真丝(绸)经HBP-NH_2改性预处理后结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了改善蚕丝纤维的性能,提高真丝制品的附加值,本研究将一种自制的端氨基超支化聚合物(HBP-NH_2)运用到对真丝纤维及织物进行改性预处理中,探索了HBP—NH_2对真丝改性的可行性,为真丝纤维和制品的改性提供理论依据。
     本文首先用自制的端氨基超支化聚合物(HBP-NH_2)对桑蚕丝纤维进行改性预处理,利用扫描电镜、傅利叶红外光谱、X射线衍射、热分析等现代分析手段,研究了经端氨基超支化聚合物(HBP-NH_2)处理前后蚕丝纤维的结构,发现处理后纤维内部结构呈现β化趋势,相对结晶度和热稳定性均有一定程度提高。
     经端氨基超支化聚合物(HBP-NH_2)处理的桑蚕丝织物对大肠杆菌和金黄色葡萄球菌均有良好的抑菌作用,另外处理后织物强力略有增强,折皱回复角有所提高,抗皱性增强,织物的吸湿性提高,吸水性也增强。
     对经端氨基超支化聚合物(HBP-NH_2)处理的桑蚕丝织物进行染色,结果表明,处理后的织物采用活性染料染色,提高了染料的上染性,实现低盐甚至无盐染色,并且处理后的织物染色色牢度和匀染性令人满意;处理后的织物采用酸性染料染色,可以在较低温度下和中性染浴的条件下进行染色,并且染色效果尚佳。
     研究结果表明:将端氨基超支化聚合物(HBP-NH_2)对真丝材料进行改性预处理,可以提高真丝纤维的热稳定性和部分力学性能,能够改善真丝制品的染色性能、抗菌性能和抗皱性能,为真丝制品的改性研究提供了一条新的途径。
For improving the B.mori silk performance and enhancing the silk product attachment value, the B.mori silk was pretreated with an amino-terminated hyper branched polymer(HBP-NH_2) absolution. The feasibility of silk yarn modified with HBP—NH_2 was investigated, which provided theoretical base for modification of B.mori silk fiber and fabric.
     In the paper, it was used HBP-NH_2 to pre-treat silk fiber. The structures of Bombyx mori silk fiber treated with HBP-NH_2 was studied by Scanning electron microscope(SEM) ,Fourier transform infrared micro spectroscopy (FT-IR), X-ray diffraction (XRD) and thermal analysis. It was found that the interior structure of the pretreated silk fiber tended to formβ-structure, and the comparative crystallinity and thermal stability increased at the same time.
     The silk fabric pretreated with HBP-NH_2 absolution has good antibacterial performance against the staphylococcus aureus and bacillus coli. In addition, the breaking strenth and anti-wrinkle ability of treated fabric have enhanced and the moisture absorption and water absorption has also improved after modification.
     After dyeing the silk fabric pretreated with HBP—NH_2 absolution, the fabric was achieved salt-free and low-salt dyeing with reactive dyes. The dyeing property has improved. The color fastness and leveling properties was also satisfied. The fabric pretreated with HBP-NH_2 was dyeing at lower temperature and neutral dye liquor when dyeing with acid dyes. And the dyeing effect was quite well.
     The B. mori silk fabric was modified with HBP-NH_2 successfully. When applying the material to B. mori silk fiber, the mechanical performances of the silk fibers improved, as well as thermal properties. The dyeing properties were also content. And the aim of increasing the anti-bacteria performance and anti-wrinkle-resistant performance of B. mori silk was achieved. This paper offered a new for developing novel silk materials.
引文
[1]高文庆.新世纪纺织技术发展趋势[J].纺织装饰科技, 2001(3):1.
    [2]苏洁.大花哔叽印花布[N].青岛晚报, 2007, 12, 12(4).
    [3]周宏湘.真丝绸染整新技术. [M]北京:中国纺织出版社, 1997.
    [4] Han Zhang, Jun Magoshi, Mary Beckers, et al. Thermal properties of Bombyx mori silk fibers. Journal of applied polymer science,2002,Vol.86:1817~1820.
    [5]彭晓虹.蚕丝氨基酸的组成与功能[J].蚕桑茶叶通讯, 2005(3):12~14.
    [6]郑今欢,邵建中,刘今强.蚕丝丝素纤维中氨基酸在丝素纤维的径向分布研究[J].高分子学报, 2002(6):818~823.
    [7] Yu-qing Zhang. Applications of natural silk protein sericin in biomaterials. Biotechnology advances, 2002, 20:91~100.
    [8]管辛,顾平.差别化柞/桑弹力真丝织物水渍状况研究[J],丝绸, 2001(10):28~30.
    [10]刘今强.柞丝绸水迹及色变成因探索[J] .浙江丝绸工学院学报, l992(4):6~11.
    [11]加藤弘.塩縮、分繊処理による捲縮绢糸の開発[J].日本蚕丝学杂志, 1990, 59(4):271~279.
    [12]钱家鹤,马颖.真丝变形丝的分析及研制[J].丝绸, 1991(9):11~13.
    [13]裘愉发.真丝新材料种种[J].丝绸, 1990(12):59.
    [14]盛家镛,周本立.桑蚕膨松丝的力学性质与理化性能研究[J].苏州丝绸工学院学报, 1993, 13(4):5~12.
    [15]邢铁玲.防皱整理剂PMI的合成及在柞丝绸上的应用[J].丝绸, 2001(12):10~11.
    [16]谢洪德,王红卫,管新海等.柞丝绸等离子体接枝甲基丙烯酸羟乙酯研究[J].纺织学报, 2003, 24(5):38~40.
    [17] Kawahara Yutaka. Graft polymerization of methacrylamide onto wild silk fibers treated with an alkaline solution[J]. Journal of Macromolecular Science-Physics, 1999 (7): 471~478.
    [18] Kawahara, Y., Shioya M., Takaku, A. Influence of swelling of noncrystalline regionsin silk fibers on modification with methacrylamide[J]. Journal of Applied Polymer Science,1996(1): 51~56.
    [19] Kawahara Y., Shioya M. Mechanical properties of Tussah silk fibers treated with methacrylamide[J]. Journal of Applied Polymer Science, 1997(10): 2051~2057.
    [20] Masuhiro Tsukada, Yoko Goto, Giuliano Freddi, et al. Structure and physical properties of epoxide-treated tussah silk fibers[J].Journal of Applied Polymer Science, 1992 (12): 2203~2211.
    [21]陈宇岳,国晶.差别化柞/桑弹力真丝的形态与性能研究[J].纺织学报, 2000(4):18~21.
    [22]陈宇岳,周亚萍.真丝新材料:膨体弹力真丝的结构与性能[J].苏州丝绸工学院学报, 1996(2):10~17.
    [23]平林洁,铃木孝雄等.绢の盐缩[J].日本蚕糸学会, 1974, 30(40):136~141.
    [24]平林洁,铃木孝雄等.盐缩による生糸の举动[J].日本蚕糸学, 1976, 45(5):421~425.
    [25] Peng X. J., Sun J., Wang J.Y., et al. Study on the silk finishing process with epoxy resins[J]. Journal of the Textile Institute Part 1: Fibre Science and Textile Technology, 1997, 88(2): 143~148.
    [26] Tsukada M, Arai T, Winkler S. Chemical modification of tussah silk with acid anhydrides[J]. Journal of Applied Polymer Science. 2000, (10): 382~391.
    [27]Gotoh Y, Minoura N, Miyashita T. Preparation and characterization of conjugates of silk fibroin and chitooligosaccharides[J].Colloid Polymer Science, 2002, 280: 562~568.
    [28]王霞,王天元,刘艳,等.丙酮酸乙酯对鞣化柞蚕丝的改性研究[J].黑龙江纺织, 2002, (4): 9~10.
    [29]王霞,王天元,黄庆雨.柞蚕丝抗菌整理研究初步[J] .黑龙江纺织, 2004, (1): 9~10.
    [30] Jiong Y. J., Cha S. Y., Yu W. R., et al.Changes in the Mechanical Properties of Chitosan-Treated wool Fabric[J]. Textile Research Journal, 2002, 72(1):70~76.
    [31]陈宇岳.丝绸纤维技术的研究进展及未来发展趋势.全省丝绸工业技术进步工作座谈会材料. 2002.5.
    [32]张菁.真丝织物等离子接枝聚合改性[J].纺织学报1996, 17(4): 200~203.
    [33]叶露,高燕.真丝织物的化学接枝和化学整理的特性评定[J].丝绸, 1999(2):24~28.
    [34] Tsukada. M,Shiozaki. H,etal. Changedin Mechanical Properties of Silk Fabrics Modified With Epoxide and Their Relations to the Fabric Constructure [J]. Text. Inst.,1989, 80(4):547~553
    [35]胡成,孙恺.真丝绸环氧树脂EPTAII的应用研究[J].丝绸, 1997(12):24~26.
    [36]赵国钧.二环氧三甘醇缩水甘油醚的研制及在真丝绸抗皱防缩上的应用试验[J].丝绸, 1993, (9):37~39.
    [37]徐红梅,杜宗良,吴大诚.真丝织物的环氧化合物改性进展,印染助剂, 2002 (4):6~9.
    [38]蔡再生,王福爱,杨绍军.真丝绸含硅环氧交联剂整理[J]丝绸, 2000, 5:19~21.
    [39]杜宗良,张敏,吴人诚.真丝绸的无甲醛抗皱整理[J].印染, 1999, (5):8~11.
    [40]浙江丝绸科学院真丝绸起皱机理研究组.丝纤维及其织物的起皱机理[J].丝绸, 1993(6):18-20.
    [41]陈祥平,余卫华.如何改善真丝绸抗皱性能[J].四川丝绸, 2008,(3).
    [42]陈宇岳,朱良均,林红等.蚕丝纤维的微孔生成及性能研究[J].纺织学报, 2003, 24(5):8.
    [43]陈宇岳,盛家镛.真丝纤维在钙盐作用下的形态结构研究[J].纺织学报, 1999,(3):12~14.
    [44]王建南,陈宇岳,盛家镛.真丝在氯化钙溶液中的分纤举动与力学性能[J].丝绸, 2002, (2):8~10.
    [45]周宏湘.真丝绸改性加工的进展[J].丝绸, 1993, (7):54~55.
    [46]陈根荣.真丝绸增重增厚整理技术[J].印染助剂, 1996(3):1~4.
    [47]陈海相.甲基丙烯睛接枝和化学整理的特性评定[J].国外丝绸, 1996(2):19~21.
    [48]薛涛,孟家光.纳米防螨抗菌真丝针织服装的研究[J].西安工程科技学院学报, 2005, 19(1):16~19.
    [49] MUELLERT,肖敏.纺织品阻燃整理[J].新纺织, 2001(7):31~35.
    [50]于丹琦,陈国强.新型磷系阻燃剂对真丝的微波接枝[J].丝绸, 2008(8):25~27.
    [51]李建新.真丝绸拒水整理[J].江苏丝绸, 1994(1):17~18.
    [52]夏建明.真丝绸低温拒水工艺[J].丝绸, 1995(5):15~17.
    [53]王绪荣等.特种有机硅丝绸织物整理剂NTF-3应用研究[J].江苏丝绸, 1995(2):12~14.
    [54]周宏湘.真丝绸整理技术的发展趋势[J].染整科技, 1994(8):42~47.
    [55]唐黎明.新型功能性超支化聚酯的合成及表征[J].高等学校化学学报, 2001, 22(6):1073~1075.
    [56] Flory.Molecular size distribution in three-dimensional polymersⅥbranched polymer containing A-R-Bf-1-type units[J].J.Am.Chem.Soc,1952,74:2718~2713.
    [57] Ardwt A ,Vogele F Handb.Dendritic molecule ,Historic development and future application[J].Nanostruct Mater Nanotechnol. 2000 , (5) :333~374.
    [58] Malstrōm E , Hult A. Hyperbranched aliphatic polyesters based on bisMPA and various polyol cores[J].Polym Mater Sci Eng ,1995 ,75 :349.
    [59] Wang guo Jian , Yang De Yue. Preparation and character of hyperbranched polymers[J].高分子通报.1999, (2):1~10.
    [60] Malstrōm E ,Johansson M,Hult A. Hyperbranched Aliphatic polyesters[J] . Macromolecules ,1995 ,28 :1698.
    [61]陆玉,林德,魏焕郁,等.超支化聚(胺-酯)的合成及光固化性能研究[J].高分子学报, 2000, 8:411.
    [62]施文芳,黄宏.超支化聚合物研究进展[J].高等学校化学学报, 1997, 18 (8):1398~1405.
    [63]陈梦茹,金养智.超支化聚合物[J].热固性树脂. 2003, 18(1):24~27.
    [64] Kim Y H, Webster O W. Hyperbranched polyarylene [J].J Am Chem Soc 112:4592.
    [65]唐黎明,齐东超,等.超支化聚(酯-酰胺)改善超高分子量聚乙烯的流动机理[J].清华大学学报, 2006, 46(6):833~835.
    [66]桂红星,周贵忠,罗运军,等.树枝形聚合物/线性聚合物共混的研究进展[J].高分子材料科学与工程, 2004,20(1):9~14.
    [67]桂红星,罗运军,廖建和,等. PA6/ PAM AM共混物的加工与流变性能.高分子材料科学与工程, 2004, 20(6):173~175.
    [68]赵宝辉,巴信武,侯文龙,等.超支化聚(酰胺-酯) /聚氯乙烯共混体系流变力学性能研究[J].高分子材料科学与工程, 2003, (19):157~161.
    [69]陈乐培,武志明,等.光敏树脂及其紫外光固化涂料发展新动向[J].热固性树脂, 2003, 33(5):33~36.
    [70]吴文娟.端基为胺基的树枝状大分子的合成及功能化研究[D].苏州:苏州大学, 2004.
    [71]徐冬梅,张可达,宁春花,等.紫外光快速固化的树枝状丙烯酸酯齐聚物的制备和性能.感光科学与光化学, 2004, 22(4) :287~291.
    [72]郝挥红.树枝状聚赖氨酸及其衍生物载体合成及性能研究[D].天津:天津大学, 2005.
    [73]王俊,杨锦宗.树枝状大分子催化剂的研究进展[J].高分子材料科学与工程,2004 ,18(8) :33~36.
    [74]王金凤,贾欣如,等.树枝状大分子的自组装超薄膜[J] .高等化学学报, 2001, 11(10) :21~25.
    [75]周贵忠,谭惠民,罗运军等. TNT红水处理新方法[J].工业水处理,2002, 22(6) :14~16.
    [76]周贵忠,谭惠民,等.聚酰胺-胺树形分子在染料废水处理中的应用研究[J].环境科学与技术, 2003, 26(1) :1~4.
    [77]赵辉.超支化聚合物的合成及应用[J].开封大学学报, 2003, 17(4) :70~73.
    [78]高超,颜德岳.用封端法制备超支化聚合物功能材料[J].科学通报, 2000, 45(11) :1145~1148.
    [79]寇会光,朱胜武,施文芳.超支化聚酯的改性及其结晶性能的研究[J].高等学校化学学报, 2001, 22(1) :410~413.
    [80]贺小华,张海良,王霞瑜.新型超支化聚羟基醚液晶的合成[J].高分子材料科学与工程, 2003, 19(2) :209~212.
    [81]张立德.超微粉体制备与应用技术.北京:中国石化出版社, 2001, 180.
    [82]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2001, 140.
    [83] Bao C Y, Jin M, Lu R , et al. Mater Chem Phy , 2003 , 82 :812.
    [84] Mecking S, Thomannn R , Frey H , et al. Macromolecules ,2000 , 33 : 3958.
    [85]张峰,陈宇岳,张德锁,等. HBP-NH2.改性棉织物活性染料无盐染色[J].印染, 2007(17) :1~4.
    [86]Yong-silk K Wang. Jin durable press antimicrobial finishing of cotton fabrics withCA and chitosan treatment [J]. Textitle Res.J., 2003, (3):10~11.
    [87] J.KargerKocsis, J.Frihlich, O.Gryshchuk, etal. Synthesis of reactive hyperbranched and starlike polyethers and theiruse for toughening of vinylester2urethane hybrid resins [J] .Polymer, 2004, 45:1185.
    [88] Hewen Liu, Carl2Eric Wilén, Hyperbranched polymers withmaleic functional groups as radical crosslinkers [J]. J . Polym.Sci. A. Polymer, 2001, 39: 964~972.
    [89] Daoji Gan, Anja Mueller, Karen L. Wooley. Amphiphilic andhydrophobic surface patterns generated from hyperbranchedfluoropolymer/ linear polymer networks: Minimally adhesivecoatings via the crosslinking of hyperbranched fluoropolymers [J]. J . Polym. Sci. Part A : Polymer, 2003, 41:3531~3540.
    [90] Bayoudh S, Laschewsky A, Wischerhoff E. Amphiphilic hyperbranched polyelectrolytes : a new type of polysoap [J]. Colloid and Polymer Science, 1999, 277 (6) :519~527.
    [91] Wang ZX, Ikeda M, Hirata N, Kubo M, Itoh T. Yamamoto O. Thermal, electrochemical, and spectroscopic characterizations of hyperbranched polymer electrolyte [J] . Journal of The Electrochemical Society, 1999, 14696 :2209~2215.
    [92] Bayoudh S, Laschewsky A, etc. Amphiphilic hyperbranched polyelectrolytes: a new type of polysoap [J]. Colloid Polym Sci, 1999, 277:519~527.
    [93] Takahito I, Yoshiaki I. et al.. Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes[J]. Solid State Ionics, 2002, 150 (3~4):337~345.
    [94] Wen Z Y, et al. Blend2based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly [ bis ( triethylene glycol )benzoate] with terminal acetyl groups [J]. Solid State Ionics, 2000, 134.
    [95] Duan L, Qiu Y. Qing G H, etc. A novel hyperbranched conjugated polymer for electroluminescence application[J] . Synthetic Metals, 2001, 124 (2~3) : 373~377.
    [96] Tao X. T., Suzuki H., Wada, T., Sasabe, H., Miyata S.Lithium tetra (82hydroxy2quinolinato) boron for blue electroluminescent applications [J]. Applied Physics Letters, 1999, 75 :1655~1657.
    [97] Zhu S W, Shi W F. Flame retardant mechanism of hyperbranched polyurethaneCA and chitosan treatment [J]. Textitle Res.J., 2003, (3):10~11.
    [87] J.KargerKocsis, J.Frihlich, O.Gryshchuk, etal. Synthesis of reactive hyperbranched and starlike polyethers and theiruse for toughening of vinylester2urethane hybrid resins [J] .Polymer, 2004, 45:1185.
    [88] Hewen Liu, Carl2Eric Wilén, Hyperbranched polymers withmaleic functional groups as radical crosslinkers [J]. J . Polym.Sci. A. Polymer, 2001, 39: 964~972.
    [89] Daoji Gan, Anja Mueller, Karen L. Wooley. Amphiphilic andhydrophobic surface patterns generated from hyperbranchedfluoropolymer/ linear polymer networks: Minimally adhesivecoatings via the crosslinking of hyperbranched fluoropolymers [J]. J . Polym. Sci. Part A : Polymer, 2003, 41:3531~3540.
    [90] Bayoudh S, Laschewsky A, Wischerhoff E. Amphiphilic hyperbranched polyelectrolytes : a new type of polysoap [J]. Colloid and Polymer Science, 1999, 277 (6) :519~527.
    [91] Wang ZX, Ikeda M, Hirata N, Kubo M, Itoh T. Yamamoto O. Thermal, electrochemical, and spectroscopic characterizations of hyperbranched polymer electrolyte [J] . Journal of The Electrochemical Society, 1999, 14696 :2209~2215.
    [92] Bayoudh S, Laschewsky A, etc. Amphiphilic hyperbranched polyelectrolytes: a new type of polysoap [J]. Colloid Polym Sci, 1999, 277:519~527.
    [93] Takahito I, Yoshiaki I. et al.. Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes[J]. Solid State Ionics, 2002, 150 (3~4):337~345.
    [94] Wen Z Y, et al. Blend2based polymer electrolytes of poly(ethylene oxide) and hyperbranched poly [ bis ( triethylene glycol )benzoate] with terminal acetyl groups [J]. Solid State Ionics, 2000, 134.
    [95] Duan L, Qiu Y. Qing G H, etc. A novel hyperbranched conjugated polymer for electroluminescence application[J] . Synthetic Metals, 2001, 124 (2~3) : 373~377.
    [96] Tao X. T., Suzuki H., Wada, T., Sasabe, H., Miyata S.Lithium tetra (82hydroxy2quinolinato) boron for blue electroluminescent applications [J]. Applied Physics Letters, 1999, 75 :1655~1657.
    [97] Zhu S W, Shi W F. Flame retardant mechanism of hyperbranched polyurethane

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700