织物预处理对喷墨印花效果的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接对未经任何处理的织物进行喷墨印花图案容易渗化,并且得色较浅。因此,为了获得较为清晰和颜色鲜艳度的喷印织物,需对织物进行预处理。传统的预处理方法是采用一些化学品如:增稠剂和阳离子试剂的水溶液对织物进行湿态加工处理。该方法工艺流程较为复杂、耗能耗水量极大、并且在处理过程中会产生大量含有毒素物质的废水,导致环境污染。当前,国际上对环境质量的恶化与生态平衡的失调十分关注,特别是水资源短缺和水污染问题引起了人们的密切关注。等离子体作为一种清洁生产技术已引起了各个国家众多研究学者的广泛关注,与传统改性处理相比,采用等离子对纺织品进行表面改性具有较为广泛的适用范围、不影响纤维和织物的整体性能、化学物品消耗低及较高的可靠性和安全性等优点。等离子处理并不涉及使用危险化学品,不存在废水处理问题,所以对环境负荷比较小,因此符合生态加工的定义。本课题分别采用低氧等离子体和脉冲式常压空气等离子体对真丝和涤纶织物进行表面改性处理,研究等离子体处理对喷墨打印织物颜色性能的影响。
     通过对真丝织物进行低氧等离子体表面改性处理,后用浅品色纳米颜料墨水喷墨印花。结果表明,真丝织物的最佳处理工艺条件为:时间10min,压强50Pa,功率80W。
     经该条件处理后的真丝织物图案清晰、得色深度有所提高。原子力显微镜分析结果表明经低氧等离子体处理后在真丝纤维表面形成沟壑状裂纹、动态接触角测试结果表明处理后真丝纤维的润湿性能得到了明显提高。
     为了将该工艺推广向大规模工业化,采用脉冲式常压空气等离子体对真丝和涤纶织物进行表面改性预处理。对处理后纤维的表面形貌和表面化学组成分别采用SEM和XPS进行表征。结果表明,脉冲式常压空气等离子体并未在纤维表面形成刻蚀作用,织物亲水性的提高主要是由于在纤维表面引入的一些含氧的极性基团。因而在不影响织物服用性能的情况下可显著提高织物的喷墨打印性能。因此,与传统方法相比,采用等离子体对织物进行表面改性处理开辟了一种节能环保的新方法。
Patterns directly printed with pigment inks have poor color yields and easily bleed. In order to improve the inkjet printing sharpness of fabrics, pre-processing of fabric must be done before printing. Traditional pre-processing was to size the fabrics using solutions of some chemicals such as thickeners and cationic reagents. This process is very long and complicated, with huge energy and water consumption. At the same time, toxic substance and waste water would be produced during process, which lead to environmental pollution. In recent years, People have paid great attentions to environmental deterioration and ecology balance, especially the problem of water shortage and environmental pollution. The plasma technique, as one of environmental friendly process, has been widely used to modify the surface properties of polymers and textile materials over the past decade. Compared with traditional methods, plasma treatment have the following advantages: it only modifies the outmost thin layer of the surface, while the bulk properties will be kept untouched; lower chemical consumption and higher security; no waste water produced; less burden on environment and totally fit to the definition of textile ecological manufacturing. The aim of this research was to study the effect of pretreatment of silk and polyester fabrics on the samples’color performance by using low temperature oxygen plasma and pulse atmospheric air plasma, respectively.
     Plasma surface-treatment of silk fabric was carried out in an oxygen atmosphere under different experimental conditions. The samples were printed with magenta pigment ink after treatment. The results showed that the optimum treatment conditions we obtained were exposure time of 10 min at a working pressure of 50 Pa and a working power around 80 W. At such conditions surface-modified silk fabrics could obtain the effects of features with enhanced color yields and excellent pattern sharpness. Atomic force microscope (AFM) images indicated that low temperature oxygen plasma initiated modifications to the surface of silk fiber with more grooves. Dynamic contact angle (DCA) analysis showed that the hydrophilicity of silk fiber was remarkably improved after pretreatment with plasma.
     In order to extend this technique into industrialization, we present a study of the surface modification of silk and polyester fabrics using pulse atmospheric air plasma. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to observe the change of fiber morphology and surface chemical composition, respectively. SEM and XPS analysis indicates that the enhanced wettability was mainly contributed by the oxygen containing polar groups induced onto fiber surfaces through plasma treatment. Consequently, the anti-bleeding performance of both fabrics for inkjet printing was markedly improved, and the pattern sharpness considerably increased. Thereby the surface modification method for both fabrics used here offers a potential way for pretreatment of fabrics for inkjet printing with the advantages of environmental friendly and energy saving over traditional pretreatment methods.
引文
1. I M C Goncalves, A Gomes, R Bras, et al. Biological treatment of effluent containing textile dyes[J].Journal of the Society of Dyers and Colourists 2000,116(12):393–397
    2.陈杰瑢.等离子体清洁技术在纺织印染中的应用[M].北京:中国纺织出版社.2005, 12–15
    3.房宽峻,数字喷墨印花技术(一).印染,2006,(18):44–48
    4.房宽峻,付少海,张霞等.数字喷墨印花技术及其进展.印染,2004,(24):48–53
    5. Owen P. AATCC Rev 2003,3, p5 10–15
    6. Xue C.H, Shi M.M, Chen H.Z. Preparation and application of nanoscale microemulsion as binder for fabric inkjet printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 287(1-3):147–152
    7.朱利,屠天民.真丝喷墨印花技术研究[D]:[硕士论文].上海:东华大学, 2003
    8.刘加飞.用于颜料喷墨印花的涤纶织物预处理[D]:[硕士论文].无锡:江南大学, 2006
    9. Li Rongzhi, Ye Lin, Mai Liuwing. Application of plasma technologies in fiber-reinforced polymer composites: a review of recent developments. Composites Part A, 1997,28(5):73–86
    10. Shenton M. J, Stevens G. C, Wright N. P, et al. Chemical-surface modification of polymers using atmospheric pressure nonequilibrium plasmas and comparisons with vacuum plasmas. Journal of Polymer Science: Part A: Polymer Chemistry, 2002,40(1):95–109
    11. Sharnina L.V. Low-temperature plasma as the basis for creation of modern textile chemical technology, Fiber chemistry, 2004,36(6):431–436
    12. Toru Iwao, Motoshige Yumoto. Portable application of thermal plasma and arc discharge for waste treatment, thermal spraying and surface treatment. Transactions on electrical and electronic engineering, 2006,1:163–170
    13.金郡潮.羊毛织物等离子体表面改性研究[D]:[博士论文].上海:东华大学, 2004
    14.戴瑾瑾.等离子体技术在纺织加工中的应用.纺织学报,1996,17(6):384–390
    15.马晓光.纺织品物理机械染整[M].北京:中国纺织出版社,2002, 32–35
    16.傅科杰.等离子体技术在纺织工业中的应用及其最新进展.上海丝绸,2002,5(2):7–11
    17. Aubrecht L, Pichal J. Etching of PES fabric by O2/CF4 plasma. Czechoslovak Journal of Physics, 2006,56:1126–1131
    18. Joanne Yip, Kwong Chan, Kwan Moon Sin. Study of plasma-etched and laser-irradiated polyamide materials. Mat Res Innovat, 2002,6(2):44–50
    19.宋心远,沈煜如.新型染整技术[M].北京:中国纺织出版社,1999.20–53
    20.房宽峻,田安丽.一种数字喷墨印花用织物的预处理工艺[P].中国专利,1707017A.2005–12–14
    21. Ellis Scott W, Wilmington DE. Fabric pretreatment for inkjet printing[P]. United States Patent, 11521693. 2007–3–15
    22. Chung Kwang-Choon, Gong Myoung-Seon, Kim Hoo-Shick. Pretreatment method and apparatus of textile applying inkjet printer[P]. United States Patent, 10550842. 2007–2–22
    23. Hees Ulrike, Michael Kluge, Freche Mike. Pre-treatment liquor for preparing textile substrates for inkjet printing[P]. United States Patent, 10529078. 2006–1–19
    24. Samit N Chevli, Wilmington DE. Fabric pretreatment for inkjet printing. United States Patent[P], 11070711. 2005–9–8
    25. Keller M, Ritter A, Reimann P. Comparative study of plasma-induced and wet-chemical cleaning of synthetic fibers[J]. Surface & Coatings Technology, 2005,200(1-4):1045–1050
    26.蔡再生,邱夷平,Marian McCord.常压等离子体退除PVA浆料机理探讨[J].纺织学报, 2005,26(6):5–8
    27. Bae P.H, Hwang Y.J, Jo H.J. Size removal on polyester fabrics by plasma source ion implantation device[J]. Chemosphere, 2006,63(6):1041–1047
    28. Cai Zaisheng, Qiu Yiping. The Mechanism of Air/Oxygen/Helium Atmospheric Plasma Action on PVA[J]. Journal of Applied Polymer Science, 2006,99(5):2233–2237
    29. Wang C.X, Qiu Y.P. Two sided modification of wool fabrics by atmospheric pressure plasma jet: Influence of processing parameters on plasma penetration[J]. Surface & Coatings Technology, 2007,201(14):6273–6277
    30. Osenberg F, Theirich D, Decker A et al. Process control of a plasma treatment of wool by plasma diagnostics[J]. Surface & Coatings Technology, 1999,116(8):808–811
    31. Kan C.W, C.W.M. Surface characterisation of low temperature plasma-treated wool fibre[J]. Journal of Materials Processing Technology, 2006,178(1–3):52–60
    32. Kan C.W, Chan K, C.W.M, et al. Surface properties of low-temperature plasma treated wool fabrics[J]. Journal of Materials Processing Technology, 1998,83(1–3):180–184
    33. Kan C.W, Chan K, C.W. M, et al. The effect of low-temperature plasma on the chorme dyeing of wool fiber[J]. Journal of Materials Processing Technology,1998,82(6):122–126
    34. Janca J, Czernichowski A. Wool treatment in the gas flow from gliding discharge plasma at atmospheric pressure[J]. Surface & Coatings Technology, 1998,98(1–3):808–811
    35. Molina R, Espino J.P, Yubero F, et al. XPS analysis of down stream plasma treated wool: Influence of the nature of the gas on the surface modification of wool[J]. Applied Surface Science, 2005,252(5):1417–1429
    36. Kan C. W, C. W. M. Evaluation of Some of the Properties of Plasma Treated Wool Fabric[J]. Journal of Applied Polymer Science, 2006,102(4):5958–5964
    37. Lehocky M, Mracek A. Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment[J]. Czechoslovak Journal of Physics, 2006,56 (1–3):1277–1282
    38. Liao Jiunn-Der, Chen Chonyu, Wu Yi-Te, et al. Hydrophilic treatment of the dyed nylon-6 fabric using high-density and extensible antenna–coupling microwave plasma system. Plasma Chemistry and Plasma Processing, 2005,25(2)255–273
    39. Marcel Simora, Jozef Rahel, Mirko Cerna. Atmospheric–pressure plasma treatment of polyester nonwoven fabrics for electroless plating[J]. Surface & Coatings Technology, 2003,172(1):1–6
    40. Poletti G, Orsini F, Raffaele-Addamo A, et al. Cold plasma treatment of PET fabrics AFM surface morphology characterization[J]. Applied Surface Science, 2003,219(3–4):311–316
    41. Raffaele-Addamo A, Elena Selli. Cold plasma-induced modification of the dyeing properties of poly(ethylene terephthalate) fibers[J]. Applied Surface Science,2006, 252(6): 2265–2275
    42. Costa T.H.C, Feitor M.C. Effects of gas composition during plasma modification of polyester fabrics[J]. Journal of Materials Processing Technology, 2006,173(1): 40–43
    43. Jozef Rahel, Marcel Simor, Mirko Cerna. Hydrophilization of polypropylene nonwoven fabric using surface barrier discharge. Surface & Coatings Technology, 2003,169(2): 604–608
    44. Joanne Yip, Kwong Chan, Kwan Moon Sin. Low temperature plasma-treated nylon fabrics[J]. Journal of Materials Processing Technology, 2002,123(1):5–12
    45. Ehrhardt A, Miyazaki K, Sato Y, et al. Modified polypropylene fabrics and their metal ionsorption role in aqueous solution[J]. Applied Surface Science, 2005,252(4):1070–1075
    46. Ferrero F. Wettability measurements on plasma treated synthetic fabrics by capillary rise method[J]. Polymer Testing, 2003,22(5):571–578
    47. Hossain M. M, Hegemann D, Herrmann A. S. Contact angle determination on plasma-treated poly(ethylene terephthalate) fabrics and foils[J]. Journal of Applied Polymer Science, 2006,102(2):1452–1458
    48. Wei Qufu, Wang Yingying, Dayin Hou. Dynamic wetting of plasma–treated polypropylene nonwovens[J]. Journal of Applied Polymer Science, 2007,104(4):2157–2160
    49. Yuen C. W. M, Jiang S. Q, C. W. Kan. Effect of low temperature plasma treatment on the electroless nickel plating of polyester fabric[J]. Journal of Applied Polymer Science, 2007, 105(4):2046–2053
    50. Tsafack M.J, Levalois-Grützmacher J. Towards multifunctional surfaces using the plasma-induced graft-polymerization (PIGP) process: Flame and waterproof cotton textiles[J]. Surface & Coatings Technology, 2007,201(12):5789–5795
    51. Tsafack M.J, Levalois-Grützmacher J. Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP)[J]. Surface & Coatings Technology, 2006,201(6): 2599–2610
    52. Lin Li-hue, Wang Chee-chan, Chen Chi-wu. Water-repellency and antibacterial activity of plasma-treated cleavable silicone surfactants on nylon fabrics[J]. Surface & Coating Technology,2006,201(3–4):674–678
    53. Ren C.S, Wang D.Z, Wang Y.N. Graft co-polymerization of acrylic acid onto the linen surface induced by DBD in air[J]. Surface & Coatings Technology, 2006,201(6):2867–2870
    54. Chaivan P, Pasaja N, D. Boonyawan. Low-temperature plasma treatment for hydrophobicity improvement of silk[J]. Surface & Coatings Technology, 193, 2005(1–3):356–360
    55. Hocharta F, De Jaegera R, Levalois-Grutzmacher J. Graft-polymerization of a hydrophobic monomer onto PAN textile by low-pressure plasma treatments[J]. Surface & Coatings Technology, 2003,165(2):201–210
    56. Oehr C, Muller M, Elkin B, Hegemann D. Plasma grafting a method to obtain monofunctional surfaces[J]. Surface and Coatings Technology, 1999,116–119:25–35
    57. Choia Ho-Suk, Kima Young-Sun, Zhanga Yan, et al. Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface[J]. Surface & Coatings Technology, 2004,182(1):55–64
    58. Younsook Shin, Kyunghee Son, Dong Yoo. Functional finishing by using atmospheric pressure plasma: Grafting of PET nonwoven fabric[J]. Journal of Applied Polymer Science, 2007,103(6):3655–3659
    59. Huang Fenglin, Wei Qufu, Wang Xueqian, et al. Dynamic contact angles and morphology of PP fibres treated with plasma[J]. Polymer Testing, 2006,25(1):22–27
    60. Liu Y.C, Lu D.N. Surface energy and wettability of plasma-treated polyacrylonitrile fibers[J]. Plasma Chemistry and Plasma Processing, 2006, 26(2):119–126
    61.张美珍.聚合物研究方法[M].北京:中国轻工业出版社,2000, 53–55
    62.薛朝华.颜色科学与计算机测色配色实用技术[M].北京:化学工业出版社,1991, 71–72
    63. Eef Temmerman, Christophe Leys. Surface modification of cotton yarn with a DC glow discharge in ambient air[J]. Surface & Coatings Technology, 2005,200(1–4):686–689
    64. Li Min, Cheng Jie-rong, Wei He-ping. Comparison of oxygen and nitrogen plasma treatment clean process of fine-polyester[J]. Research of Environmental Science, 2000,13(2):9–10
    65. We Qufu, Liu Ya, Hou Dayin, et al. Dynamic wetting behavior of plasma treated PET fibers[J]. Journal of Materials Processing Technology. 2007,194(1–3):89–92
    66. Wang C.X, Ren Y, Qiu Y.P. Penetration depth of atmospheric pressure plasma surface modification into multiple layers of polyester fabrics[J]. Surface & Coating Technology, 2007,202(1):77–83
    67. Shen Li, Dai Jinjin. Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment[J]. Applied Surface Science, 2007,253(11):5051–5055

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700