埋地用Ir-Co/Ti电极的制备及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的飞速发展,地下金属构件的腐蚀与保护得到进一步重视。阴极保护作为最经济有效的方法被广泛的采用。钛基金属氧化物电极作为外加电流阴极保护用辅助阳极材料的研究与开发也变得尤为重要。
     本文采用传统的热分解法,通过正交试验设计研究了铱钴涂层钛电极的制备工艺对电极电化学性能的影响。采用SEM、EDX、EPMA、XRD等检测手段对所制备电极的微观形貌、元素组成和分布、涂层结构等进行分析,同时采用动电位扫描、循环伏安和交流阻抗测试技术研究电极的电化学性能。对电极的失效行为进行了分析。以所制备的优良电极为阳极,研究其在土壤中的电化学行为,并比较了在土壤中与硫酸溶液中的电化学性能。
     涂层的制备工艺主要包括金属离子浓度,组元配比,热氧化温度,涂刷次数,以析氧电位,析氧电流,伏安电荷量等为主要指标,对以上制备条件进行优化,确定了最佳制备工艺参数为:涂液浓度0.2 mol/L,热氧化温度450℃,铱钴物质的量之比为2:1,涂刷次数以最终覆盖量达到1.0g/cm2为止。结果表明这些因素对Ir-Co/Ti电极表面形貌及电化学性能影响的顺序依次是热氧化温度、金属离子总浓度、Ir:Co物质的量之比、涂刷次数。随着热氧化温度的升高,电极表面裂纹的数目增多,裂纹的深度增加。当金属离子浓度较大时容易出现挂液现象,导致电极不容易涂匀;而如果金属离子浓度较小,单次涂刷的涂敷量较小,需要增大涂刷次数,延长电极的制备时间。Ir:Co物质的量之比对电极的催化性能影响较大,Co的添加可以增大电极的真实表面积,但是当Co的添加量超过一定数值后电极的催化性能降低,电极的寿命也缩短。
     对涂刷制度进行了研究,结果表明,在不同的涂刷制度下电极的电化学性能有较大差异,最终确定电极的涂刷制度为先烘干三次后再烧结,重复一次后再进行烘干-烧结,既节省制备时间,电极性能又得到提高。强化电解试验表明Ir-Co/Ti电极失效的原因有两个:一是由于涂层溶解导致涂层脱落,二是在基体和涂层之间生成一层不导电的TiO2。
     对电极在土壤中的电化学行为的考察发现,随着含水量的增大,电极的催化性能先急剧增大,当土壤达到基本饱和以后,电极的催化性能基本不变,阻抗值在未达到饱和以前先急剧降低,然后基本不变,而离子扩散的难易程度也有较大差异。与在硫酸中相比较,电极的析氧机理基本相同,但是控制步骤不同。
With the rapid development of industry, the corrosion and protection of underground metal components has been got further attention. The cathode protection as the most cost-effective method is widely used. The research and development of Ti-based metal oxide electrode as the impressed current cathodic protection with aid anode material have become particularly important.
     The thermal decomposition process is used to prepare Ir-Co/Ti anodes, and the effect of preparing technology parameter was investigated on the Ir-Co/Ti anodes in this paper. The microstructure, element compositions and distributions, phase compositions and structure of the Ir-Co/Ti anodes had been studied by means of scanning electron microscopy(SEM) with energy dispersive X-ray (EDX), electron probe microanalysis(EPMA), X-ray diffraction (XRD). And the electrochemical property was measured by anodic polarization curve, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). During this experiment, the deactivation mechanism was also explained. At last it was investigated that the best Ir-Co/Ti anodes'electrochemical behavior in soil with different water content, and compared with it in the H2SO4solution.
     Preparing technology parameter includes the metal ion's concentration, the mole ratio of Ir and Co, the thermal oxidation temperature and the brushing times. Ir-Co/Ti anodes was optimized with the potential of oxygen evolution reaction (OER), the current density and the CV charge as the main assessing items and finally, the optimized process parameters were determined, which was as followed:the metal ion's concentration0.2mol/L, thermal oxidation temperature 450℃, Ir:Co (mol)=2:1, the final surface covered by 1.0g/cm2. From the orthogonal test result it can be inferred that the factor's order was the thermal oxidation temperature, the metal ion's concentration, the mole ratio of Ir and Co, the brushing times. It can be seen the surface of the Ir-Co/Ti anodes had much crack, the number and the depth of it was larger as the thermal oxidation temperature rising. If the metal ion's concentration is bigger, it is hard to brush evenly, but if it is smaller, the metal oxide covered with fewer amounts which indicated it needs more times to finish an electrode. As Co element added into the DSA, it can enlarge the true active area, but if its content is bigger than certain value, the function was becoming weaker. At the same time the service life of the Ir-Co/Ti anodes was shortened.
     The brushing procedure was investigated. It showed that electrochemical properties in different brushing system were quite different. The best brushing procedure was calcinated after the third solvent evaporated, repeat it again, then, calcinated once the solvent evaporated. The Accelerated Service Test (AST) result showed the reason of electrode deactivation was two mechanisms worked together. One is the coating pulled-off because of the coating unevenly dissolved. And the other is the formation of insulating TiO2-rich layer between coating and substrate.
     The electrocatalytic performance of the anode were improved at first and then keep steady with the water content increasing during the investigation Ir-Co/Ti anodes behavior in soil, so was the impedance value. The OER mechanism was similar in H2SO4 with in the soil, but the reaction determination step was different.
引文
[1]W.V.贝克曼,W.施文克,W.普林兹著,胡世信,王向农等.阴极保护手册[M].北京:化学工业出版社,1999.
    [2]王光雍,王海江,李光濂等.自然环境的腐蚀与防护[M].北京:化学工业出版社.
    [3]朱日彰等.金属腐蚀学[M].北京:冶金工业出版社,1988.
    [4]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,2008.
    [5]武俊伟,杜翠薇,李晓刚等.低碳钢在库尔勒土壤中腐蚀行为的室内研究[J].腐蚀科学与防护技术,2004,16(5):280-283.
    [6]KOBAYASH T. Effect of environmental factors on the potential of steel. In: Proceedings of the 5th International Congress on Metallic Corrosion. Houston:NACE, 1974:627-642.
    [7]MORGAN J. Cathodic Protection[M].2nd Ed. Houston:NACE.
    [8]KIM J G, KIM Y W. Cathodic protection criteria of thermally insulated pipeline buried in soil[J]. Corrosion Science,2001,43(11):2011-2021.
    [9]SEKINE I,NAKAHATA Y, TANABE H. The corrosion inhibition of mild steel by ascorbic and folic acids[J]. Corrossion science,1989,29(7):987-1001.
    [10]李谋成,林海潮,曹楚南.湿度对钢铁材料在中性土壤中腐蚀行为的影响[J].腐蚀科学与防护,2000,12(4):218-220.
    [11]李谋成,林海潮,曹楚南.碳钢在中性土壤中的腐蚀行为研究[J].材料科学与工程,2000,18(4):57-61.
    [12]孙成,李洪锡,张淑泉等.大港海滨盐土的土壤腐蚀性研究[J].环境科学与技术,1999,2(1):1-4.
    [13]何斌,孙成,韩恩厚等.不同湿度土壤中硫酸盐还原菌对碳钢腐蚀的影响[J].腐蚀科学与防护技术,2003,15(1):1-4.
    [14]银耀德,高英,张淑泉等.土壤中阴离子对20#钢腐蚀的研究[J].腐蚀科学与防护技术,1990,2(2):22-28.
    [15]李素芳,陈宗璋,曹红明等.碳钢在黄土中的腐蚀研究[J].四川化工与腐蚀控制,2002,5(6):12-15.
    [16]刘晓敏,史志明,许刚等.硫酸盐和温度对钢筋腐蚀行为的影响[J].中国腐蚀与防护学报,1999,19(1):55-58.
    [17]郭稚弧,金名惠,周建华.碳钢在土壤中的腐蚀及影响因素[J].油气田地面工程,1995,14(4):27-29.
    [18]金名惠,黄辉桃.金属材料在土壤中的腐蚀速度与土壤电阻率[J].华中科技大学学报,2001,29(5):103-107.
    [19]WERNER G, ROLAND B. Effect of soil parameters on the corrosion of archaeological metal finds[J]. Geoderma,2000,96(1):63-80.
    [20]唐红雁,宋光铃,曹楚南等.用极化曲线评价钢铁材料土壤腐蚀行为的研究[J].腐蚀科学与防护技术,1995,7(5):285-292
    [21]王强.地下金属管道的腐蚀与阴极保护[M].青海:青海人民出版社,1984.
    [22]张招贤.钛电极工学[M].北京:冶金工业出版社,2003.
    [23]国家石油和化学工业局.SY/T036-2000,埋地钢质管道强制电流阴极保护设计规范.中华人民共和国石油天然气行业标准.北京:石油工业出版社.2003-03-10.
    [24]WANG R, WALLWORK G R. The superior pitting corrosion resistant behavior of Fe-14Si base alloys in the development of new stainless steel system involving silicon [J]. Corrosion Australasia,1986,11(2):16-18
    [25]FEEIS P. Review of development in anode materials[J]. Corrosion Australasia, 1986,11 (4):14-17.
    [26]侯宝荣.海洋腐食环境と防食の科学[M].东京:海文堂出版株式会社,1999.
    [27]佐藤荣一.外部电源用电极材料につぃて[J].防錆管理,1981,11:18-16.
    [28]LINDER B. Magnetite anodes for impressed current cathodic protect ion [M]. Houston: NACE,1984.
    [29]许立坤.阴极保护用金属氧化物阳极研究[D].天津:天津大学,2005.
    [30]BEWER H B.美国专利:UP 549194,1996;UP 710551,1968.
    [31]国家质量技术监督局,GB/T3108,船体外加电流阴极保护系统,中华人民共和国国家标准,北京:中国标准出版社,1999-08-31.
    [32]国家质量技术监督局,GB/T7388,船用辅助阳极技术条件,中华人民共和国国家标准,北京:中国标准出版社,1999-08-31.
    [33]陈康宁.金属阳极[M].上海:华东师范大学出版社.1989.
    [34]汪文兵,龙晋明,郭忠诚.钛基金属氧化物涂层电极的研究进展[J].电镀与涂饰,2006,25(7):46-48
    [35]姜嘉鹭,唐电.钛基铱系氧化物涂层的研究[J].金属热处理,2005,30:257-261.
    [36]青山哲郎.金属氧化物及其催化作用[M].安徽:中国科学科技大学出版社,1991.
    [37]张招贤,赵国鹏,罗小军,等.钛电极学导论[M].北京:冶金工业出版社.2008.
    [38]颜琦.50%Ir02-50%Ta2O5被覆钛阳极涂层的组织结构研究[J].福建工程学院学报,2008,6(1):21-24.
    [39]RYUICHI OTOGAWA, MASATSUGU MORIMITSU, MORIO MATSUNAGA. Effects of micro structure of IrO2-based anodes on electrocatalytic properties[J]. Electro-chimica Acta, 1998,44:1509-1513.
    [40]KRYSA. J, KULE.L. Effect of coating thickness and surface treatment of titanium on the properties of IrO2-Ta2O5 anodes [J]. Journal of Applied Electrochemistry,1996, 26:999-1005.
    [41]#12
    [42]柯学标,唐电.铱钴涂层钛阳极的组织结构与析氧性能[J].福建工程学院学报,2007,15(3):211-213.
    [43]柯学标,唐电.钛基铱系氧化物涂层的结构与电化学性能表征[J].金属热处理,2008,33(2):82-84.
    [44]YE ZHIGUO, MENG HUIMIN, CHEN DONG. Structure and characteristics of Ti/IrO2(x) +MnO2(1-x) anode for oxygen evolution[J]. Solid State Sciences 2008,10:346-354.
    [45]YE ZHIGUO, MENG HUI-MIN, SUN DONGBAI. Electrochemical impedance spectro-scopic(EIS) investigation of the oxygen evolution reaction mechanism of Ti/IrO2 +MnO2 electrodes in 0.5 m H2SO4 solution[J]. Journal of Electroanalytical Chemistry 2008,621:49-54.
    [46]DE PAULI C. P, TRASATTI S. Composite materials for electrocatalysis of O2 evolution: IrO2/SnO2 in acid solution[J]. Journal of Electroanalytical Chemistry,2002, 538-539:145-151.
    [47]梁振海.固溶体中间层钛基氧化物阳极研究.[D].太原理工大学.2006.
    [48]VERCESI G. P, ROLEWICZ J, Comninellis CH, etal. Characterization of DSA-type oxygen evolving electrode:choice of base metal [J]. Thermochimica Acta,1991,176:31-47.
    [49]姜俊峰,徐海波,王廷勇等.TiN基IrO2+Ta2Os涂层电催化性能研究[J].稀有金属材料及工程,2007,36(2):344-348.
    [50]ISAMU K,MASAAKI S, SHIGEHARU 0. Development of positive electrodes with an SnO2 coating by applying a sputtering technique for lead-acid batteries[J]. Journal of Power Sources,2001,95(1/2):125-129.
    [51]DING HAIYANG, FENG YUJIE, LIU JUNFENG. Preparation and properties of Ti/SnO2-Sb2O5 electrodes by electrodeposition[J]. Materials Letters,2007,61:4920-4923.
    [52]Mattos-Costa F.I, de Lima-Neto. P, Machado S.A.S, etal. Characterization of surfaces modified by sol-gel derived RuxIrl-xO2 coating for oxygen evolution in acid medium [J]. Electrochimica Acta,1998,44:1515-1523.
    [53]VERCESI G P, ROLEWICZ J, COMNINELLIS Ch, etal. Characterization of DSA-type oxygen evolving electrodes. Choice of base metal [J]. Electrochim Acta,1991,17 (6):31-47.
    [54]CRADARELLI F, TAXIL P, SVALL A, etal. Preparation of oxygen evolving electrodes with long service life under extreme conditions[J]. Journal of Applied Electro-chemistry,1998,28(3):245-250.
    [55]姚书典,沈嘉年,孙娟.IrO2+Ta2Os系钛基改性涂层阳极和失效特点[J].稀有金属材料与工程,2006,35(12):1916-1919.
    [56]公铭扬.钛基纳米晶IrO2-Ta205氧化物涂层阳极的研究[J].中国涂料,2005,20(11):21-25.
    [57]胡吉明,孟惠民,张鉴清等.制备条件对钛基IrO2+Ta2O5涂层阳极性能的影响[J].金属学报,2002,38(1):69-73.
    [58]初立英,许立坤,吴连波等.草酸浸蚀对氧化物阳极形貌及电催化性能的影响[J].金属学报,2005,41(7):763-768.
    [59]ROGINSKAYA YU E, MOROZOVE O V. The Role Of Hydrated Oxides In Formation And Structure Of DSA-Type Oxide Electrocatalysis[J]. Electrochimica Acta,1995, 47(7):817-822.
    [60]MRAZ R, KRYSA J. Long service life Ir02/Ta205 electrodes for electroflotation[J]. Journal of Applied Electrochemistry,1994,24(12):1262-1266.
    [61]COMNINELLIS Ch, Vercesi G. P. Problems in DSA(?) coating deposition by thermal decomposition[J]. Journal of Applied Electrochemistry,1991,21(2):136-142.
    [62]王科,韩严,王均涛.涂液浓度对Ru-Ti-Ir氧化物阳极涂层性能的影响[J].电化学,2006,12(1):74-79.
    [63]郭继延,顾文才,王兆瑞.金属阳极钌钛涂层的研究[J].上海金属(有色分册),1993,14(1):7-11.
    [64]潘会波,刘宏,焦文强.Ti/IrO2涂层阳极热氧化处理温度的选择[J].稀有金属材料与工程,1999,28(1):50-52.
    [65]SANTANA M. H. P, DE FARIA L. A, BOODTS J. F. C. Effect of preparation procedure of IrO2-Nb2O5 anodes on surface and electrocatalytic properties[J]. Journal of Applied Electrochemistry,2005,35:915-924.
    [66]HU JIMING, ZHANG JIANQING, CAO CHUNAN. Oxygen evolution reaction on IrO2-based DSA(?) type electrodes:kinetics analysis of Tafel lines and EIS[J]. Interna-tional Journal of Hydrogen Energy,2004,29:791-797.
    [67]胡吉明,侯艳远,王晓梅等.烧结工艺对Ti/I r02电极在酸性溶液中电催化活性的影响[J].物理化学学报,2006,22(8):1010-1014.
    [68]SAVINELL R. F, ZELLER R. L, ADAMS J. A. Report Of The Electrolytic Industries For The Year 1989 [J]. Electrochem. Soc.1990,137(10):485-503.
    [69]KRYSA J, KULE L, MRAZ R. Effect of coating thickness on the properties of Ir02+Ta205 anodes[J]. Journal of Applied Electrochemistry,1998,28:369-372.
    [70]张招贤.IrTa氧化物涂层钦阳极恶化原因分析[J].氯碱工业,2005,9(1):12-16.
    [71]TRASATTI S. Electrocatalysis by oxide-attempt at a unifying approach[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1980,111(1): 125-131.
    [72]黄运涛,彭乔.海水电解用金属氧化物阳极的失活机理[J].稀有金属与材料工程,2006,35(10):1610-1615.
    [73]颜琦.钛阳极强化腐蚀失效测试及其机理[J].热处理技术与装备,2006,27(6):36-38.
    [74]张琼,彭俊华,蔡传荣.钛阳极涂层剥落失效机理初探[J].电子显微学报,2001,20(4):410-411.
    [75]王均涛,韩严,许立坤等Ru-Ir-Ti氧化物阳极正反电流电解失效机理研究[J].电化学,2005,11(4):407-411.
    [76]张琼,蔡传荣.钛阳极涂层溶蚀失效的研究[J].电子显微学报,2003,22(6):624-625.
    [77]唐电,林萱.钛阳极的失效[J].物理测试,1990,2:31-31.
    [78]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [79]刘振学,黄仁和,田爱民.实验设计与数据处理[M].北京:化学工业出版社,2005.
    [80]DA SILVA L. A, BOODTS J. F. C, DE FARIAL L. A.'In stiu'and'ex stiu'characteriza-tion of the surface properties of the RuO2(x)+Co3O4(1-x) system [J]. Electrochimica Acta,2000,45(17):2719-2727.
    [81]DA SILVA L.A, ALVES V. A, TRASATTI S, etal. Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7-x)CexO2:Oxygen evolution from acidic solution[J]. Electroanal. Chem.,1997,427(1-2):97-104
    [82]MARTELLI G. N, ORNELAS R, FAITA G. Deactivation mechanism of oxygen evolving anodes at high current density[J]. Electrochim Acta 1994,39:1551-1557.
    [83]HU JIMING, ZHANG JIANQING, CAO CHUNAN. Oxygen evolution reaction on IrO2-based DSA typeelectrodes:kinetics analysis of Tafel lines and EIS[J]. International Journal of Hydrogen Energy,2004,29:791-797.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700