, Journal of Geodesy 70:515-528
    129 Teunissen PJG (1996b), Rank defect integer least-squares with application to GPS, Bolletino di Geidesia e Scienze Affini 3,225-238
    130 Teunissen PJG (1997a), A canonical theory for short GPS baselines, Part Ⅰ: The baseline precision, Journal of Geodesy 71:320-336
    131 Teunissen PJG (1997b), A canonical theory for short GPS baselines, Part Ⅱ: The ambiguity precision and correlation, Journal of Geodesy 71:389-401
    132 Teunissen PJG (1997c), A canonical theory for short GPS baselines, Part Ⅲ: The geometry of the ambiguity search space, Journal of Geodesy 71:486-501
    133 Teunissen PJG (1997d), A canonical theory for short GPS baselines, Part Ⅳ: precision versus reliability, Journal of Geodesy 71:513-525
    134 Teunissen PJG (1997e), GPS double difference statistics: with and without using satellite geometry, 71:137-148
    135 Teunissen PJG, De Jonge PJ, Tiberius CC(1997f), The least-squares ambiguity decorrelation adjustment: Its performance on short GPS baselines and short observation spans. Journal of geodesy, 71:589-602
    136 Teunisse PJG (1997g), On the GPS widelane and its decorrelating property, Journal of Geodesy 71:577-587
    137 Teunissen PJG (1997h), Precision, volume and eigenspectra for GPS ambiguity estimation based on the time-averaged satellite geometry, Journal of Geodesy 71:290-301
    138 Teunissen PJG, Kleusberg A (eds)(1998a), GPS for geodesy, 2nd edn. Springer, Berlin Heidelberg New York, 262-333
    139 Teunissen PJG (1998b), Success probability of integer GPS ambiguity rounding and bootstrapping, Journal of Geodesy 72:606-612
    140 Teunissen PJG (1998c), The Ionosphere-weighted GPS baseline precision in canonical form, Journal of Geodesy 72:107-117
    141 Teunisen PJG (1998d), Minimal detectable biases of GPS data, Journal of Geodesy 72:236-244
    142 Teunissen PJG (1999a), The probability distribution of the GPS baseline for a class of integer ambiguity estimators, Journal of Geodesy 73:275-284
    143 Teunissen PJG (1999b), An optimality property of the integer least-squares estimator. Journal of Geodesy 73:587-593
    144 Teunissen PJG (2000), The success rate and precision of GPS ambiguities, Journal of Geodesy 74:321-326
    145 Teunissen PJG (2001a), The probability distribution of the ambiguity bootstrapped GNSS baseline, Journal of Geodesy 75:267-275
    146 Teunissen PJG (2001b), Integer estimation in the presence of biases. Journal of Geodesy 75:399-407
    147 Teunissen PJG (2002a), The parameter distributions of the integer GPS model, Journal of Geodesy 76:41-48
    148 Teunissen PJG (2002b), Theory of Carrier Phase Ambiguity Resolution, 2002 International symposium on GPS/GNSS, November 6-8, 2002, Wuhan, China
    149 Tiberius C.C.J.M., P. J. de Jonge (1995): Fast Positioning using the LAMBDA-method. Proceedings DSNS95, April 24-28, Bergen, Norway
    150 Tiberius C.C.J.M. (1998): Recursive data processing for kinematic GPS surveying, Ph.D thesis, Department of Mathematical Geodesy and Positioning, Delft University of Technology, Delft, The Netherlands
    151 Wang Jinling, Stewart MP, Tsakiri M (1998), A discrimination test procedure for ambiguity resolution on-the-fly, Journal of Geodesy 72:644-653
    152 Wang Jinling, Satirapod C., Rizos C. (2002), Stochastic assessment of GPS carrier phase measurements for precise static relative positioning, Journal of Geodesy 76:95-104
    153 Wübbena G (1985), Software developments for geodetic positioning with GPS using TI 4100 code and carrier measurements. In: 1st Int Symp precise Positioning with the Global Positioning System, Rockville, MD, USA, pp 403-412
    154 Wei M, Schwarz KP (1990), Testing a decentralized (?)lter for GPS/INS integration, Proc. IEEE, PLANS, Las Vegas, NV, 20-23 March, pp 429-435
    155 Wolf R, Eissfeller B, Hein GW (1997), A Kalman filter for the integration of a low cost INS and attitude GPS. Int Symp Kinematic Systems in Geodesy, Geomatics and Navigation, Ban., Canada, 3-6 June, pp 143-150
    156 Wübbena, G. (1989), "The GPS Adjustment Software Package GEONAP, Concepts and Models." Proc. of Fifth International Geodetic Symposium on Satellite Positioning, DMA, U.S., DoD, NGS, NOAA, held at Las Cruzes, N. Mex., Vol. 1, pp. 452-461.
    157 Xu Peiliang (1998), Mixed integer observation models and integer programming with applications to GPS ambiguity resolution, Journal of Geodetic Society, Japan 44, 169-187
    158 Xu Peiliang (2001), Random simulation and GPS decorrelation. Journal of Geodesy, 75: 408-423.
    159 Zarraoa N, Mai W, Daedelow H, Jungstand A (1996), GLONASS integrity monitoring by Internet. In: Proc ION National Technical Meeting 1995. Institute of Navigation, Santa Monica, California, pp 447-451
    160 Zarraoa N, Mai W, Jungstand A (1997), Long-term evaluation of GLONASS performance. Allg Vermessungs-Nachr 8:313-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700